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Abstract

An algebraic equivalent of the four-color theorem is presented. The equivalent is the assertion
of non-membership of a family of polynomials in a family of polynomial ideals over a particular
finite field. A more precise statement must wait until specialized machinery has been introduced.

Geometry and algebra give to airy nothing a local habitation and a name.
adapted from Shakespeare.

1 About this paper

Most papers don’t begin with a history of their preparation but, as you will see, it is necessary for
this one. For the last several years of his life, Howard Levi attempted to devise a proof of the four-
color theorem of a traditional kind—not involving the extensive use of computers. To this end he
formulated an algebraic equivalent which he tried to prove directly. He discussed his attempts with
Don Coppersmith, who repeatedly discovered gaps in the proof attempts, which Howard repeatedly
attempted to fill, as far as we know without success. However, the consultation with Don helped
Howard clarify his ideas, and the equivalence of the four-color theorem and the algebraic version
was solidly established. When Howard died in late 2002, his work was left in an incomplete,
and somewhat chaotic, condition. We, his colleagues and associates, Don Coppersmith, Melvin
Fitting, and Paul Meyer, have tried to create a coherent presentation of the successful portion of
Howard’s work, from his notes and papers, in the hope that someone else will be able to successfully
complete the project. All ideas and results here are due to Howard Levi; any infelicities of style
are our responsibility.

We conclude this somewhat unusual preface with the acknowledgements that Howard originally
intended to be at the conclusion of his paper.

“Although the author has never referred to the details of the computer based proof of the four
color theorem [1] the existence of that proof has often served as a prefabricated light at the end of
the tunnel in the search for the proofs in this paper. The author has used computers to find plausible
conjectures and then often to shoot them down, employing the languages APL, SCRATCHPAD
and MATHEMATICA

He wishes to thank his friends and colleagues for their kind assistance, including Melvin Fitting,
Paul Meyer and Alfonso Vasquez , of CUNY, and William Burge, Alan Hoffman, Dan Prener and
Barry Trager of IBM. He wishes especially to thank Don Coppersmith of IBM for his relentless
detection of weak spots in the original manuscript.”
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2 Introduction

Our main result is a reformulation of the four color map theorem in a purely algebraic form
(Theorem 10.1), with the four colors replaced by the four elements of the Galois field of order
4. After proving this equivalence, we have an algebraic statement that is true, because the four
color theorem has been established, but which if given a purely algebraic proof would provide a
computer-independent proof of the four color theorem.

According to a result of Hassler Whitney [3], the four color theorem for general planar graphs
follows from a more restrictive statement: to prove the four-color theorem for planar graphs it is
sufficient to prove it for planar graphs which have a Hamiltonian circuit, that is, a subset of its
edges which link its set of vertices to form a simple closed curve. Suppose we have a planar graph
G having a Hamiltonian circuit. Think of the circuit as dividing the graph into an “inside” and an
“outside,” and separate the graph into these two pieces, with the Hamiltonian circuit counted as
belonging to each. For each of the two pieces, the original Hamiltonian circuit can be reshaped into
a polygon, with the other “inside” or “outside” edges becoming internal edges. If each of these two
pieces could be four-colored in ways that agree on the (common) bounding polygon, the separate
four-colorings could be recombined to yield a four-coloring of the original graph G. Further, by
adding extra internal edges to the “inside” and to the “outside” polygon, we can fully triangulate
each of these two pieces. Clearly, if these triangulated polygons could be four colored in ways that
agree on the bounding polygon, that would yield a four coloring of the original polygons without
the additional edges, and so a four coloring of G.

So the strategy is this: suppose we have two fully triangulated polygons having the same
boundary. If it could be shown that there always exist four colorings of such triangulated graphs
that agree on the bounding polygon, the four color theorem for planar graphs with Hamiltonian
circuits would follow, and hence the four color theorem generally. We will endow triangulated
polygons with some algebraic structure, calling the resulting entities triagons. We will then give a
necessary and sufficient polynomial test for the simultaneous four colorability of two triagons that
share a polygon. This converts the four color theorem into a purely algebraic condition which, we
hope, will eventually lead to a purely algebraic proof of the four color theorem. Our work is offered
as an algebraic continuation of the deep, non-algebraic result of Whitney.

3 Algebraic background

We use as our colors the four elements {0, 1, ζ, ζ2 = ζ + 1} of the Galois Field F4 = GF[2, 2]. We
note that if non-zero elements ζa, ζb, ζc of F4 have sum 0 then 〈ζa, ζb, ζc〉 must be a permutation of
〈1, ζ, ζ2〉. In F4 every element is its own additive inverse, so we routinely identify x and −x when
working in this field.

A four-coloring of graph nodes induces a three color labeling of graph edges (see Section 5).
For three-colorings we use F3, the field of three elements {0, 1, 2 = −1}. We generally identify the
members of F3 with the non-zero members of F4 via the mapping that sends x ∈ F3 to ζx in F4.

We introduce the ring QRn as the quotient ring of F3[u1, . . . , un] modulo the ideal I3 generated
by {u3i − ui | i = 1, 2, . . . , n}. Note that for every element a of QRn we have a3 = a. This ring has
the useful property that it contains a polynomial formula for every function from Fn

3 to F3. To see
this let 〈e1, . . . , en〉 be an element of Fn

3 and multiply together all the expressions 1− (ei− ui)2 for
i = 1, . . . , n. This product is 1 on the given n-tuple and 0 on all other n-tuples. It is straightforward
to use these characteristic functions to construct, for each function from Fn

3 to F3, a polynomial of
QRn which represents that function. In particular we assert that such a function returns the value
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0 for every n-tuple 〈e1, . . . , en〉 of non-zero elements of F3 if and only if its polynomial formula is
in the ideal I2 generated by {u2i − 1 | i = 1, . . . , n}. This follows from the facts that, modulo I2,
every element of QRn is congruent to a polynomial all of whose monomials are square free, and an
induction argument shows that a non trivial linear combination of such monomials cannot vanish
on all n-tuples of non-zero elements of F3. For every element a of QRn we denote by red2(a) this
square free residue of a modulo I2.

We define a sequence of polynomials, POLn, with coefficients in F3, and with POLn having
variables u1, . . . , un, as follows.

POL0 = 1

POL1 = u1 (1)

POLn+1 = un+1 · POLn − POLn−1

We sometimes need to make use of algebraic objects constructed by applying the rules defining QRn,
I2, I3, red2(a), POLn, but referring to a list of variables different from {u1, u2, . . .}. If we introduce
a new list of variables var then we designate the results of such constructions by QRn(var), I2(var),
I3(var), red2(a, var), POLn(var). As special, but natural, notation, we will use POLn(s1, . . . , sn)
as an alternative to POLn({s1, . . . , sn}). All of our polynomials are understood to be in some
QRn(var) or one of its quotient rings.

4 Geometric background

A2 is the real affine plane in which a counterclockwise orientation has been designated. We use
Pn+2 to designate a polygon in A2 of n + 2 vertices with convex interior, no three of its vertices
colinear, and with one of its vertices selected to be p0. When we present a list [p0, p1, . . . , pn+1] of
vertices of Pn+2 we assume that the list defines a counter-clockwise traversal of the polygon. We
reserve the right to rename any of the vertices of Pn+2 as p0 provided that we also rename the other
vertices to be in accord with this assumption. We call a graph which results from a triangulation of
Pn+2 a T P graph. More specifically a T P graph is a graph having the vertices and edges of Pn+2

and whose other (internal) edges are a maximal subset of non-crossing segments which connect
non-adjacent vertices of Pn+2 (vertices of the polygon don’t count as crossing points of internal
edges). We will systematically use Tn+2 to denote a T P graph whose polygon is Pn+2.

A triangle of a T P graph is a triangle whose sides and vertices are edges and vertices of the T P
graph. An eye of a T P graph is a vertex on no internal edge. A T P graph with n+ 2 vertices has
n triangles, n− 1 internal edges and at least two eyes. If a T P graph has more than one triangle,
no two of its eyes can be adjacent. It is a useful fact that if p is an eye of a T P graph of n triangles,
and ppa, ppb are the two edges of the polygon of this graph which contains p, then deleting p, ppa,
and ppb yields a new T P graph of n− 1 triangles.

5 Colorings

To four-color a graph means, in what follows, to assign an element of F4 to each of the vertices of
the graph so that the endpoints of each of its edges have different colors. Given an assignment of
members of F4 to the vertices of a graph, whether or not it is a four-coloring, we will associate with
each edge the sum of the members of F4 assigned to the endpoints of that edge—we call this an
edge label. Endpoints of an edge have different colors if and only if the edge label assigned to that
edge is non-zero, that is, it is ζh for some h of F3. Thus a four-coloring induces a labeling of edges
with non-zero members of F4, and this is isomorphically a labeling of edges with members of F3.
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As an auxilliary notion, we will sometimes need to speak of a three-coloring of a graph, which
is an assignment of elements of F3 to vertices so that endpoints of each edge have different colors.
For a three-coloring the difference of the colors of the endpoints of an edge must be a non-zero
member of F3, that is, 1 or -1.

6 Colorings of polygons

This section concerns itself with the coloring of polygons, not full T P-graphs. Denote the vertices
of Pn+2 by [p0, p1, . . . , pn+1]. Let C4 be a four-coloring of Pn+2 for which C4(p0) = 0, C4(p1) = 1.
This determines an edge labeling by non-zero members of F4. We define ζsr by

ζsr =
C4(pr+1) + C4(pr)

C4(pr−1) + C4(pr)
r = 1, . . . , n+ 1 (2)

where pn+2 means p0. That is, given a node pr, ζ
sr is the ratio of the edge labels of the two edges

of Pn+2 having pr as an endpoint, prpr+1 and pr−1pr. It follows from (2) that

C4(pr+1) = 1 + ζs1 + . . .+ ζs1+...+sr r = 1, . . . , n+ 1 (3)

For each ζsr , we identify sr with the corresponding member of F3 and call it the local sum
associated with vertex pr. (The reason for the name will appear later.) Local sums are one of our
main tools. We say that the (n+ 1)-tuple of F3 elements 〈s1, . . . , sn+1〉 is the index of the coloring
C4. We shall see that indices provide a way of connecting the colorings of two T P graphs which
share their polygon.

We use our family of polynomials (1) to test whether a given (n + 1)-tuple of F3 elements
〈s1, . . . , sn+1〉 is in fact the index of a coloring of a given polygon.

Theorem 6.1 Let 〈s1, . . . , sn+1〉 be an (n + 1)-tuple of F3 elements and let Pn+2 be a polygon
with vertices [p0, p1, . . . , pn+1]. Then there is a four coloring C4 of the polygon Pn+2 such that
C4(p0) = 0, C4(p1) = 1, for which our (n+ 1)-tuple is the index, iff POLn+1(s1, . . . , sn+1) = 0.

Proof We note that the assignments of equations (3) for all values of r < n + 1 can be made
without conflict. It is only the requirement

C4(pn+2) = 1 + ζs1 + . . .+ ζs1+...+sn+1 = C4(p0) = 0

that is in doubt. Proceeding by induction we start with n = 0. We are to show that 1 + ζs1 = 0
iff POL1(s1) = 0. This is clearly the case. We now examine the transition from n to n + 1, and
begin with the case sn+1 = 0. Because the values assigned by C4 are from a field of characteristic
2, the last two terms of our sum cancel, and we conclude that the sum for C4(pn+2) is the same as
the sum for C4(pn), which from the induction hypothesis is 0 iff POLn−1(s1, . . . , sn−1) = 0. From
the recursion formula for POLn+1, together with the assumption sn+1 = 0, we conclude that in this
case the sum for C4(pn+2) is zero iff POLn+1(s1, . . . , sn+1) = 0. There remains the cases in which
sn+1 is not zero. It is a fact that, in F4 for every x and non-zero y, we have ζx + ζx+y = ζx−y

(check this by dividing both sides by ζx). Therefore the last two terms in our sum for C4(pn+2)
combine to complete the sum for the n-tuple 〈s1, . . . , sn−1, sn − sn+1〉. Our induction hypothesis
implies that this sum is zero iff POLn(s1, . . . , sn−1, sn − sn+1) = 0. The recursion formula for this
case reads

POLn(s1, . . . , sn−1, sn − sn+1) = (sn − sn+1) · POLn−1(s1, . . . , sn−1)− POLn−2(s1, . . . , sn−2)
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which using (1) reduces to

POLn(s1, . . . , sn)− sn+1 · POLn−1(s1, . . . , sn−1). (4)

Since sn+1 is in F3 and is not 0, (sn+1)
2 = 1, so the product of (4) with sn+1 reduces to

POLn+1(s1, . . . , sn+1), which is also, therefore, zero iff the sum for C4(pn+2) is 0.
It should also be verified that the assignment given by (3) is a four-coloring—no adjacent nodes

share a color. But since each member of F4 is its own additive inverse the expressions for C4(pr+1)
and C4(pr+2) sum to ζs1+...+sr+1 . This is not the 0 of F4 and hence C4(pr+1) and C4(pr+2) are
different.

7 Enumerating the triangles of a T P graph

We present a procedure for assigning a sequence of integers to each T P graph, which serves to
identify the graph uniquely (up to isomorphism). We call this sequence the identifier of the T P
graph. As part of the mechanism of defining this assignment, we produce an enumeration of the
triangles of the T P graph, which plays a very significant role as well.

Let Tn+2 be a T P graph resulting from a triangulation of a polygon Pn+2. If n = 1 our graph
has one triangle, which we name ∆1. We use the sequence 〈1〉 as the identifier of this T P graph,
and set Identifier(T3) = 〈1〉.

Suppose now that n is bigger than 1 and that Identifier(Tn+1) has been defined. Let pe be the
eye of the graph Tn+2 with largest e for which 1 ≤ e ≤ n. Then the points pe−1, pe, pe+1 are
vertices of a triangle of the graph. We select this triangle to be ∆n. We delete pe along with the
edges and the triangle which contain it from Tn+2. The resulting figure becomes a new T P graph
Tn+1 after we rename the points pi as pi−1 for e + 1 ≤ i ≤ n + 1. This new graph has all the
triangles of the original except ∆n and no eye pf with e < f . If Identifier(Tn+1) = 〈e1, . . . , en−1〉,
we set Identifier(Tn+2) = 〈e1, . . . , en−1, e〉. In brief,

Identifier(T3) = 〈1〉
Identifier(Tn+2) = Identifier(Tn+1)||e

where pe is selected as described above, and || is the operation of appending to the end of a sequence.
Note that Identifier(Tn+2) is an ordered sequence of positive integers 〈e1, . . . , en〉 with e1 = 1,

with ei−1 ≤ ei and with ei ≤ i; i = 2, . . . , n. Note also that every such ordered sequence is the
identifier of a T P graph.

8 More about triangles of a T P graph

In this section, when three-coloring T P graphs we will assume the color assigned to p0 is 0, and
the color assigned to pn+1 is 1. This specification allows us to give the following.

Lemma 8.1 Every T P graph has a unique three-coloring.

Proof Let Tn+2 be a T P graph. If n = 1, Tn+2 has one triangle, which clearly has a unique three
coloring. For larger n let pe be one of the eyes of Tn+2, with 0 < e < n + 1. If we delete the two
edges of Tn+2 which end at pe the residual figure is a T P graph with one fewer vertex. We can
extend the unique three-coloring of this T P graph to a unique coloring of Tn+2 by assigning to pe
the unique color different from those of pe−1 and pe+1.
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Let Tn+2 be a T P graph with vertices [p0, . . . , pn+1] and enumerated triangles [∆1, . . . ,∆n]. We
consider the system of equations over F3 in the variables {s0, s1, . . . , sn+1} and {t1, . . . , tn} given
by:

si =
∑′

tk, i = 0, 1, . . . , n+ 1 (5)

where each sum
∑′ is extended over those tk for which the triangle ∆k has pi as one of its vertices.

We first note that each triangle of Tn+2 is represented in exactly three of the equations of (5) so
that, because we work in F3, we have s0 + . . .+ sn+1 = 0. Also, let C3 be the unique three-coloring
of Tn+2. Because each triangle is represented once in an equation for which C3(pi) = 1, once
in an equation for which C3(pi) = −1, and once in an equation for which C3(p1) = 0, we have
C3(p0) · s0 + . . .+C3(pn+1) · sn+1 = 0. Clearly these two equations relating the si can be solved for
s0 and sn+1 in terms of {s1, . . . , sn}. Guided by these results we form system (6) by dropping the
equations for s0 and sn+1 from (5).

si =
∑′

tk, i = 1, . . . , n (6)

We now show that system (6) can be solved for {t1, . . . , tn} in terms of {s1, . . . , sn}. To describe
this solution we note that p0, . . . , pn+1 are linearly ordered by the counter-clockwise traversal of
the polygon of Tn+2. For 0 ≤ a < b ≤ n + 1 we denote the set of vertices which follow vertex pa
and precede vertex pb by [a, b] (this excludes the end points).

Theorem 8.2 For each ∆k of Tn+2 let its list of vertices be [pa, pb, pc] where a < b < c. Also let
C3 be the three-coloring from above, determined by setting C3(p0) = 0 and C3(pn+1) = 1. Then a
solution of (6) is given by

tk =
∑′

si −
∑′′

si −
∑′′′

si k = 1, . . . , n

where ∑′ is extended over the i for which pi is in [a, c] and C3(pi) = C3(pb)∑′′ is extended over the i for which pi is in [a, b] and C3(pi) = C3(pc)∑′′′ is extended over the i for which pi is in [b, c] and C3(pi) = C3(pa)

Proof Let us say a summation
∑
si references tj if there is a term sm in the summation such that

the formula for sm from system (6) has tj on its right side. Note that in the proposed formula for
tk above, only

∑′ references tk, while if j 6= k then
∑′ references tj if and only if exactly one of∑′′ and

∑′′′ references tj . It follows that when all the components of
∑′ si −∑′′ si −∑′′′ si are

collected the only survivor is tk.

Note 1: The expression for tk in Theorem 8.2 depends only on the portion of Tn+2 which lies in
the open half-plane bounded by the line papc and which contains pb. In particular we infer that
neither s0 nor sn+1 occurs in such an expression because there is no such open half-plane which
contains p0 or pn+1.

Note 2: Observe that our construction of the tk as expressions in the si can be imitated in ob-
taining expressions for tk in the si of that open half plane of pcpa which contains pb, and also for tk
in the si of the open half plane of pbpc which contains pa. Thus there are, in general, three distinct
forms in the si for each tk, each of which evaluates to tk. More explicitly, in the Theorem we took
the triangle to be [pa, pb, pc]; the construction works if we take it to be [pb, pc, pa] or [pc, pa, pb],
and these give different formal expressions for the tk. It should be mentioned that these alternate
representations do involve s0 and sn+1, in contrast to the original representation, which did not.
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Definition 8.3 Let v be the identifier of the T P graph Tn+2, as defined in Section 7. The graph (or
equally well, the identifier) determines the set of equations (5), and hence an n+2 by n matrix over
F3 mapping the vector 〈t1, . . . , tn〉 to the vector 〈s0, s1, . . . , sn+1〉. We call this matrix matriag[v],
so that 〈s0, s1, . . . , sn+1〉 = matriag[v] · 〈t1, . . . , tn〉.

In a similar way, sqmat[v] is the n by n matrix over F3 mapping 〈t1, . . . , tn〉 to 〈s1, . . . , sn〉
according to (6), so 〈s1, . . . , sn〉 = sqmat[v] · 〈t1, . . . , tn〉. By Theorem 8.2 this matrix is invertible,
and sqmat[v]−1 · 〈s1, . . . , sn〉 = 〈t1, . . . , tn〉.

We now introduce the final major component of our machinery—labels for triangles, or just
labels. Let C4 be a four coloring of Tn+2. For each ∆k with vertices [pa, pb, pc], the edge labels
assigned to the edges of this triangle are C4(pa) + C4(pb), C4(pb) + C4(pc), C4(pc) + C4(pa), and
we know that each of these is non-zero and their sum is zero. This sequence of edge labels must
therefore constitute a permutation of 〈1, ζ, ζ2〉. If this permutation is even we say that the label
induced on ∆k by C4 is 1, if it is odd we say that this label is −1. We generally denote the label of
∆k by tk. Notice that the assignment of a label does not change if we renumber the vertices of the
T P graph starting from a different point than p0 because it only depends on the orientation that
the list [pa, pb, pc] of vertices confers on its triangle, and our agreement about numbering implies
that renumbering preserves this orientation.

If we require only that C4 color the polygon of our T P graph then a sum attached to an edge
of a triangle could be zero, and, for such a triangle, the definition above could not be applied. In
this case we assign 0 to ∆k as its induced label. Thus every four coloring of the polygon Pn+2 of
a T P graph Tn+2 yields as its labeling an n-tuple 〈t1, . . . , tn〉 of elements of F3, all of which are
different from zero iff the given coloring actually four-colors the whole T P graph.

In Figure 1 a portion of a T P-graph is shown, including nodes pi−1, pi, and pi+1. It is assumed
the graph has been four-colored, and edge labels and triangle labels are indicated. Because we
have a four-coloring, all edge labels are non-zero. We have shown the edge label of pi−1pi as ζh. If
the edge labels associated with the edges of the leftmost triangle, taken with clockwise orientation,
are an even permutation of 〈1, ζ, ζ2〉, the label on this triangle will be ta = +1, and the label on
the edge out of pi immediately clockwise to pi−1pi must be ζh+1, that is, ζh+ta . Similarly if the
permutation is an odd one, and ta = −1; either way the next edge label out of pi must be ζh+ta .
This reasoning continues across all the triangles, and it is straightforward to check that all the edge
labels must be as indicated.

In Section 6 local sums and indexes were defined. Applying that definition to Figure 1, local
sum si was characterized by the condition that ζsi must be the ratio of the edge label on pipi+1 to
the edge label on pi−1pi. This ratio is seen to be ζta+...+tq , and so si = ta + . . .+ tq (accounting for
the terminology local sum). In other words, local sums and labels are connected by the equations
of (5). We summarize some of this discussion as a theorem.

Theorem 8.4 Let 〈t1, . . . , tn〉 be the labels induced on triangles 〈∆1, . . . , ∆n〉 of Tn+2 by a four
coloring C4 of Tn+2, and let 〈s1, . . . , sn+1〉 be computed from these labels using the equations (5).
Then 〈s1, . . . , sn+1〉 is the index of C4. Conversely if 〈t1, . . . , tn〉 is any n-tuple of non-zero elements
of F3 then there is a coloring C4 of Tn+2 which induces 〈t1, . . . , tn〉 as the labels on 〈∆1, . . . ,∆n〉
and having 〈s1, . . . , sn+1〉 is its index, where the si and tj are related by (5).

If 〈t1, . . . , tn〉 is any tuple of non-zero elements of F3, and we use (5) to compute 〈s1, . . . , sn+1〉,
we will get an index of a four-coloring of a polygon Pn+2, so by Theorem 6.1, POLn+1(s1, . . . , sn+1)
must be 0. It follows from the remarks in Section 3 that this polynomial, when expressed in terms
of ti as variables, must be in the ideal generated by {t2i − 1 | i = 1, . . . , n}, denoted I2({t1, . . . , tn}).
This gives us the following.
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Figure 1: How local sums arise

Corollary 8.5 red2(POLn+1(s1, . . . , sn+1), {t1, . . . , tn}) = 0.

With n triangles, there are 2n possible labelings, hence we have the following.

Corollary 8.6 Tn+2 has 2n four colorings.

We now introduce our fundamental structure, the triagon. A triagon is a triangulated polygon
with triangle labels and local sums assigned to it, connected by (5).

We have two ways of making a triagon from a triangulated polygon whose vertices are enumer-
ated as {p0, . . . , pn+1} and whose triangles are enumerated as {∆1, . . . ,∆n}.

I(a) Assign labels 〈t1, . . . , tn〉.

I(b) Compute local sums 〈s1, . . . , sn〉 by sqmat[v] · {t1, . . . , tn}.

or

II(a) Begin with local sums 〈s1, . . . , sn〉 (which we intend to be copies of those of another triagon).

II(b) Compute labels 〈t1, . . . , tn〉 by sqmat[v]−1 · {s1, . . . , sn}.

9 Further Facts About POLn

We present results that continue what began with Corollary 8.5.

Theorem 9.1 POLn(s1, . . . , sn) = POLn(sn, . . . , s1).

Proof The following direct proof was provided by both Cormac O’Sullivan and Jonas Reitz (private

communications). Define P̂OLn(u1, . . . , un+1) to be POLn(un+1, . . . , u1). Then show by induction

on n and k that, if 1 ≤ k ≤ n, POLn+1 = P̂OLkPOLn+1−k − P̂OLk−1POLn−k. The special case

where k = n almost immediately yields that POLn+1 = P̂OLn+1.

The original proof of Theorem 9.1 was more indirect, but provided a non-recursive character-
ization of POLn(s1, . . . , sn). It is the sum of all monomials a · ui1 · ui2 · . . . · uik whose subscripts
are non-negative integers which obey the rules 1 ≤ i1 < i2 . . . < ir < . . . < ik ≤ n, each ir is
congruent to r mod (2) and whose greatest subscript ik is congruent to n mod (2). The coefficient
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a of a monomial of POLn is computed from the formula a = (−1)s where s = (n− k)/2. We take
into account the case of a possible non-zero constant term in POLn. It arises from k = 0 and then
only if n is even. Our formula for a gives the value for the constant term in this case. These rules
can be deduced by a straightforward induction argument showing that the monomials of the left
side of

POLn+1(u1, . . . , un+1) = un+1 · POLn(u1, . . . , un)− POLn−1(u1, . . . , un−1)

obey the proposed rules if those of the right side do so. We omit the details. We note that this
description of the monomials of POLn implies Theorem 9.1.

Theorem 9.1 justifies the use of the formula

POLn+1(s1, . . . , sn+1) = s1 · POLn(s2, . . . , sn+1)− POLn−1(s3, . . . , sn+1)

in our next proof. We now examine the output when POLn is evaluated at certain sets of local
sums. It supplies the bridge from n to n + 1 in the proof of our main theorem by mathematical
induction.

Lemma 9.2 Suppose we have a triagon, with e being the greatest integer for which pe is an eye
and 1 ≤ e ≤ n, that is, pe−1, pe, pe+1 are the vertices of ∆n. We represent the local sums of the
triagon at the points pe−1, pe, pe+1 as s′e−1 + tn, tn, s′e+1 + tn. We assert the following.

POLn(s1, . . . , s
′
e−1 + tn, tn, s

′
e+1 + tn, . . . , sn) =

tnPOLn−1(s1, . . . , s
′
e−1, s

′
e+1, . . . , sn)−

(1− t2n) · POLn−2{s1, . . . , s′e−1 + s′e+1, . . . , sn}

and consequently POLn(s1, . . . , s
′
e−1 + tn, tn, s

′
e+1 + tn, . . . , sn) is congruent to

tn · POLn−1(s1, . . . , s
′
e−1, s

′
e+1, . . . , sn) in F3[s1, . . . , s

′
e−1, tn, s

′
e+1, . . . , sn]/(t2n − 1).

Proof To prove our theorem we require the formulas POL0 = 1, POL1(s1) = s1, POL2(s1, s2) =
s1 · s2 − 1, POL3(s1, s2, s3) = s1 · s2 · s3 − s1 − s3. Then, by direct substitution, we can confirm our
assertion for the cases of local sums of triagons whose identifiers are

〈1, 1〉, 〈1, 2〉, 〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 1, 3〉, 〈1, 2, 2〉 and 〈1, 2, 3〉.

We extend these results to confirm it for all the remaining triagons, the triagons with local sums
[. . . , s′e−1 + tn, tn, s

′
e+1 + tn, . . .], by using our recursion formulas for POLn to refer back to these

cases.

Theorem 9.3 Let 〈t1, . . . , tn〉 be labels for the triangles of triagon Tn+2 and let 〈s0, s1, . . . , sn+1〉
be its local sums at its vertices [p0, p1, . . . , pn+1]. Then over QRn

1. red2(POLn(s1, . . . , sn), {t1, . . . , tn}) = t1 · t2 · . . . · tn

2. red2(POLn+1(s1, . . . , sn+1), {t1, . . . , tn}) = 0

3. red2(POLn+2(s0, . . . , sn+1), {t1, . . . , tn}) = −t1 · t2 · . . . · tn

Proof We use mathematical induction to prove our theorem. For n = 1 we see that the set of
local sums for T3 at 〈p0, p1, p2〉 is 〈t1, t1, t1〉. We infer from POL0 = 1, from POL1(t1) = t1, from
POL2(t1, t1) = t21 − 1 and from POL3(t1, t1, t1) = t31 − t1 − t1 (which in QRn is −t1), that the
assertions hold for the case n = 1.

Notice that Lemma 9.2 can be applied to the local sums {s0, s1, . . . , s′e−1, s′e+1, . . . , sn+1} of the
triagon Tn+1 which results from deleting the vertex pe and the two edges which contain it from
our original triagon Tn+2. Assuming our theorem for n − 1 we deduce our theorem directly from
Lemma 9.2.
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Observing that f(expr) = red2(expr, {t1, . . . , tn}) denotes the natural homomorphism from
F3[t1, . . . , tn] to F3[t1, . . . , tn]/I2{t1, . . . , tn}, we deduce our next result.

Corollary 9.4 In QRn,

red2(POLn(s1, . . . , sn) · POLn+2(s0, . . . , sn+1), {t1, . . . , tn}) = −1

10 An Algebraic Equivalent

Let u and v be a pair of triagons which triangulate the same polygon. Suppose we had a four-coloring
C4 of the two triagons that agreed on the polygon. Such a coloring would induce a labeling of the
triangles of each of our triagons and the index of C4 could be computed independently from each of
these labelings. Let 〈u1, . . . , un〉 and 〈v1, . . . , vn〉 be the induced labels. Then we can rewrite (6) for
the two triagons as 〈s1, . . . , sn〉 = sqmat[u] · 〈u1, . . . , un〉 and 〈s1, . . . , sn〉 = sqmat[v] · 〈v1, . . . , vn〉.
We derive that 〈v1, . . . , vn〉 = sqmat[v]−1 · sqmat[u] · 〈u1, . . . , un〉. We shall use matmat[v, u] to stand
for sqmat[v]−1 · sqmat[u], and thus we conclude

〈v1, . . . , vn〉 = matmat[v, u] · 〈u1, . . . , un〉. (7)

What we need is a condition that guarantees we can reverse the above steps.
In the ring QRn we see that (7) expresses each vi as a form in the ui. We denote the product of

these forms by pr[v, u]. Consider the function mapping 〈e1, . . . , en〉 ∈ Fn
3 to F3 given by: evaluate

pr[v, u] after assigning each variable ui the value ei. From the discussion in Section 3, this function
is not identically 0 on arguments for which no ei is 0 iff red2(pr[v, u], {u1, . . . , un}) 6= 0. Thus
red2(pr[v, u], {u1, . . . , un}) 6= 0 is a necessary and sufficient condition to ensure that (7) has a
solution in F3 in which no ui or vi is 0.

Now assume that red2(pr[v, u], {u1, . . . , un}) 6= 0. Given a solution of (7) with no ui or vi being
0, the labels 〈u1, . . . , un〉 and 〈v1, . . . , vn〉 induce four-colorings of the two triagons u and v. What
we now show is that the four-colorings fit together, agreeing on the bounding polygon the triagons
share. Part of this is easy. Since (7) is satisfied, if we compute local sums for the two triagons
using 〈s1, . . . , sn〉 = sqmat[u] · 〈u1, . . . , un〉 and using 〈s1, . . . , sn〉 = sqmat[v] · 〈v1, . . . , vn〉, we will
get the same n-tuples. The remaining issue is to show that the two triagons share their values for
s0 and sn+1 as well, and for this we have the following argument. First, for each of the triagons,
POLn+1(s1, . . . , sn+1) = 0 by Theorem 6.1. Using the recurrence relation for POLn+1, we then have
the following, for each triagon.

sn+1 · POLn(s1, . . . , sn)− POLn−1(s1, . . . , sn−1) = 0

It follows from part 1 of Theorem 9.3 that POLn(s1, . . . , sn) 6= 0, which shows that sn+1 depends
only on s1, . . . , sn, which both triagons share, and thus both triagons have a common value for
sn+1. In a similar way POLn+1(s0, . . . , sn) = 0, so using Theorem 9.1, POLn+1(sn, . . . , s0) = 0.
Then by the recurrence relation for POLn+1 again,

s0 · POLn(sn, . . . , s1)− POLn−1(sn, . . . , s2) = 0.

Since POLn(sn, . . . , s1) = POLn(s1, . . . , sn) 6= 0, we conclude that s0 also depends only on s1, . . . ,
sn, which both triagons share, as noted above. Thus the two triagons share their values for both s0
and sn+1, and the four-colorings agree. We conclude that red2(pr[v, u], {u1, . . . , un}) 6= 0 is a valid
test for the simulataneous four colorability of triagons v and u.
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Theorem 10.1 (Algebraic Test) Let u and v be a pair of triagons which triangulate the same
polygon; the two triagons are simultaneously four-colorable if and only if red2(pr[v, u], {u1, . . . , un}) 6=
0. Equivalently stated, the two triagons are simultaneously four-colorable if and only if the polyno-
mial (v1 ·v2 · . . . ·vn) is not in the ideal I2({u1, . . . , un}), where this is the polynomial in the variables
u1, u2, . . . , un in which the expressions vi and the variables ui are connected by (7).
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