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Answers to
Sample Questions
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1. The following is a tableau proof in S5 of O(P A O(Q AOR)) D (O(PAR)AO(Q A R)).

1 —[O(PAOQATR) O (O(PAR)AOQAR))] 1.
1 O(PAO(QAOR)) 2.

1 =[(O(PAR)AO(QAR))] 3.

11 PAGQAOR) 4.

1.1 P 5.

1.1 O(QAOR) 6.

111 QAOR T.

1.1.1 Q@ 8.
1.1.1 OR 9.
1 ﬂ<>(P/\R) 10. ﬁ<>(Q/\R) 11
-(PAR) 12. -(Q AR)

/N /\

1.1-P 13. 1.1-R 14. 11-Q 17. 1.1-R 18
1.1 R 15. 1.1 R 19.

152,325 44-56,6—7 7809 3—10,11; 10 — 12; 12 — 13,14; 9 — 15 (KB
rule); 11 — 16; 16 — 17,18; 18 — 19 (KB rule).

2. For the formula [(Jz)0P(z) AO(Vx)(P(z) D Q(z))] D (3x)0Q(z):

(a) Varying domain K counter-model. The following model will serve. Two possible worlds,
I' and A, with A accessible from I'. The domain of I' is {a}, and of A is {b}, where a
and b are different. At A, P(a) and Q(b) are true while Q(a) is false, and other atomic
formulas won’t matter. In this model (left to you to verify), the formula is false at I
Here is the model schematically.

I' |a
A |b| P(a)
—Q(a)
Q(b)

(b) Constant domain K proof.



1 ~{[B2)0P(x) AOVz)(P(z) D Q)] > (Fz)0Q(x)} 1
1 (Fz)0P(z) AOVz)(P(z) D Q(z)) 2
1 —-(32)0Q(z) 3.

1 (Fz)0P(z) 4.

1 OWz)(P(z) DQ(z)) 5

1 OP(a) 6

1 =0Q(a) 7

1.1 P(a) 8

1.1 (Vz)(P(z) D Q(z)) 9

1.1-Q(a) 10.

1.1 P(a) DQ(a) 11

1.1-P(a) 12. 1.1Q(a) 13.
1—-52,3,2—-454—-6;3—-7,6—>85—9,7—10;9—11; 11 — 12,13.

3. Here is a tableau proof in constant domain K, under the CA assumptions of (A\y.O{(Az.x =
y)())(c) 2 [(Az.Op(2))(c) D DAz.p(x))(c)]-

~{ w0z = y)(c))(c) D [(Az.0¢(x))(c) D OAz.o(2))(c)]} 1.
Ay.OAz.z =y)(e))(c) 2.

“[(Az.Op(@))(c) D O{Az.p(2)) ()]} 3.

(Az.Oe(x))(c)
~O(\z.(x))(c)
O(A\x.x = ct)(c) 6.
1 Op(ch) 7.
1.1=(Az.p(z))(c) 8.
1.1-p(ct) 9.

1.1 (Az.z =ct)(e) 10.
e R A

1.1 p(c) 12
1.1-p(ct) 13.
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4
)
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In this: 1 -+2,3;3 —+4,5;2—-6;4—>7;5—88—9;6—10; 10 - 11; 7 — 12; 9,11 — 13.
4. The following is for a CN seting, and the choice of logic doesn’t matter.

(a) There are many models showing that (Az.P(z))(12.P(x)) is not valid. Here is one. There
is one possible world. The domain of that world has two objects in it. At that world,
P is true of both objects. Since P is true of two things, 72.P(x) doesn’t designate, so
(Ax.P(x))(1z.P(x)) is not true.

(b) For the formula (\x.¢)(z))(1z.(x)) D D(1z.¢0()).

i. This is valid. The following is sufficient to establish this. Take any model and
any possible world T" in it. If (Az.ip(z))(12.0(z)) is not true at I' it follows that
(Az.p(x))(1z.p(z)) D X is true for any formula X. If (Az.¢p(x))(1z.0(z)) is true at
I then 72.¢(x) must designate (this is part of the definition of truth for predicate
abstracts). Since what it designates is self-identical, (A\y.y = y)(1z.¢(x)) is true and
so again the implication is true. Since I" was arbitrary we have validity.



ii. Here is a tableau proof. The choice of logic and conditions won’t matter.

[z (x)) (rz.p(x)) 5 Dl.p(z))] 1.

1 — 2,3; 4 is 3 unabbreviated; 4 — 5 since the definite description is positively
generated on line 2; 6 is by reflexivity. The branch is closed.

(c) This question has a typo in it. I wrote D(1z.¢p(z)) D (Az.¢)(x))(1z.¢(x)), and this is not
valid. It is easily shown. For example, just take ¢)(x) to be a formula that is always
false, but ¢(x) to be such that exactly one thing makes it true, so that D(1z.¢(z)) is
true.

What I meant to write was the formula D(1z.p(z)) D (Az.p(z))(1z.@(x)). Tl give
answers for this one.

i. For validity. Take any model and any possible world I' in it. If D(7z.¢(x)) is not
true at I' the implication is true. Now assume D(1x.¢(z)) is true at I'. That is,
(My.y = y)(1z.p(x)) is true at I'. Then from the truth definition for predicate
abstracts, 1x.¢(z) must designate at I', and what it designates must make ()
true. This is what is needed for (\zx.p(x))(1z.¢(z)) to be true at ', so again the
implication is true.

ii. Here is a tableau proof.

S[DOz.p(x)) D Aw.p(2))(12.0(2))] 1.

1 — 2,3; 4 is 2 unabbreviated; 4 — 5; 3 — 6 (the definite description is positively
generated because of 4).



