Corrections for Possible world semantics for the first-order logic of proofs Annals of Pure and Applied Logic 165 (2014) 225-240 and also Possible world semantics for first-order LP CUNY Ph.D. Program in Computer Science technical report TR-2011010, 2011

Meghdad Ghari wrote "I have difficulty proving the validity of the proof checker axiom in your proposed semantics," and supplied technical details. His objection was correct, and I propose the following amendments to the Annals paper. Similar modifications apply to my Technical Report, but I do not state them explicitly.

The problem is in the ! Condition of Definition 3.5 of the paper. As stated it reads: " $\mathcal{E}(t, A) \subseteq \mathcal{E}(!t, t:_X A)$ where X is the set of domain constants in A." This should be revised to the following. "If $\Gamma \in \mathcal{E}(t, A), X \subseteq \mathcal{D}(\Gamma)$, and X contains all domain constants in A, then $\Gamma \in \mathcal{E}(!t, t:_X A)$."

A similar change is needed in Definition 11.1 too.

In Section 5, Soundness, an argument is made for condition B4, the validity of $t: {}_{X}A \rightarrow !t: {}_{X}A$. This is actually shown for a representative special case, but the case chosen is not fully representative. As given, validity is shown for $X = \{x\}$ and A = A(x, y). However, it is allowed that X contain variables not free in A and this possibility is missing in the special case used in the soundness proof. Suppose we consider the same A, but $X = \{x, z\}$ instead. That is, we must show the validity of $t:_{\{x,z\}}A(x, y) \rightarrow !t:_{\{x,z\}}t:_{\{x,z\}}A(x, y)$.

Let $\Gamma \in \mathcal{G}$ and consider the $\mathcal{D}(\Gamma)$ instantiation resulting from the substitution $\{x/a, z/b\}$ where $a, b \in \mathcal{D}(\Gamma)$. We will show $\mathcal{M}, \Gamma \Vdash t:_{\{a,b\}}A(a,y) \to !t:_{\{a,b\}}t:_{\{a,b\}}A(a,y)$. Suppose $\mathcal{M}, \Gamma \Vdash t:_{\{a,b\}}A(a,y)$.

First, $\Gamma \in \mathcal{E}(t, A(a, y))$ so by the *revised* !-Condition of Definition 3.5, $\Gamma \in \mathcal{E}(!t, t:_{\{a,b\}}A(a, y))$. (This failed under the original !-Condition).

Next, suppose $\Gamma \mathcal{R}\Delta$ and $\Delta \mathcal{R}\Omega$. Since \mathcal{R} is transitive, $\Gamma \mathcal{R}\Omega$ and since $\mathcal{M}, \Gamma \Vdash t_{\{a,b\}}A(a,y)$ then $\mathcal{M}, \Omega \Vdash A(a,y)$ for every instance of y from $\mathcal{D}(\Omega)$. Also since $\Gamma \in \mathcal{E}(t, A(a,y))$ then $\Delta \in \mathcal{E}(t, A(a,y))$ by the \mathcal{R} Closure Condition of Definition 3.5. Since Ω is arbitrary, $\mathcal{M}, \Delta \Vdash t_{\{a,b\}}A(a,y)$. And since Δ is arbitrary, $\mathcal{M}, \Gamma \Vdash t_{\{a,b\}}A(a,y)$.

In Section 8 canonical models are constructed. There is no change in the definition, but it must be shown that the canonical model meets the revised condition for \mathcal{E} . Here is the argument.

Suppose $\mathcal{M} = \langle \mathcal{G}, \mathcal{R}, \mathcal{D}, \mathcal{I}, \mathcal{E} \rangle$ is a canonical model, Definition 8.1. Assume $\Gamma \in \mathcal{G}$, $\Gamma \in \mathcal{E}(t, A)$, $X \subseteq \mathcal{D}(\Gamma)$, and X contains all domain constants in A. We show $\Gamma \in \mathcal{E}(!t, t:_X A)$. For the argument, let Y be exactly the set of domain constants in A, and so $Y \subseteq X \subseteq \mathcal{D}(\Gamma)$.

Since $\Gamma \in \mathcal{E}(t, A)$, by definition $t_{:Y}A \in \mathsf{form}(\Gamma)$. Since $\mathsf{form}(\Gamma)$ is maximally consistent, repeated use of axiom **A3** yields that $t_{:X}A \in \mathsf{form}(\Gamma)$. And then axiom **B4** gives us that $!t_{:X}t_{:X}A \in \mathsf{form}(\Gamma)$. Note that the set of witness variables in $t_{:X}A$ is exactly X. It follows from the definition of \mathcal{E} in the canonical model that $\Gamma \in \mathcal{E}(!t, t_{:X}A)$. Meghdad Ghari also reports the following typos in the Annals paper.

- 1. (Page 225) In the third sentence of the Abstract: "the tech report proved an arithmetic completeness theorem" should be "the tech report proved an arithmetic soundness theorem". Indeed, Corollary 6 of the tech report of Artemov and Yavorskaya shows that completeness is not attainable.
- 2. (Page 234, line 6 from bottom) The last sentence of Definition 7.2 reads "If $c:_{\emptyset}A \in \mathcal{C}$, put $c:_{\emptyset}A' \in \mathcal{C}(W)$." It should be "If $c:_{\emptyset}A' \in \mathcal{C}$, put $c:_{\emptyset}A \in \mathcal{C}(W)$ ".
- 3. (Page 236, line 3) In the **Specification of** \mathcal{G} , item 3 ends with "constant specification \mathcal{C} " but it should be "constant specification $\mathcal{C}(\mathsf{var}(\Gamma))$ ".
- 4. (Page 239, line 12 from bottom.) The sentence immediately following Definition 11.1 contains "closed formula A of language L(D)." This should be "closed D-formula A". It has nothing to do with Definition 7.1.