
1

Handbook of Tableau Methods

Introduction
Melvin Fitting

mlflc@cunyvm.cuny.edu

Contents
1 General Introduction . 1

1.1 What Is A Tableau? . 1
1.2 Classical Propositional Tableaus as an Example 2
1.3 Abstract Data Types vs Implementations 6
1.4 What Good Is a Tableau System? 7

2 Classical History . 8
2.1 Gentzen . 9
2.2 Beth . 15
2.3 Hintikka . 18
2.4 Lis . 20
2.5 Smullyan . 21
2.6 The Complications Quantifiers Add 24

3 Modern History . 26
3.1 Intuitionistic Logic . 26
3.2 Many-Valued Logic . 29
3.3 Modal Logic . 30
3.4 Relevance Logic . 34

4 Post-Modern History . 36
4.1 The Beginnings . 36
4.2 Dummy Variables and Unification 38
4.3 Run-Time Skolemization 39
4.4 Where Now . 40

5 Conclusions . 41

1 General Introduction
1.1 What Is A Tableau?

This chapter is intended to be a prolog setting the stage for the acts that
follow—a bit of background, a bit of history, a bit of general commentary.
And the thing to begin with is the introduction of the main character.
What is a tableau?

It will make the introductions easier if we first deal with a minor nui-
sance. Suppose we know what a tableau is—what do we call several of

2

them: “tableaus” or “tableaux?” History and the dictionary are on the
side of “tableaux.” On the other hand, language evolves and tends to sim-
plify; there is a clear drift toward “tableaus.” In this chapter we will use
“tableaus,” with the non-judgemental understanding that either is accept-
able. This brings our trivial aside to a cloeaux.

Now, what is a tableau? In its everyday meaning it is simply a picture
or a scene, but of course we have something more technical in mind. A
tableau method is a formal proof procedure, existing in many varieties and
for several logics, but always with certain characteristics. First, it is a
refutation procedure: to show a formula X is valid we begin with some
syntactical expression intended to assert it is not. How this is done is a
detail, and varies from system to system. Next, the expression asserting
the invalidity of X is broken down syntactically, generally splitting things
into several cases. This part of a tableau procedure—the tableau expansion
stage—can be thought of as a generalization of disjunctive normal form
expansion. Generally, but not always, it involves moves from formulas
to subformulas. Finally there are rules for closing cases: impossibility
conditions based on syntax. If each case closes, the tableau itself is said to
be closed. A closed tableau beginning with an expression asserting that X
is not valid is a tableau proof of X.

There is a second, more semantical, way of thinking about the tableau
method, one that, perhaps unfortunately, has played a lesser role thus far: it
is a search procedure for models meeting certain conditions. Each branch
of a tableau can be considered to be a partial description of a model.
Several fundamental theorems of model theory have proofs that can be
extracted from results about the tableau method. Smullyan developed this
approach in [84], and it was carried further by Bell and Machover in [5].
In automated theorem-proving, tableaus can be used, and sometimes are
used, to generate counter-examples. The connection between the two roles
for tableaus—as a proof procedure and as a model search procedure—is
simple. If we use tableaus to search for a model in which X is false, and
we produce a closed tableau, no such model exists, so X must be valid.

This is a bare outline of the tableau method. To make it concrete we
need syntactical machinery for asserting invalidity, and syntactical machin-
ery allowing a case analysis. We also need syntactical machinery for closing
cases. All this is logic dependent. We will give examples of several kinds
as the chapter progresses, but in order to have something specific before us
now, we briefly present a tableau system for classical logic.

1.2 Classical Propositional Tableaus as an Example
In their current incarnation, tableau systems for classical logic are generally
based on the presentation of Raymond Smullyan in [84]. We follow this
in our sketch of a signed tableau system for classical propositional logic.
Chapter ?? continues the discussion of propositional logic via tableaus.

3

(Throughout the rest of this handbook, unsigned tableaus are generally
used for classical logic, but signs play a significant role when other logics
are involved, and classical logic provides the simplest context in which to
introduce them.)

First, we need syntactical machinery for asserting the invalidity of a
formula, and for doing a case analysis. For this purpose two signs are
introduced: T and F , where these are simply two new symbols, not part of
the language of formulas. Signed formulas are expressions of the form F X
and T X, where X is a formula. The intuitive meaning of F X is that X
is false (in some model); similarly T X intuitively asserts that X is true.
Then F X is the syntactical device for (informally) asserting the invalidity
of X: a tableau proof of X begins with F X.

Next we need machinery—rules—for breaking signed formulas down
and doing a case division. To keep things simple for the time being, let us
assume that ¬ and ⊃ are the only connectives. This will be extended as
needed. The treatment of negation is straightforward: from T ¬X we get
F X and from F ¬X we get T X. These rules can be conveniently presented
as follows.

Negation T ¬X
F X

F ¬X
T X

The rules for implication are somewhat more complex. From truth
tables we know that if X ⊃ Y is false, X must be true and Y must be
false. Likewise, if X ⊃ Y is true, either X is false or Y is true; this involves
a split into two cases. Corresponding syntactic rules are as follows.

Implication T X ⊃ Y
F X T Y

F X ⊃ Y
T X
F Y

The standard way of displaying tableaus is as downward branching trees
with signed formulas as node labels—indeed, the tableau method is often
referred to as the tree method. Think of a tree as representing the disjunc-
tion of its branches, and a branch as representing the conjunction of the
signed formulas on it. Since a node may be common to several branches,
a formula labeling it, in effect, occurs as a constituent of several conjunc-
tions, while being written only once. This amounts to a kind of structure
sharing.

When using a tree display, a tableau expansion is thought of temporally,
and one talks about the stages of constructing a tableau, meaning the
stages of growing a tree. The rules given above are thought of as branch-
lengthening rules. Thus, a branch containing T ¬X can be lengthened
by adding a new node to its end, with F X as label. Likewise a branch

4

containing F X ⊃ Y can be lengthened with two new nodes, labeled T X
and F Y (take the node with F Y as the child of the one labeled T X). A
branch containing T X ⊃ Y can be split—its leaf is given a new left and
a new right child, with one labeled F X, the other T Y . This is how the
schematic rules above are applied to trees.

An important point to note: the tableau rules are non-deterministic.
They say what can be done, not what must be done. At each stage we
choose a signed formula occurrence on a branch and apply a rule to it.
Since the order of choice is arbitrary, there can be many tableaus for a
single signed formula. Sometimes a prescribed order of rule application
is imposed, but this is not generally considered to be basic to a tableau
system.

Here is the final stage of a tableau expansion beginning with (that is,
for) the signed formula F (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X).

11. F Y
10. T ¬Y9. F X

@
@

�
�

8. T Y7. F X

@
@

�
�

6. T X
5. F ¬X
4. T X ⊃ ¬Y
3. F (X ⊃ ¬Y) ⊃ ¬X
2. T X ⊃ Y
1. F (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X)

In this we have added numbers for reference purposes. Items 2 and 3
are from 1 by F ⊃; 4 and 5 are from 3 by F ⊃; 6 is from 5 by F¬; 7 and
8 are from 2 by T ⊃; 9 and 10 are from 4 by T ⊃; 11 is from 10 by T¬.

Finally, the conditions for closing off a case—declaring a branch closed—
are simple. A branch is closed if it contains T A and F A for some formula
A. If each branch is closed, the tableau is closed. A closed tableau for
F X is a tableau proof of X. The tableau displayed above is closed, so the
formula (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X) has a tableau proof.

It may happen that no tableau proof is forthcoming, and we can think of
the tableau construction as providing us with counterexamples. Consider
the following attempt to prove (X ⊃ Y) ⊃ ((¬X ⊃ ¬Y) ⊃ Y).

5

11. F Y
9. T ¬Y

10. T X
8. F ¬X

�
��

@
@@

7. T Y6. F X

@
@@

�
��

5. F Y
4. T ¬X ⊃ ¬Y
3. F (¬X ⊃ ¬Y) ⊃ Y
2. T X ⊃ Y
1. F (X ⊃ Y) ⊃ ((¬X ⊃ ¬Y) ⊃ Y)

Items 2 and 3 are from 1 by F ⊃, as are 4 and 5 from 3. Items 6 and
7 are from 2 by T ⊃, as are 8 and 9 from 4. Finally 10 is from 8 by F¬,
and 11 is from 9 by T¬. The leftmost branch is closed because of 6 and 10.
Likewise the rightmost branch is closed because of 5 and 7. But the middle
branch is not closed. Notice that every non-atomic signed formula has had
a rule applied to it on this branch—there is nothing left to do. (This is a
special feature of classical propositional logic: it is sufficient to apply a rule
to a formula on a branch only once. This does not apply generally to all
logics.) In fact the branch yields a counterexample, as follows. Let v be a
propositional valuation that maps X to false and Y to false in accordance
with 6 and 11. Now, we work our way back up the branch. Since v(Y) =
false, v(¬Y) = true, item 9. Then v(¬X ⊃ ¬Y) = true, item 4. From this
and the fact that v(Y) = false we have v((¬X ⊃ ¬Y) ⊃ Y) = false, item 3.
Also since v(X) = false, v(X ⊃ Y) = true, item 2. Finally, v((X ⊃ Y) ⊃
((¬X ⊃ ¬Y) ⊃ Y)) = false, item 1. Notice, the valuation v gave to each
formula on the unclosed branch the truth value the branch ‘said’ it had.
But then, v is a counterexample to (X ⊃ Y) ⊃ ((¬X ⊃ ¬Y) ⊃ Y), so the
formula is not valid.

From a different point of view, we can think of a classical tableau simply
as a set of sets of signed formulas: a tableau is the set of its branches, and
a branch is the set of signed formulas that occur on it. Semantically, we
think of the outer set as the disjunction of its members, and these members,
the inner sets, as conjunctions of the signed formulas they contain. Con-
sidered this way, a tableau is a generalization of disjunctive normal form
(a generalization because formulas more complex than literals can occur).
Now, the tableau construction process can be thought of as a variation on
the process for converting a formula into disjunctive normal form.

In set terms, instead of lengthening branches, we expand sets. For ex-
ample, suppose C = {Z1, Z2, . . . , Zn} is a set of signed formulas, and one of
the members is T ¬X. Then the set {Z1, Z2, . . . , Zn, F X} is said to follow

6

from C. Similarly if the set contains F ¬X. If C contains F X ⊃ Y then
the set {Z1, Z2, . . . , Zn, T X, F Y } follows from C. Finally, if C contains
T X ⊃ Y then the pair of sets {Z1, Z2, . . . , Zn, F X}, {Z1, Z2, . . . , Zn, T Y }
follows from C. Next, if D1 and D2 are tableaus (each represented as a
set of sets of signed formulas) D2 follows from D1 if it is like D1 but with
one of its members C replaced with the set or sets that follow from it.
Taken this way, a tableau expansion for a signed formula S is a sequence of
tableaus, beginning with {{S}}, each tableau after the first following from
its predecessor.

1.3 Abstract Data Types vs Implementations
Computer Science has made us familiar with the distinction between an
abstract data type and an implementation of it. The notion of a list,
with appropriate operations on it, is an abstract data type. It can be
concretely implemented using an array, or using a linked structure, or in
other ways as well. Which is better, which is worse? It depends on the
intended application. But this abstract/concrete distinction is actually
an old one. Before there were electronic computers, there were human
computors, generally using mechanical devices like slates, paper, and slide
rules. Before there were algorithms designed for computers, there were
algorithms designed for humans, using the devices at hand. What we now
call a good implementation of an abstract data type was once called good
notation. Think, for instance, of the distinction between Roman numerals
and Arabic notation. They both implement the same data type—non-
negative integers—but one is more efficient for algorithmic purposes than
the other.

Tableaus were described abstractly above: sets of sets of signed formu-
las. One of the things that helped make them popular was a good concrete
implementation, a good notation: the tree display of a tableau. It is space-
saving, since there is structure sharing, that is, formulas common to several
branches are written only once. It is time-saving, since formulas are not
copied over and over as the tree grows. Instead the state of a tree at any
given moment represents a member of a tableau expansion sequence. Trees
present a display that people find relatively easy to grasp, at least if it
is not too big. And most importantly, there are by-hand algorithms that
are wonderfully suited for use with tableaus as trees. In creating a tree
tableau one has the same sense of calculation that one has when adding or
multiplying using place-value notation.

Still, from an abstract point of view the tree display of signed formulas
is not a tableau but an implementation of a tableau. It is not the only
one possible; Manna and Waldinger use quite a different notation for their
version of tableaus [53, 54]. The connection method can be thought of as
based on tableaus, with trees replaced by more general graphs; see [13]
for details. Indeed, we will see as this Chapter develops, that the tree

7

display itself underwent considerable evolution before reaching its current
form. Also, for some logics, the straightforward tree version may not be
best possible. For instance, with certain logics formulas get removed as
well as added to branches, and with others they can come and go several
times. For these, something more elaborate than just a growing tree is
appropriate. Finally, what is good for hand calculation may not be at
all useful for machine implementation. This point will be taken up in
Chapter ?? and elsewhere. But perhaps the basic point of this digression
is a simple one: trees implement tableaus. They do so quite well for many
purposes—so well that they are often thought of as being tableaus. This is
too restrictive, especially today when computers are being used to explore
a wide variety of logics. Be willing to experiment.

1.4 What Good Is a Tableau System?
There are many kinds of proof procedures for many kinds of logics. What
advantages does a tableau system have? Let us begin with what might be
called the ‘practical’ ones.

The classical propositional system presented in section 1.2 can be used
to ‘calculate’ in a way that Hilbert systems, say, can not. Each signed
formula that is added comes directly from other signed formulas that are
present. There is a choice of which signed formula to work with next, but
there are always a finite number of choices—a bounded non-determinism,
if you will. By contrast, since modus ponens is generally a Hilbert system
rule, to prove Y we must find an X for which both X and X ⊃ Y are
provable. There are infinitely many possibilities for X—an unbounded
non-determinism. Also note that the X we need may be considerably more
complicated than the Y we are after, unlike with classical tableaus, where
the formulas added are always simpler than the formulas they come from.
Further, it can be shown that if the rules are applied in a classical tableau
argument in a fair way, all proof attempts will succeed if any of them
do. Thus any choices we make affect efficiency, not success. This means
tableaus are well-suited for the discovery of proofs, either by people or by
machines.

Once quantifiers are added, as in section 2.6, complications to this sim-
ple picture arise. There are infinitely many ways of applying some of the
quantifier rules to a signed formula. If we systematically apply all rules in
a fair way, it is still possible to show that a proof will be found, if a proof
exists. But now, if a proof does not exist, the tableau expansion process
will never terminate. Thus we get a semi-decision procedure—but after
all, this is best possible. There is a problem for automation of tableaus
that stems from the quantifier rules: systematically trying closed term af-
ter closed term to instantiate a universal quantifier is a terribly inefficient
method. Fortunately there is a way around it, using so-called free variable
tableaus and unification. This will be discussed in later chapters.

8

Suitability for proof discovery is something that applies equally well to
resolution, and to several other techniques that have been worked out over
the years. A peculiar advantage that tableaus have is that it seems to be
easier to develop tableau systems for new logics than it is to develop other
automatable proof procedures. This may be because tableaus tend to relate
closely to the semantic ideas underlying a logic—or maybe the reasons
lie elsewhere. What we are describing is an empirical observation, not a
mathematical truth. Of course, once a tableau proof procedure has been
created for a logic, it may be possible to use it to develop an automatable
proof procedure of a different sort. Something like this is at the heart of
Maslov’s method [59]. But even so, tableaus provide a good starting point.

On a pedagogical level, tableaus can be used to provide quite appealing
proofs of metatheoretical results about a logic. Take the issue of proving
completeness as an example. One common way of showing a proof pro-
cedure is complete is to make use of maximal consistent sets. Such an
approach is quite general, and can be applied to tableau proof procedures
as readily as to Hilbert systems—see the proof of the Model Existence
Theorem in [29]. But there is another approach to proving completeness
that is much more intuitive. Start constructing a tableau expansion for
F X. Apply rules fairly: systematically apply each applicable rule. If no
closed tableau is produced, it can be shown that the resulting tableau con-
tains enough information to construct a countermodel to X. We saw a
propositional example of this kind in section 1.2. This is a nice feature
indeed.

Other basic theorems about logic can also be given equally perspicuous
tableau proofs. Smullyan, in [84], gives proofs of the compactness theorem,
various interpolation theorems, and the Model Existence Theorem, all using
tableaus in an essential way. Bell and Machover carried this even further
[5]. Of course, we are speaking of classical logic, but similar arguments
often carry over to other logics that have tableau proof procedures.

Finally, tableaus are well-suited for computer implementation. Their
history in this respect is somewhat curious. We will have more to say on
this topic as we discuss the history of tableaus, which we do throughout
the rest of this chapter. (For another presentation of tableau history, see
[2, 3].)

2 Classical History
Tableau history essentially begins with Gentzen. For classical logic, ignor-
ing issues of machine implementation, it culminates with Smullyan. Here
we discuss this portion of the development of our subject. In order to keep
clutter down, we confine things to classical propositional logic (and occa-
sionally intuitionistic propositional logic). This is sufficient to illustrate
differences between systems and to follow their evolution. We will gener-

9

ally re-prove the same formula that we did in section 1.2, to allow easy
comparison of the various systems.

2.1 Gentzen

In his short career Gentzen made several fundamental contributions to
logic, see [89]. The one that concerns us here is his 1935 introduction of
the sequent calculus in [32]. Before this, Hilbert-style, or axiomatic, proof
procedures were the norm. In a sense, a Hilbert system characterizes a logic
as a whole—it is difficult to separate out the role of individual connectives
since several of them may appear in each axiom. What Gentzen contributed
was a formulation of both classical and intuitionistic logics with a clear
separation between structural rules (essentially characterizing deduction in
the abstract) and specific rules for each connective and quantifier. Further,
each connective and quantifier has exactly two kinds of rules; roughly,
for its introduction and for its elimination. We say roughly because this
terminology is more appropriate for the natural deduction systems that
Gentzen also introduced in [32], but the essential idea is basically the same.

We’ll sketch Gentzen’s system, and make some comments on it. This
should be familiar ground to most logicians. But we also note that, as with
most things, the true beginnings of our subject are fuzzy. Gentzen’s ideas
grew out of earlier work of Paul Hertz [38], in 1929. Even the famous cut
rule is a special case of Hertz’s syllogism rule. See [89] for further discussion
of this.

2.1.1 The Classical Sequent Calculus

First a new construct is introduced, the sequent. A sequent is an expression
of the form:

X1, . . . , Xn → Y1, . . . , Yk

where X1, . . . , Xn, Y1, . . . , Yk are formulas. The arrow, →, is a new symbol.
It is understood that either (or both) of n and k may be 0. Informally,
think of the sequent above as asserting: the disjunction of Y1, . . . , Yk

follows from the conjunction of X1, . . . , Xn.
The system has axioms, and rules of derivation. Axioms, or initial

sequents as Gentzen called them, are sequents of the form A → A, where
A is a formula. Next, Gentzen has seven structural rules. We give six of
them here; the seventh, cut will be discussed in a section of its own. In
these and later rules, Γ, ∆, Θ, and Λ are sequences of formulas, possibly
empty.

Thinning Γ → Θ
X, Γ → Θ

Γ → Θ
Γ → Θ, X

10

Contraction X, X, Γ → Θ
X, Γ → Θ

Γ → Θ, X,X

Γ → Θ, X

Interchange ∆, Y, X, Γ → Θ
∆, X, Y, Γ → Θ

Γ → Θ, Y,X, Λ
Γ → Θ, X, Y, Λ

Next we give Gentzen’s rules for the connectives ¬, ∧, and ⊃. The rules
for ∨ are dual to those for ∧ and are omitted.

Negation X, Γ → Θ
Γ → Θ,¬X

Γ → Θ, X

¬X, Γ → Θ

Conjunction Γ → Θ, X Γ → Θ, Y

Γ → Θ, X ∧ Y

X, Γ → Θ
X ∧ Y, Γ → Θ

Y, Γ → Θ
X ∧ Y, Γ → Θ

Implication
X, Γ → Θ, Y

Γ → Θ, X ⊃ Y

Γ → Θ, X Y, ∆ → Λ
X ⊃ Y, Γ, ∆ → Θ, Λ

Proofs are displayed in tree form, root at bottom. Each leaf must be
labeled with an axiom; each non-leaf must be labeled with a sequent that
follows from the labels of its children by one of the rules of derivation.
A proof of the sequent → X is considered to be a proof of the formula
X. Here is an example, a proof of (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X), with
explanations added.

X → X

X → X
Y → Y
¬Y, Y → Negation

X ⊃ ¬Y,X, Y → Implication

X ⊃ ¬Y, Y,X → Interchange

Y,X ⊃ ¬Y, X → Interchange

Y, X,X ⊃ ¬Y → Interchange

X ⊃ Y, X,X,X ⊃ ¬Y → Implication

X, X ⊃ Y, X,X ⊃ ¬Y → Interchange

X, X, X ⊃ Y, X ⊃ ¬Y → Interchange

X, X ⊃ Y, X ⊃ ¬Y → Contraction

X, X ⊃ ¬Y, X ⊃ Y → Interchange

X ⊃ ¬Y,X ⊃ Y → ¬X
Negation

X ⊃ Y → (X ⊃ ¬Y) ⊃ ¬X
Implication

→ (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X)
Implication

Proofs in the sequent calculus are displayed beginning with axioms,
ending with the sequent to be proved. Although it was probably of mi-
nor importance to Gentzen, others soon realized that by turning the rules

11

upside-down, a proof discovery system resulted. Given any sequent, there
are a limited number of sequents from which it could be derived. Try deriv-
ing them—this reduces the problem to a simpler one, since premises of rules
involve subformulas of their conclusions. Thus the discovery of a Gentzen-
style proof is a much more mechanical thing than it is with Hilbert systems.
It is not hard to extract a formal algorithm for decidability of both classical
and intuitionistic propositional logics.

When using the rules backward, it is useful to think ‘negatively’ instead
of ‘positively.’ That is, suppose we want to show a sequent, say X1, X2 →
Y1, Y2, A∧B is provable. Well, suppose it is not. By one of the Conjunction
rules, either X1, X2 → Y1, Y2, A or X1, X2 → Y1, Y2, B is not provable.
Continue working backward in this way, until a contradiction (an axiom is
not provable) is reached.

This backward way of thinking makes it easy to see in what way the se-
quent calculus relates to later tableau systems. Recall, we think of a sequent
as informally saying the disjunction of the right side follows from the con-
junction of the left. Then, if we did not have X1, X2 → Y1, Y2, A∧B, every-
thing on the left ‘holds’ in some model, and nothing on the right does. That
is, denying the sequent informally amounts to assuming the satisfiability
of {T X1, T X2, F Y1, F Y2, F A ∧ B}. From this, using a Conjunction rule
backwards, we have the satisfiability of one of {T X1, T X2, F Y1, F Y2, F A}
or {T X1, T X2, F Y1, F Y2, F B}. At this point we can represent things us-
ing a set of sets of formulas,

{
{T X1, T X2, F Y1, F Y2, F A}, {T X1, T X2, F Y1, F Y2, F B}

}
where the outer set is thought of disjunctively and the inner sets conjunc-
tively. This leads back to our set version of tableaus, in section 1.1.

2.1.2 Cut and the Structural Rules

We gave six structural rules above. The combined effect of Contraction
and Interchange is that we can think of the sequences of formulas on either
side of a sequent arrow as sets of formulas. This, combined with Thinning,
allows us to use an apparently more general axiom schema: Γ → ∆, where
Γ and ∆ have a formula in common. These days, it is not uncommon
to find sequent calculi formulated with sets instead of sequences, or with
Gentzen’s axiom scheme modified, or some combination of these. Kleene,
in [47], gives three different versions, G1, G2, and G3, differing primarily
on structural details.

The rules for conjunction and for implication are not like each other.
There are three conjunction rules but only two implication rules. This can
be remedied, if desired. It can be shown that an equivalent system results
if the two rules for introducing a conjunction on the left of an arrow are

12

replaced by the following single rule:

X, Y, Γ → Θ
X ∧ Y, Γ → Θ

Proof of the equivalence of the two formulations uses the structural rules
in an essential way.

Girard realized that the structural rules are not minor, but central.
They are essential for proving the equivalence of the two versions of the
conjunction rules, as we just saw. By dropping Thinning and Contraction
(and making other changes as well) Girard devised Linear Logic [33, 93].
Other so-called substructural logics, such as Relevance Logic [22], arise
in similar ways. Note that, without the structural rules, there are two
different ways of introducing conjunction (and disjunction). Since these
are no longer equivalent, substructural logics, in fact, have two notions of
conjunction and disjunction.

We have left the Cut rule for last, since its role is both important and
unique. The Cut rule is a kind of transitivity condition; in the following,
the formula X is cut away.

Cut
Γ → Θ, X X, ∆ → Λ

Γ, ∆ → Θ, Λ

All the other Gentzen rules have a special, remarkable property: the
subformula property. Each formula appearing above the line of a rule is a
subformula of some formula appearing below the line. It is this on which
decidability results in the propositional case rest. It is this that makes
the construction of proofs seem mechanical. The Cut rule violates the
subformula property: X appears above the line, and disappears below. If
Cut is allowed, the system is in many ways less appealing.

Why, then, have a Cut rule at all? In showing Gentzen’s formulation is
at least as strong as a Hilbert axiom system, we must do two things: we
must show each Hilbert axiom is Gentzen provable, and we must show each
Hilbert rule of inference preserves Gentzen provability. All this is straight-
forward, except for modus ponens. However, if the Cut rule is available, it
is easy to show that modus ponens preserves Gentzen provability. Conse-
quently, it is enough to show Gentzen’s systems with and without the Cut
rule are equivalent—a result usually referred to as “Cut eliminability.”

One can show Cut is eliminable by showing that Gentzen systems with
and without cut are both sound and complete. Gentzen did not proceed this
way, essentially because completeness proofs for first-order logic are non-
constructive, and constructivity was a key part of Gentzen’s motivation.
Instead, Gentzen gave what today we would describe as an algorithm for
removing Cuts from a proof, together with a termination argument. Cut
elimination has become the centerpoint of proof theory.

13

Allowing Cuts in an automated proof system is, in a sense, allowing the
use of Lemmas. Cut elimination says they are not necessary. On the other
hand, an analysis of Gentzen’s proof of Cut elimination shows that, when
removing the use of Lemmas, proof length can grow exponentially. Clearly
this is an important issue.

2.1.3 Intuitionistic Logic
In [32] Gentzen showed something of the versatility inherent in the sequent
calculus by giving an intuitively plausible system for intuitionistic logic,
as well as one for classical logic. (Chapter ?? contains a full treatment of
theorem-proving in intuitionistic systems.) Intuitionistic logic is meant to
be constructive—in particular, a proof of X ∨ Y should be either a proof
of X or a proof of Y . This is different than in classical logic where one
can have a proof of X ∨ ¬X without having either a proof or a disproof
of X. Now, recall that the right-hand side of a sequent is interpreted
as a disjunction. Then, intuitionistically, we should be able to say which
member of the disjunction is a consequence of the left-hand side. This, of
course, is all quite informal, but it led to Gentzen’s dramatic modification
of the sequent calculus rules: allow at most one formula to appear on the
right of an arrow. Gentzen showed this gave a system that was equivalent
to an axiomatic formulation of intuitionistic logic, by making use of his Cut
elimination theorem. Nothing else was possible, since there was no known
semantics for intuitionistic logic at that time.

2.1.4 Gentzen’s Immediate Heirs
Gentzen’s introduction of the sequent calculus was enormously influential,
and similar formulations were soon introduced (after the void of World
War II) for other kinds of logics. We briefly sketch some of the early
developments.

Beginning in 1957, Ohnishi and Matsumoto gave calculi for several
modal logics [62, 63, 64, 61, 55]. We describe their system for S4 as a
representative example. (See Chapter ?? for an extended discussion of the
role of tableaus in modal theorem-proving.) We take 2 as primitive, and
for a sequence Γ of formulas, we write 2Γ for the result of prefixing each
formula in Γ with 2. Now we add to Gentzen’s rules the following.

S4 X, Γ → Θ
2X, Γ → Θ

Γ → X
2Γ → 2X

Note that the second of the rules for introducing 2 allows only a single
formula X on the right, analogous to Gentzen’s rules for intuitionistic logic.
This should come as no surprise, since there are close connections between
S4 and intuitionistic logic.

Since semantical methods were not much used in modal logic at the
time, the equivalence of these systems with Hilbert style ones was via a

14

translation procedure, making essential use of Cut elimination. The se-
quent formulations were, in turn, used to obtain decision procedures for
the logics.

At about the same time, Kanger also gave sequent style formulations for
some modal logics [46]. His system for S5 is of special interest because it
introduced a new piece of machinery: propositional formulas were indexed
with positive integers. These integers can be thought of as corresponding
to the possible worlds of Kripke models, though this is not how Kanger
thought of them. If X is indexed with n, it is written as Xn. The Gentzen
rules are modified so that in a conjunction rule, for instance, a conjunction
receives the same index as its conjuncts (which must be the same). Then
the following two rules are added.

S5
Xm,2Xn, Γ → Θ

2Xn, Γ → Θ

Where m 6= n.

Γ → Θ, Xn

Γ → Θ,2Xm

Where no formula with
index n occurs within the
scope of 2 in Γ or Θ.

This is an early forerunner of the now widespread practice of adding ex-
tra machinery to sequent and tableau systems. We will see more examples
later on. The Ohnishi and Matsumoto systems, and the Kanger systems,
can be found in some detail in [23].

In 1967 Rousseau [75] treated many-valued logics using Gentzen meth-
ods. (Chapter ?? discusses current tableau theorem-provers for many-
valued logics.) The basic ideas are relatively simple. A classical sequent,
X1, . . . , Xn → Y1, . . . , Yk is considered satisfiable if, under some valuation,
either some Xi is false or some Yi is true. Consider the left-hand side as the
falses’s and the right-hand side as the true’s. Then a sequent is satisfiable
if one of the false’s is false or one of the true’s is true. Rousseau extended
this to an m-valued logic—say the truth values are 0, 1, . . . ,m− 1. Now a
sequent is an expression:

Γ0 | Γ1 | . . . | Γm−1

where each Γi is a sequence of formulas. The sequent is considered satis-
fiable if some member of Γi has truth value i. This reading of a sequent
suggests appropriate rules. For instance, Gentzen’s axiom schema, A → A,
turns into the schema A | A | . . . | A. Rousseau gave a method of produc-
ing connective rules, and showed soundness and completeness. For many-
valued logics, the more interesting issue is that of quantification, which we
do not touch on here, though it was discussed by Rousseau.

15

2.2 Beth
Gentzen’s motivation was proof-theoretic. He was more-or-less explicitly
analyzing proofs, and his work has become the foundation of modern proof
theory. There is no attempt at a completeness or soundness argument in
his paper—only constructive proofs of equivalence with other formalisms.
Beth, on the other hand, was motivated by semantic concerns [9, 10]. In
1955 he introduced the terminology, ‘semantic tableau,’ and thought of one
as a systematic attempt to find a counter-example. To quote from [9]:

“If such a counter-example is found, then we have a nega-
tive answer to our problem. And if it turns out that no suit-
able counter-example can be found, then we have an affirma-
tive answer. In this case, however, we must be sure that no
suitable counter-example whatsoever is available; therefore, we
ought not to look for a counter-example in a haphazard man-
ner, but we must rather try to construct one in a systematic
way. Now there is indeed a systematic method for construct-
ing a counter-example, if available; it consists in drawing up a
semantic tableau.”

Beth arranged his counter-example search in the form of a table with
two columns, one labeled ‘Valid,’ the other, ‘Invalid.’ Perhaps ‘True’ and
‘False’ (in some model) would be more accurate. To determine whether Y
is a consequence of X1, . . . , Xn, begin by placing X1, . . . , Xn in the Valid
column, and Y in the Invalid one. This corresponds to beginning with the
conjecture that Y is not a consequence of X1, . . . , Xn, rather like using the
sequent calculus backward. Next, systematically break down the formulas
in each column. For example, if A ∧ B appears in the Valid column, add
both A and B to it. Similarly if A ∨ B appears in the Invalid column,
add both A and B to it. If ¬A occurs in a column, add A to the other
one. Things get a little awkward with disjunctive cases however. If A ∨B
occurs in the Valid column we should be able to add one of A or B—the
problem is which. Beth’s solution was to split the Valid column in two,
thus displaying both possibilities. Of course a corresponding split has to
be made in the Invalid column. Since further splitting might occur, it is
necessary to label the various columns, to keep the Valid and the Invalid
columns that belong together properly associated. In practice this can be
hard to follow if there are many cases, but the principle is certainly clear.

If a semantic tableau is constructed as outlined above, there are basi-
cally only two possible outcomes. It may happen that a formula appears in
both the Valid and the Invalid columns, which indicates an impossibility.
If the tableau system really does embody a thorough, systematic analysis,
such an impossibility tells us there are no models in which X1, . . . , Xn are
true but Y is not; that is, there are no counter-examples, and so Y must
be a consequence of X1, . . . , Xn. The other possibility is that no such

16

contradiction ever appears. In this case, Beth observed, the tableau itself
supplies all the necessary information to produce a counter-example, and
so Y is not a consequence of X1, . . . , Xn.

The description above is correct in the propositional case, and Beth’s
method supplies a decision procedure. In the first-order case things are
more complex since if there are no counterexamples, a tableau construction
may never terminate. If this happens we still generate the information to
construct a model, but only in the limit. A rigorous treatment of this point
requires some care, and we gloss over it.

Here is an example of a Beth semantic tableau—a proof once again of
the familiar tautology (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X).

Valid Invalid
(1) (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X)

(2) X ⊃ Y (3) (X ⊃ ¬Y) ⊃ ¬X
(4) X ⊃ ¬Y (5) ¬X
(6) X (i) (ii)

(i) (ii) (iii) (iv) (7) X
(8) Y (11) Y (9) X

(iii) (iv)
(10) ¬Y

In the tableau above, we begin with 1 in the Invalid column, which gives
2 in the Valid, and 3 in the Invalid ones. From 3 we conclude 4 is Valid and
5 is Invalid. Likewise 5 produces 6. Now things become more complicated.
If X ⊃ Y is true in a model, either X is not true there, or Y is. Then
formula 2 causes a split into two cases, labeled i and ii, one placing X in
the Invalid column, formula 7, the other placing Y in the Valid column,
formula 8. Likewise formula 4 causes another split, creating subcases iii
and iv, with formula 9 on the Invalid side and formula 10 on the Valid
one. Formula 10 in turn yields formula 11. Now we see we have arrived at
a contradictory tableau. Case ii is impossible because of formulas 6 and
7. Case iii is impossible because of 8 and 11, and case iv is impossible
because of 6 and 9; this means case i is impossible. Since each subcase is
impossible, or closed as Beth called it, the tableau itself is closed; there are
no counter-examples; (X ⊃ ¬Y) ⊃ ¬X is a consequence of X ⊃ Y .

2.2.1 Tableaus and Consequences

Beth recognized that tableaus make it possible to give proofs of results
about classical logic that are intuitively satisfying. In his book [12] Beth
used tableaus to show a subformula principle saying that if a formula has a
proof, it has one in which only subformulas of it occur. He derived a version

17

of Herbrand’s Theorem, and Gentzen’s Extended Hauptsatz. He explicitly
discussed the relationship between tableaus and the sequent calculus. He
even gave a tableau-based proof of Gentzen’s Cut Elimination Theorem
(a proof with a fundamental flaw, as it happens). And he considered the
relationship between tableaus and natural deduction.

Among Beth’s fundamental consequences is his famous Definability
Theorem of 1953 [8, 7], relating implicit and explicit definability in first-
order logic. Statements of it can be found in many places, in particular in
[19, 84, 29]; details are beside the point here. It is usual to derive Beth’s
Theorem from the Craig Interpolation Theorem and Beth takes this route
in his book (this was not his original proof however). In turn, Beth uses
tableaus to prove the Craig Lemma (not Craig’s original proof either). The
reason this is mentioned here is to illustrate Beth’s almost physical sense
of the tableau mechanism. The following is a quote from the beginning of
his proof of Craig’s Lemma.

“Let us suppose that the semantic tableau for a certain sequent
(f) is closed. We consider the tableau as a system of commu-
nicating vessels. The left and right columns are considered as
tubes which are connected at the bottom of the apparatus. The
formulas U create a downward pressure in the left tubes and
likewise the formulas V create a downward pressure in the right
tubes; these various pressures result in a state of equilibrium.
“This picture suggests the construction, for each of the formu-
las U and V , of a formula U0 or V 0 which sums up the total
contribution of U or V to the balance of pressures.”

The proof continues somewhat more technically. These days tableaus are
often used to prove versions of Craig’s Lemma, but never in quite as pic-
turesque a fashion.

2.2.2 Intuitionistic Logic Again

Gentzen’s approach to intuitionistic logic could not be based on semantics,
since none was available at that time. An algebraic/topological semantics
was developed soon after [90, 69, 70], but this was not particularly satisfac-
tory as an explication of intuitionistic ideas to a classical mathematician.
In 1956 Beth provided a much more intuitively appealing semantics [10, 12],
known today as Beth models. (These have been largely superseded by an
alternative semantics due to Kripke.) What concerns us here is that, at the
same time, Beth introduced a tableau system for intuitionistic logic. He
presented this in the form of a sequent calculus and, unlike in Gentzen’s
system, several formulas could appear on the right of an arrow, at least
sometimes. He explicitly noted it could be used as written, as a sequent
calculus, or upsidedown, as a tableau system.

18

Beth’s intuitionistic tableau calculus introduced a new element: there
were two kinds of branching, conjunctive and disjunctive. When a branch
splits disjunctively, closure of one of the new branches is enough to close
the original one. With conjunctive branching, on the other hand, both
branches must close for the original branch to be closed. Conjunctive
branching is the only kind that occurs in classical tableaus. Intuitionis-
tic propositional logic has a higher degree of computational complexity
than classical propositional logic, and this can be traced to the possibility
of disjunctive branching.

Beth gave a constructive proof of the equivalence of his system with
that of Gentzen. More interestingly, he proved the soundness and com-
pleteness of his intuitionistic tableau system with respect to his semantics.
Since he was concerned with intuitionism as a philosophy of mathematics,
he explicitly considered which points of his completeness proof would be
problematic for an intuitionist. He found this centered on the Tree Theo-
rem, essentially König’s Lemma, though he does not call it that.

We do not give Beth’s intuitionistic tableau system here. It is easier to
present the basic ideas using signed formulas, and we do so later.

2.3 Hintikka
It has been noted that scientific advances come when the times are ready,
and often occur to several people simultaneously. The work of Beth and
Hintikka is such an event, with Hintikka’s primary paper, [41], appearing
in 1955, the same year as Beth’s. (See also [40].) Like Beth, and unlike
Gentzen, Hintikka was motivated by semantic concerns: the idea behind a
proof of X is that it is a systematic attempt to construct a model in which
¬X is true; if the attempt fails, X has been established as valid. Or, as
Hintikka puts it:

“. . . we interpreted all proofs of logical truth in a seemingly neg-
ative way, viz., as proofs of impossibility of counter-examples.”

As expected, a proof attempt proceeds by breaking formulas down into
constituent parts.

“. . . the typical situation is one in which we are confronted by a
complex formula (or sentence) the truth or falsity of which we
are trying to establish by inquiring into its components. Here
the rules of truth operate from the complex to the simple: they
serve to tell us what, under the supposition that a given complex
formula or sentence is true, can be said about the truth-values
of its components.”

2.3.1 Model Sets
The essentially new element in Hintikka’s treatment was the model set. It
makes possible a considerable simplification in the proof of completeness

19

for tableaus by abstracting properties of satisfiability of formula sets out of
details of the tableau construction process. And it suggests the possibility
of extensions to modal logics, which Hintikka himself later developed. As
usual, we illustrate the ideas via classical propositional logic. First, though,
we mention a pecularity of Hintikka’s treatment: he assumed all negations
occur at the atomic level. Any non-atomic occurrence of a negation sym-
bol was taken to be eliminable, via the usual negation normal form rules.
Likewise, implication was not taken as primitive.

Now, suppose we have a classical propositional model, M. Associate
with it the set µ of propositional formulas that are true in it. We can say
things like: X ∧ Y ∈ µ if and only if X ∈ µ and Y ∈ µ. This if-and-only-if
assertion can be divided into two implications; Hintikka’s insight was to see
that one of these implications determines the other. To be more precise,
consider the following two sets of conditions.

(C.0)(a) If A ∈ µ, then not ¬A ∈ µ, where A is atomic.
(C.1)(a) If X ∧ Y ∈ µ, then X ∈ µ and Y ∈ µ.
(C.2)(a) If X ∨ Y ∈ µ, then X ∈ µ or Y ∈ µ.
(C.0)(b) If not ¬A ∈ µ, then A ∈ µ, where A is atomic.
(C.1)(b) If X ∈ µ and Y ∈ µ, then X ∧ Y ∈ µ.
(C.2)(b) If X ∈ µ or Y ∈ µ, then X ∨ Y ∈ µ.

If µ is a set meeting all the conditions above, both (a) and (b), there is
clearly a model M whose true formulas are exactly those of µ. Now, Hin-
tikka proved that if µ is known to meet only the (a) conditions, this is still
enough—any such set can be extended to one meeting the (b) conditions as
well, and hence corresponds to some model. This led Hintikka to call sets
meeting the (a) conditions model sets. Today they are sometimes called
downward saturated sets or even Hintikka sets. Using this terminology, we
have the following.

Hintikka’s Lemma Every downward saturated set is satisfiable.

In section 1.2 we saw that an unclosed tableau branch can be used
to generate a model provided that on it all possible rules have been ap-
plied. In a natural sense, the set of signed formulas on such a branch is
a version of Hintikka’s notion of model set, and our creation of a model
amounts to a special case of Hintikka’s proof of his Lemma. Of course as we
stated it, Hintikka’s Lemma is for propositional logic. He actually proved
a version for first-order logic; it extends to admit equality, and to various
non-classical logics as well.

2.3.2 The Hintikka Approach

Suppose we wish to establish the validity of some formula, say that of our
old friend (X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X). Hintikka’s idea is simple: show

20

¬[(X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X)] is not satisfiable, and do this by showing
it belongs to no model (downward saturated) set. Do this by supposing
otherwise, and deriving a contradiction. Recall, Hintikka assumed formulas
are in negation normal form, so if we begin with a downward saturated set
µ with ¬[(X ⊃ Y) ⊃ ((X ⊃ ¬Y) ⊃ ¬X)] ∈ µ, we are really assuming the
following.

1. (¬X ∨ Y) ∧ ((¬X ∨ ¬Y) ∧X) ∈ µ

From 1, by (C.1)(a) we have:

2. ¬X ∨ Y ∈ µ

3. (¬X ∨ ¬Y) ∧X ∈ µ

Then from 3 we get:

4. ¬X ∨ ¬Y ∈ µ

5. X ∈ µ

Now, by 2, either ¬X ∈ µ or Y ∈ µ. If the first of these held, we would
have X 6∈ µ, by (C.0)(a), contradicting 5. Consequently we have

6. Y ∈ µ

By 4, either ¬X ∈ µ or ¬Y ∈ µ. But, using (C.0)(a), the first of these
possibilities contradicts 5, and the second contradicts 6. Thus we have
arrived at a contradiction—no such µ can exist.

2.4 Lis

Beth and Hintikka each had all the pertinent parts of tableaus as we know
them, but their systems were not ‘user-friendly.’ Beth proposed a graphi-
cal representation for tableaus, see section 2.2, but his two-column tables,
with two-column subtables (and subsubtables, and so on) are not handy
in practice. Hintikka, in effect, used a tree structure but with sets of for-
mulas at nodes, requiring much recopying. Notational simplification was
the essential next step in the development of tableaus and, just as with
the preceding stage, it was taken independently by two people: Zbigniew
Lis and Raymond Smullyan. Lis published his paper [52] in 1960, but in
Polish (with Russian and English summaries), in Studia Logica. At that
time there was a great gulf fixed between the East and the West in Europe,
and Lis’s ideas did not become generally known. They were subsequently
rediscovered and extended by Smullyan, culminating in his 1968 book [84].
The work of Lis himself only came to general attention in the last few years.

Lis, following Beth, divided formulas into two categories, Beth’s ‘valid’
and ‘invalid.’ But Lis did so not by separating them into columns, but
keeping them together and distinguishing them by ‘signs.’ Lis used arith-
metical notation, + or −, for Beth’s two categories. (He also used a formal

21

numeration system to record which formulas followed from which—we ig-
nore this aspect of his system.) He then stated the following rules (we only
give the propositional ones).

(i) If ±¬X, then ∓X.
(ii) Conjunctive Rules

a) If +(X ∧ Y), then +X, +Y .
b) If −(X ∨ Y), then −X, −Y .
c) If −(X ⊃ Y), then +X, −Y .

(iii) Disjunctive Rules
a) If −(X ∧ Y)

then −X −Y

b) If +(X ∨ Y)
then +X +Y

c) If +(X ⊃ Y)
then −X +Y

These rules are intended to be used in the same way the ‘T’ and ‘F’ signed
rules were in section 1.2, though his display of trees was rather like Beth’s
tables. Lis also gave rules for quantifiers, for equality, and even for definite
descriptions.

In addition to the system of semantic tableaus using signs, Lis also
presented what he called a natural deduction system—what we would call
an unsigned tableau system. For this, drop all occurrences of the + sign,
and replace occurrences of the − sign with occurrences of negation, ¬.
(This makes half of rule (i) redundant.)

2.5 Smullyan

It is through Smullyan’s 1968 book First-Order Logic [84] that tableaus be-
came widely known. They also appeared in the 1967 textbook [45], which
was directed at beginning logic students. Smullyan’s book was preceded
by [81, 82, 83] in which the still unknown contributions of Lis were re-
discovered, deepened, and extended. Smullyan called his version ‘analytic
tableau,’ meaning by this that the subformula principle is a central feature.
Smullyan used tableaus as the basis of a general treatment of classical logic,
including an analysis of the variety of completeness proofs. Drawing to-
gether ideas from several sources, and adding new ones of his own, quite
an elegant treatment resulted.

2.5.1 Unifying Notation

Like Lis, Smullyan introduced both signed and unsigned tableau systems.
Where Lis used + and − as signs, Smullyan used T and F , but the es-
sential idea is the same. But Smullyan, instead of treating these as par-
allel, similar systems, abstracted their common features. He noted that

22

signed formulas act either conjunctively or disjunctively (in the proposi-
tional case—quantification adds two more categories). He grouped the
conjunctive cases together as type A formulas, and the disjunctive ones as
type B, using α for a generic type A formula and β as generic type B.
For each of these, two components were defined: α1 and α2 for type A; β1

and β2 for type B. Smullyan’s tables for both the signed and the unsigned
versions are as follows.

α α1 α2

T (X ∧ Y) T X T Y
F (X ∨ Y) F X F Y
F (X ⊃ Y) T X F Y

T ¬X F X F X
F ¬X T X T X

(X ∧ Y) X Y
¬(X ∨ Y) ¬X ¬Y
¬(X ⊃ Y) X ¬Y
¬¬X X X

β β1 β2

F (X ∧ Y) F X F Y
T (X ∨ Y) T X T Y
T (X ⊃ Y) F X T Y

¬(X ∧ Y) ¬X ¬Y
(X ∨ Y) X Y
(X ⊃ Y) ¬X Y

The idea is, in any interpretation an α is true if and only if both α1 and
α2 are true; and a β is true if and only if at least one of β1 or β2 is true.
(A signed formula T X is true in an interpretation if X has the value true;
likewise F X is true if X has the value false.)

Today negation is often left out of the conjunctive/disjunctive classi-
fication, not because it is mathematically inappropriate, but because it
introduces redundancy if one is attempting to automate semantic tableaus.
This was not a concern of Smullyan’s. In [29] these tables are extended to
include all other binary connectives except for equivalence and exclusive-or
(the dual to equivalence), which follow a different pattern. But if one is
willing to weaken the subformula principle somewhat, even these can be
included, using the following definitions (in which we use 6≡ for exclusive-
or).

α α1 α2

T (X ≡ Y) T (X ⊃ Y) T (Y ⊃ X)
F (X 6≡ Y) T (X ⊃ Y) T (Y ⊃ X)

(X ≡ Y) (X ⊃ Y) (Y ⊃ X)
¬(X 6≡ Y) (X ⊃ Y) (Y ⊃ X)

23

β β1 β2

F (X ≡ Y) F (X ⊃ Y) F (Y ⊃ X)
T (X 6≡ Y) F (X ⊃ Y) F (Y ⊃ X)
¬(X ≡ Y) ¬(X ⊃ Y) ¬(Y ⊃ X)

(X 6≡ Y) ¬(X ⊃ Y) ¬(Y ⊃ X)

The effects of uniform notation are quite lovely: all the classical propo-
sitional tableau rules for extending branches reduce to the following pair.

α
α1

α2

β
β1 β2

Smullyan took this abstract approach considerably further, eventually
doing away with formulas altogether. In [85] the essence of the tableau
approach to classical logic was distilled, and in [86] this was extended, to
intuitionistic and modal logic.

2.5.2 The Role of Signs

From the beginning of the subject the connection between tableaus and
the sequent calculus was clear. Loosely, a tableau proof is a sequent proof
backwards. In the sequent calculus we show a sequent is valid; in a tableau
system we show a formula (or a set of formulas) is unsatisfiable. So, in
order to make the sequent/tableau relationship clear, we need a suitable
translation between sequents and (finite) sets of formulas. In one direction
things are simple: map the sequent X1, . . . , Xn → Y1, . . . , Yk to the set
{X1, . . . , Xn,¬Yn, . . . ,¬Yk}. Then the sequent is valid if and only if the
corresponding set is unsatisfiable. But a problem arises in going the other
way, from a set to a sequent. Given the set {X,¬Y }, say, it could have
come from the sequent X → Y or from X,¬Y →, and for more complex
sets the number of possibilities can be much greater. Thus we have a many-
one mapping. While one can work with this, it makes things unnecessarily
complicated. Signed formulas deal with this problem nicely.

Following Smullyan [84], if S = {T X1, . . . , T Xn, F Y1, . . . , F Yk} is a set
of signed formulas, let |S| be the sequent X1, . . . , Xn → Y1, . . . , Yk. If we
think of the strings of formulas on the left and the right of the sequent arrow
as sets rather than as sequences, thus ignoring the structural rules, this
defines a one-one translation between sequents and sets of signed formulas.
What is more, using uniform notation, the sequent calculus rules can be
presented in the following abstract form (again, omitting the structural
rules).

Axioms |S, T X,F X|

24

Inference Rules |S, α1, α2|
|S, α|

|S, β1| |S, β2|
|S, β|

This more abstract approach makes it possible, for instance, to give a
uniform proof of cut elimination, one that applies to both tableaus and the
sequent calculus, rather than proving it for one and deriving it for the other
as a consequence. From this point of view, tableau and sequent proofs are
the same thing, which is what everyone suspected all along.

2.5.3 Cut and Analytic Cut

Just as with the sequent calculus, one can introduce a Cut rule for tableaus,
and show it can be eliminated from proofs. The sequent calculus formula-
tion of Cut was given in section 2.1.2; for tableaus it has a much simpler
appearance. Here are signed and unsigned versions.

Cut
T X F X X ¬X

That is, at any time during a signed tableau construction, a branch may
be split, with T X added to one fork, and F X added to the other, for any
formula X, and similarly for the unsigned version. Clearly this violates
the subformula principle. But Smullyan also considered what he called
Analytic Cut , which is simply the Cut rule as given above, but with the
restriction that X must be a subformula of some formula already appearing
on the branch. Like unrestricted Cut, Analytic Cut also shortens proofs,
and it clearly does not violate the subformula principle. It lends itself well
to automation, and has played some role in this area.

2.6 The Complications Quantifiers Add

In our survey of various proof systems above, we ignored quantifiers. The
reason is simple: all the systems treat quantifiers more-or-less the same
way, so differences between systems can be illustrated sufficiently well at
the propositional level. Now it is time to say a little about them. (A full
treatment of first-order tableaus can be found in Chapter ??.)

Quantifier rules for classical logic are deceptively simple. If (∀x)ϕ(x)
is true in some model, then ϕ(c) is also true for any closed term c. On
the other hand, if (∀x)ϕ(x) is false in a model, there is some member of
the domain of the model for which ϕ(x) does not hold. Then, if d is a
new constant symbol, we can interpret it to designate some member of the
domain for which ϕ(x) fails, and so ϕ(d) will be false in the model. Note
that the model in which ϕ(d) is false is not the original model, since we
had to re-interpret d, but since d was chosen to be a constant symbol that
was new to the proof, this has no effect on how formulas already appearing
are interpreted.

25

Now we give quantifier tableau rules, using Smullyan’s uniform nota-
tion. In stating things we use the informal convention that, if ϕ(x) is a
formula and c is a constant symbol, ϕ(c) is like ϕ(x) but with occurrences
of c substituted for all free occurrences of the variable x. Quantified for-
mulas are classified into type C, universal, and type D, existential, with γ
as generic type C, and δ as generic type D.

γ γ(c)
T (∀x)ϕ(x) T ϕ(c)
F (∃x)ϕ(x) F ϕ(c)

(∀x)ϕ(x) ϕ(c)
¬(∃x)ϕ(x) ¬ϕ(c)

δ δ(c)
T (∃x)ϕ(x) T ϕ(c)
F (∀x)ϕ(x) F ϕ(c)

(∃x)ϕ(x) ϕ(c)
¬(∀x)ϕ(x) ¬ϕ(c)

Now, the quantifier rules are these.

γ
γ(c)

Where c is any constant
symbol whatever.

δ
δ(c)

Where c is a constant
symbol that is new to the
branch.

Here is an example of a classical first-order proof, of (∀x)(∀y)R(x, y) ⊃
(∀z)R(z, z). In it, 2 and 3 are from 1 by F ⊃; 4 is from 3 by F∀; 5 is from
2 by T∀; and 6 is from 5 by T∀. Notice that when the F∀ rule was applied,
the constant symbol c had not yet been used.

6. T R(c, c)
5. T (∀y)R(c, y)
4. F R(c, c)
3. F (∀z)R(z, z)
2. T (∀x)(∀y)R(x, y)
1. F (∀x)(∀y)R(x, y) ⊃ (∀z)R(z, z)

For a sequent calculus formulation things are reversed from the tableau
version. Existential quantifiers, instead of introducing new constant sym-
bols, remove constant symbols. Using the notation of section 2.5.2, here
are sequent rules for classical quantifiers.

26

|S, γ(c)|
|S, γ|

Where c is any constant
symbol.

|S, δ(c)|
|S, δ|

Where c is a constant
symbol that does not oc-
cur in {S, δ}.

As we said, the quantifier rules are deceptively simple. Since there
are (we assume) infinitely many constant symbols available, if the γ-rule
can be applied at all, it can be applied in infinitely many different ways.
This means a tableau can never be completed in a finite number of steps.
Essentially, this is the source of the undecidability of classical first-order
logic.

3 Modern History
After reaching a stable form in the classical case, the next stage in the
development of tableaus was the extension to various non-classical logics.
In this section we sketch a few such systems, say how they came about,
and present the intuitions behind them. The particular systems chosen
illustrate the variety of extra machinery that has been developed for and
added to tableau systems: reinterpreting signs, generalizing signs, mod-
ifying closure rules, allowing trees to change in ways other than simple
growth, adjoining ‘side’ information, and using pairs of coupled trees.

3.1 Intuitionistic Logic

Sequent calculi for intuitionistic logic were around from the beginning—
Gentzen and Beth both developed them—so it is not surprising that a
tableau version would be forthcoming (see Chapter ??). The first explicitly
presented as such seems to be in the 1969 book of Fitting [24]. In this the
signed tableau system of Smullyan was adapted, with the signs given a new
informal interpretation. In the resulting tableau system, proof trees were
allowed to shrink as well as grow.

For both Lis and Smullyan, signs primarily were a device to keep track
of left and right sides of sequents, without explicitly using sequent nota-
tion. Signs also had an intuitive interpretation that was satisfying: T X
and F X can be thought of as asserting that X is true or false in a model.
But now, think of T X as informally meaning that X is intuitionistically
true, that is, X has been given a proof that an intuitionist would accept.
Likewise think of F X as asserting the opposite: X has not been given an
intuitionistically acceptable proof. (This is quite different from assuming X
is intuitionistically refutable, by the way.) Some tableau rules are immedi-
ately suggested. For instance, intuitionists read disjunction constructively:
to prove X ∨ Y one should either prove X or prove Y (see [39]). Then if

27

we have T X ∨Y in a tableau, informally X ∨Y has been intuitionistically
proved, hence this is the case for one of X or Y , so the tableau branch
splits to T X and T Y . Likewise if we have F X ∨ Y , we do not have an
intuitionistically acceptable proof of X ∨Y , so we can have neither a proof
of X nor of Y , and so we can add both F X and F Y to the branch. That is,
intuitionistic rules for disjunction look like classical ones! The same is the
case for conjunction. But things begin to get interesting with implication.
We quote Heyting [39].

“The implication p → q can be asserted, if and only if we possess
a construction r, which, joined to any construction proving p
(supposing that the latter be effected), would automatically
effect a construction proving q. In other words, a proof of p,
together with r, would form a proof of q.”

If T X ⊃ Y occurs in a tableau, informally we have a proof of X ⊃ Y ,
and so we have a way of converting proofs of X into proofs of Y . Then, in
our present state of knowledge, either we are not able to prove X, or we
are, in which case we can provide a proof of Y as well. That is, the tableau
branch splits to F X and T Y , just as it does classically.

Now suppose F X ⊃ Y occurs in a tableau. Then intuitively, we do not
have a mechanism for converting proofs of X into proofs of Y . This does
not say anything at all about whether we are able to prove X. What it
says is that someday, not necessarily now, we may discover a proof of X
without being able to convert it to a proof of Y . That is, someday we could
have both T X and F Y . We are talking about a possible future state of
our mathematical lives. Now, as we move into the future, what do we carry
with us? If we have not proved some formula Z, this is not necessarily a
permanent state of things—tomorrow we may discover a proof. But if we
have proved Z, tomorrow this will still be so—a proof remains a proof.
Thus, when passing from a state to a possible future state, signed formulas
of the form T Z should remain with us; signed formulas of the form F Z
need not. This suggests the following tableau rule: if a branch contains
F X ⊃ Y , add both T X and F Y , but first delete all signed formulas on
the branch that have an F sign. (Negation has a similar analysis.)

We must be a little careful with this notion of formula deletion, though.
The tree representation for tableaus that we have been using marks the
presence of a node by using a formula as a label. If we simply delete
formulas, information about node existence and tableau structure could be
lost. What we do instead, when using this representation of tableaus, is
leave deleted formulas in place, but check them off, placing a

√
in front

of them. (Of course, when using the set of sets representation for tableaus
from section 1.2, things are simpler: just replace one set by another, since
there is no structure sharing.) There is still one more problem, though.
It may happen that a formula should be deleted on one branch, but not

28

on another, and using the tree representation for tableaus, its presence on
both branches might be embodied in a single formula occurrence. In this
case, check it off where it occurs, and add a fresh, unchecked occurrence to
the end of the branch on which it should not be deleted.

To state the intuitionistic rules formally we use notation from [24], if
S is a set of signed formulas, let ST be the set of T -signed members of S.
We write S, F Z to indicate a tableau branch containing the signed formula
F Z, with S being the set of remaining formulas on the branch. Now, the
propositional intuitionistic rules are these.

Conjunction S, T X ∧ Y
S, T X, T Y

S, F X ∧ Y
S, F X S, F Y

Disjunction S, T X ∨ Y
S, T X S, T Y

S, F X ∨ Y
S, F X,F Y

Implication S, T X ⊃ Y
S, F X S, T Y

S, F X ⊃ Y
ST , T X, F Y

Negation S, T ¬X
S, F X

S, F ¬X
ST , T X

Then unlike with classical tableaus, as far as usable formulas are con-
cerned, intuitionistic tableaus can shrink as well as grow. If a branch
contains, say, both F X ⊃ Y and F A ⊃ B, using an implication rule on
one will destroy the other. It is possible to make a bad choice at this point
and miss an available proof. For completeness sake, both possibilities must
be explored. This is the analog of Beth’s disjunctive branching, see sec-
tion 2.2.2. As a matter of fact, the tableau rules above correspond to Beth’s
rules in the same way that the classical tableau rules of Lis and Smullyan
correspond to Beth’s classical rules.

A tableau branch is closed if it contains T X and F X, for some formula
X, where neither is a deleted signed formula. Of course the intuitive idea
is somewhat different than in the classical case now: the contradiction is
that an intuitionist has both verified and failed to verify X. Nonetheless,
a contradiction is still a contradiction.

We conclude with two examples, a non-theorem and a theorem. The
non-theorem is (¬X ⊃ X) ⊃ X. A tableau proof attempt begins with
F (¬X ⊃ X) ⊃ X. An application of the F ⊃ rule causes this very F -
signed formula to be deleted, and produces 2 and 3 below. Use of T ⊃ on
2 gives 4 and 5. The right branch is closed, but closure of the left branch
is impossible since an application of F¬ to 4 causes deletion of 3.

29

5. T X4. F ¬X

@
@

�
�

3. F X
2. T ¬X ⊃ X

√
1. F (¬X ⊃ X) ⊃ X

The formula (¬X ⊃ X) ⊃ ¬¬X, on the other hand, is a theorem. A
proof of it begins with F (¬X ⊃ X) ⊃ ¬¬X, then continues as follows.

5. F ¬X 6. T X
7. F X

@
@

@@

�
�

��

√
1. F (¬X ⊃ X) ⊃ ¬¬X

2. T ¬X ⊃ X√
3. F ¬¬X

4. T ¬X

An application of the F ⊃ rule deletes 1 and adds 2 and 3. Then F¬
applied to 3 deletes it and adds 4. The T ⊃ rule applied to 2 adds 5 and 6,
and finally, the T¬ rule applied to 4 adds 7. The tableau is closed because
of 4 and 5, and 6 and 7, none of which are checked off.

At the cost of a small increase in the number of signs, Miglioli, Moscato,
and Ornaghi have created a tableau system for intuitionistic logic that is
more efficient than the one presented above [56, 57, 58]. In addition to
the signs T and F , one more sign, Fc, is introduced. In terms of Kripke
models, we can think of T X as true at a possible world if X is true there,
in the sense customary with intuitionistic semantics. Likewise we can think
of F X as true at a possible world if X is not true there. But now, think of
Fc X as true at a world if ¬X is true there. This requires additional tableau
rules, but reduces duplications inherent in the tableau system without the
additional sign. Without going into details, this should suggest some of
the flexibility made possible by the use of signed formulas, a topic to be
continued in the next section.

3.2 Many-Valued Logic
The signs of a signed tableau system can be reinterpreted, as in intuition-
istic logic, and they can be extended, as happened in many-valued logic
(see Chapter ??). Finitely-valued Lukasiewicz logics were given a tableau
treatment by Suchon in 1974 [87]. Surma considered a more general sit-
uation in 1977, [88], and this was further developed by Carnielli in 1987,

30

[17, 18]. (The paper [17] contains an error in the quantifier rules which is
corrected in [18].) In these papers, the two signs of Lis and Smullyan were
extended to a larger number, with one sign for each truth value of the logic.
Essentially, this is the tableau version of the many-valued sequent calculus
of [75], discussed in section 2.1.4. To show a formula X is a theorem, one
must construct a closed tableau for V X, where V is a sign corresponding
to the truth value v, for each non-designated value v.

While this is a natural idea, in practice it means several tableaus may
need to be constructed for a single validity proof. Also, the rules themselves
tend to be complicated. Suppose, for instance, we consider Kleene’s strong
three-valued logic, a well known logic. We can take as the three truth values
{false,⊥, true}, where ⊥ is intended to represent ‘unknown.’ Disjunction
is easily characterized: order the truth values by: false < ⊥ < true; then
disjunction-of is simply maximum-of. Suppose we introduce F , U , and T
as signs corresponding to the three truth values. Then one of the Carnielli
rules for disjunction is the following.

U X ∨ Y
F X U X U X
U Y U Y F Y

More recently, Hähnle showed that many-valued logics could often be
treated more efficiently by tableaus if sets of truth values were used as signs,
rather than single truth values, [34, 35, 36]. Think of S X, where S is a set,
as asserting that the truth value of X (in some model) is a member of S.
Then to show X is valid one needs a single closed tableau, beginning with
D X, where D is the set of non-designated truth values. The following is a
typical example of a Hähnle style rule, again for the strong Kleene logic.

{F,U}X ∨ Y
{F,U}X {F,U}Y

As this example suggests, once sets are used as signs, a generalized
uniform notation becomes possible. In many cases, this works quite well,
[35]. We have not discussed quantification, which is a central issue in
many-valued logics.

3.3 Modal Logic

What is now called relational semantics for modal logic was fully developed
by the mid-sixties, drawing on work of Kanger [46], Hintikka [42, 43], and
Kripke [48, 49, 50, 51]. This led to a renewed interest in modal logic
itself, and to the development of tableau systems for various such logics
(covered in Chapter ??). See [30] for a general overview of the subject.
Kripke himself gave Beth-style tableaus for the modal logics he treated.
In fact, his completeness proofs for axiom systems proceeded by showing

31

equivalence to Beth tableau systems (using cut elimination) then proving
completeness for these by a systematic tableau style construction. This was
complex and hard to follow, and soon Henkin-style completeness arguments
became standard. A tree-style system for S4 appeared in [24], similar to
the intuitionistic system of that book. Systems for several modal logics,
based on somewhat different principles, appeared in [25], and for temporal
logics in [73]. But the most extensive development was in Fitting’s 1983
book [26] which, among other things, gave tableau systems for dozens of
normal and non-normal modal systems. We sketch a few to give an idea of
the style of treatment, and the intuition behind the tableaus.

3.3.1 Destructive Tableau Systems

Fitting extended Smullyan’s uniform notation to the modal case. Here is a
signed-formula version. The idea is: a ν formula is true at a possible world
if and only if the corresponding ν0 is true at every accessible world; a π
formula is true at a possible world if the corresponding π0 is true at some
accessible world.

ν ν0

T 2X T X
F ♦X F X

π π0

F ♦X F X
T 2X T X

Next, if S is a set of signed formulas, a set S# is defined. The idea is, if
the members of S are true at a possible world, and we move to a ‘generic’
accessible world, the members of S# should be true there. The definition
of S# differs from modal logic to modal logic. We give the version for K,
the smallest normal modal logic.

S# = {ν0 | ν ∈ S}

The rules for K are exactly as in the classical Smullyan system, together
with the following ‘destructive’ rule.

S, π
S#, π0

Unlike the other rules (but exactly like the intuitionistic rules in sec-
tion 3.1), this one modifies a whole branch. If S, π is the set of signed
formulas on a branch, the whole branch can be replaced with S#, π0. Since
this removes formulas, and modifies others, it is an information-loosing
rule, hence the description ‘destructive.’ We continue to use the device of
checking off deleted formulas in trees.

Here is a simple example of a proof in this system, of 2(X ⊃ Y) ⊃
(2X ⊃ 2Y). It begins as follows.

32

√
1. F 2(X ⊃ Y) ⊃ (2X ⊃ 2Y)√
2. T 2(X ⊃ Y)√
3. F 2X ⊃ 2Y√
4. T 2X√
5. F 2Y
6. T X ⊃ Y
7. T X
8. F Y

Here 2 and 3 are from 1, and 4 and 5 are from 3 by F ⊃. Now take 5 as
π, and 1 through 4 as S, and apply the modal rule. Formula 1 is simply
deleted; 2 is deleted but 6 is added; 3 is deleted; 4 is deleted but 7 is added
(at this point, S has been replaced by S#); and finally 5 is deleted but 8
is added (this is π0). Now an application of T ⊃ to 6 produces a closed
tableau.

The underlying intuition is direct. All rules, except the modal one, are
seen as exploring truth at a single world. The modal rule corresponds to a
move from a world to an alternative one. A soundness argument can easily
be based on this. Completeness can be proved using either a systematic
tableau construction or a maximal consistent set approach. As is the case
with both classical and intuitionistic tableaus, interpolation theorems and
related results can be derived from the tableau formulation.

Several other normal modal logics can be treated by modifying the
definition of S#, or by adding rules, or both. For instance, the logic K4
(adding transitivity to the model conditions) just requires a change in a
definition, to the following.

S# = {ν, ν0 | ν ∈ S}

Generally speaking, modal logics that have tableau systems of this kind
can not have a semantics whose models involve symmetry of the acces-
sibility relation. Interestingly enough, though, such logics can often be
given tableau systems in this style if a cut rule is allowed, and in fact a
semi-analytic version is enough. Semi-analyticity extends and weakens the
notion of analytic cut, but is still not as broad as the unrestricted version.
See Fitting, [26], for more details.

Various regular but non-normal logics can be dealt with by restricting
rule applicability (see [26, 30] for a definition of regularity). For instance,
if we use the system for K above, but restrict the modal rule to those cases
in which S# is non-empty, we get a tableau system for the smallest regular
logic C. It is even possible to treat such quasi-regular logics as S2 and S3
by similar techniques.

33

3.3.2 Making Accessibility Explicit

In the various tableau systems described in the previous section, possible
worlds were implicit, not explicit. Other approaches have brought possible
worlds visibly into the picture. Hughes and Cresswell [44], for instance,
have a system of diagrams which are tableau-like, and involve boxes rep-
resenting possible worlds, with arrows representing accessibility. In 1972
Fitting [25] gave tableau systems using prefixes in which the idea was to
designate possible worlds in such a way that syntactical rules determined
accessibility. In a straightforward way, prefixes correspond to the Hughes
and Cresswell boxes. The notion of prefixes is at its simplest for S5, where
we can take as prefixes just natural numbers. The resulting system can be
seen as a direct descendant of the sequent system of Kanger, discussed in
section 2.1.4.

A prefixed signed formula for S5 is just n Z, where n is a non-negative
integer, and Z is a signed formula. The α- and β- rules from section 2.5.1
are modified in a direct way: conclude n α1 and n α2 from n α, and similarly
for β. The following modal rules are used (similarity to quantifier rules is
intentional). This time there is no notion of formula deletion.

n ν
k ν0

Where k is any non-
negative integer.

n π
k π0

Where k is any non-
negative integer that
is new to the branch.

Prefixes should be thought of as names for possible worlds. The system
for S5 is particularly simple because the logic is characterized by models
in which every world is accessible from every other. For other modal logics
sequences of integers are used, where the intuition is: extension-of corre-
sponds to accessible-from. This builds on an abstract of Fitch concerning
modal natural deduction systems. See [25, 26] for details.

There are many ways explicit reference to possible worlds can be incor-
porated into tableaus. The most obvious is to simply record accessibility
information directly, in a side table. Other techniques have also been used,
motivated by automation concerns. By such methods very general theorem
proving mechanisms can be created. There is a drawback however. One of
the nice features of tableaus is the extra information they can provide about
the logic, most notably, proofs of interpolation theorems. Such proofs are
not available once explicit possible worlds appear. On the other hand, de-
cision procedures can often be easier to describe and program, using the
additional machinery.

34

3.4 Relevance Logic

Fault has been found with tautologies like (P ∧ ¬P) ⊃ Q, since the an-
tecedent and the consequent are not related to each other. A sense of
dissatisfaction with such things led to the creation of the family of rele-
vance logics; see [22] for a survey of the subject. While the semantics for
relevance logic is generally quite complicated, that for so-called first-degree
entailment is rather simple—this is the fragment in which one considers
only formulas of the form A ⊃ B where A and B do not contain implica-
tions. The reason this is of interest here is that the method of ‘coupled
trees’ developed for it shows yet another way of working with tableaus.

Smullyan presented a system of ‘linear reasoning’ for first-order classical
logic in [84]. The system was tableau based, and was motivated by Craig’s
original proof of his Interpolation Theorem. Something very much like this,
but for propositional classical logic only, appeared in a pedagogically nice
form in Jeffrey [45], under the name of coupled trees. It is Jeffrey’s version
with which we begin.

Suppose we want to give a classical propositional logic proof of X ⊃
Y , but instead of constructing a closed tableau for F X ⊃ Y , we do the
following. Completely construct two tableaus, T1 for T X, and T2 for T Y .
The open branches of T1 represent all the ways in which X could be true,
and similarly for T2. Let us say a branch θ1 covers a branch θ2 if every
signed atomic formula on θ2 also occurs on θ1. Suppose every open branch
of T1 covers some open branch of T2—intuitively, each of the ways X could
be true must also be a way in which Y is true. Then we have argued for
the validity of X ⊃ Y . In effect, we are thinking of the proof of X ⊃ Y as
beginning with X, breaking it down by constructing T1 for T X, making
the transition from T1 to T2 using the covering condition, then building up
to Y using the tableau T2 for T Y backwards. Such a proof technique is
complete for implications.

To illustrate the technique, here is a coupled tableau proof of (P ⊃
Q) ⊃ (¬Q ⊃ ¬P).

6. T ¬P
8. F P7. T Q

5. F ¬Q3. T Q2. F P

�
�

@
@

@
@

�
�

4. T ¬Q ⊃ ¬P1. T P ⊃ Q

We do not describe the construction of the two tableaus, which is el-
ementary. But note that the left branch of tableau one covers the right
branch of tableau two, via formulas 2 and 8, and the right branch of tableau
one covers the left branch of tableau two, via formulas 3 and 7. Thus we
have a correctly constructed coupled tableau argument.

35

There are some problems with this intuitively simple idea, however.
The formula P ⊃ (Q ∨ ¬Q) is classically valid, though not provable by
the technique described above. To get around this Jeffrey added a device
that amounts to allowing applications of the cut rule in the tableau for the
antecedant of an implication. Also, closed branches are ignored and, while
this may seem natural at first encounter, even closed branches contain
information. It is the restriction of the covering condition to only open
branches that allows a coupled tree argument for (P ∧ ¬P) ⊃ Q, which is
the standard example of a tautology not acceptable to relevance logicians.

Dunn’s proposal in [21] is to simplify Jeffrey’s system to the extreme.
To show X ⊃ Y , completely construct tableaus T1 for T X (not using the
cut rule) and T2 for T Y , and see if every branch of T1, closed or not,
covers a branch of T2. Dunn showed this gave a sound and complete proof
procedure for first-degree entailment.

What sense can be made semantically of using tableau branches even if
closed? Suppose, instead of working in the ideal setting of classical logic,
we work in something more like the real world. We may have information
that tells us a proposition P is true, or false. But equally well, we may
have no information about P at all, neither true nor false, or we may have
contradictory information, both true and false. In effect we are using a
four-valued logic whose truth values are all subsets of {false, true}. This is
a logic that was urged as natural for computer science in Belnap [6]. Dunn
showed that a simple semantics for first-degree entailment could be given
using this four-valued logic: X ⊃ Y is a valid first-degree entailment if and
only if, under every valuation v in the four-valued logic, if v(X) is at least
true (has true as a member) then v(Y) is also at least true.

The relationship between the four-valued logic and tableaus is simple:
if a branch θ of a tableau has had all applicable tableau rules applied to it
we can think of θ as determining a four-valued valuation as follows. Map
P to {true} if T P is on θ but F P is not; map P to {false} if F P is on θ
but T P is not; map P to ∅ if neither T P nor F P is on θ; and map P to
{false, true} if both T P and F P are on θ. Indeed, a similar ‘ambiguation’
can be developed starting with many-valued logics other than the classical,
two-valued one. The technique is fairly general.

There are other approaches to relevance logic that make use of tableaus,
each with additional features of interest. Hähnle [36] gives a formulation
of first-degree entailment using many-valued tableaus with sets of truth
values as signs; see 3.2. Also, Schröder [77] gives a tableau system in
which additional bookkeeping machinery is introduced to check that each
occurrence of a propositional variable was actually used to close a branch.
Relevance logic itself is part of the more general subject of substructural
logic, which is covered in Chapter ??.

36

4 Post-Modern History
In our subject, as in every other, post-modernism begins before modernism
ends, in fact, before it starts. By the post-modern period for tableaus we
mean the period of their automation (involving issues discussed in Chap-
ter ??). Indeed, Beth had machine theorem-proving very much in mind
[11], though this did not have a lasting influence. It is curious that reso-
lution and tableaus in their current form appeared within a few years of
each other [52, 74, 84]. Robinson, who invented resolution, was primarily
interested in automation, Smullyan and Lis were not interested in automa-
tion at all. Perhaps this accounts for much of the emphasis on resolution
in the automated theorem-proving community. But another determinant
was more technical—nobody seems to have connected tableau methods and
unification for a long time, without which only toy examples are possible.
Still, all along there has been a subcurrent of interest in the uses of tableaus
for automated theorem-proving—today it has become a major stream. We
will sketch the swelling of this interest—it is complex, with basic ideas
occurring independently several times. We will not bring our history up
to today because present developments are many and are continuing to
appear at a rapid rate. We lay the historical foundations for today’s ac-
tivity. We also confine the discussion to ‘pure’ tableau issues—we do not
consider the increasingly fruitful relationships between tableaus and other
theorem-proving mechanisms like connection graphs or resolution.

4.1 The Beginnings

Even though resolution has historically dominated automated deduction,
among the first implemented theorem provers are some based on tableau
ideas. In 1957–58, Dag Prawitz, H̊akan Prawitz, and Neri Voghera devel-
oped a tableau-based system that was implemented on a Facit EDB [68].
At approximately the same time, the summer of 1958, Hao Wang proposed
a family of theorem provers based on the sequent calculus, which he then
implemented on an IBM 704 [95]. The first of Wang’s programs, for clas-
sical propositional logic, proved all the approximately 220 propositional
theorems of Russell and Whitehead’s Principia Mathematica in 3 minutes!
This was quite a remarkable achievement for 1958.

The γ, or universal quantifier, rule is a major source of difficulties for
first-order tableau implementations. It allows us to pass from γ to γ(t) for
any t, but how do we know which t will be a useful choice? Eventually,
unification solved this problem, as we will see in the next section, but uni-
fication was not available in the 1950’s. Prawitz and his colleagues worked
with a formalization having constant symbols but no function symbols,
which simplified the structure of terms (representation of strings, terms,
and formulas was non-trivial on these early machines.) Then the γ rule
was implemented to simply instantiate to γ(c) for every constant symbol

37

c that had been introduced by δ rule applications. In general, the set of
such constant symbols grows without bound, which is the source of the un-
decidability of first-order logic. But also, as the authors note, this method
creates many useless instantiations, and introduces an exponential growth
factor into tableau construction, thus limiting the theorems provable by
their implementation to rather simple examples. Wang discussed essen-
tially the same idea, but did not actually carry out an implementation.

Instead of a full first-order system, Wang implemented a calculus for
a decidable fragment—the AE formulas (with equality). A formula X
is an AE formula if X is in prenex form, and all universal quantifiers
precede any existential quantifiers. Since the rules for putting a formula
into prenex form are not hard to mechanize, we can extend the defini-
tion to include those formulas that convert to AE form. The AE class
is a decidable logic, and a complete tableau procedure for it is remark-
ably simple. Suppose, for instance, that we have a typical AE formula,
(∀x1)(∀x2)(∃y1)(∃y2)ϕ(x1, x2, y1, y2), and we attempt a tableau proof. We
have two δ-rule applications to begin with, each introducing a new constant
symbol, say c1 and c2. Thus the tableau begins as follows.

1. F (∀x1)(∀x2)(∃y1)(∃y2)ϕ(x1, x2, y1, y2)
2. F (∀x2)(∃y1)(∃y2)ϕ(c1, x2, y1, y2)
3. F (∃y1)(∃y2)ϕ(c1, c2, y1, y2)

Except for the γ case, classical tableau rules need only be applied to
formulas once. Making use of this fact, we now have only γ-rules to apply.
Suppose we apply them in all possible ways, using only the constant symbols
c1 and c2 (four applications in all). After this, we only use propositional
rules. It is rather easy to show that if this does not produce a proof,
no proof is possible. More generally, without compromising completeness,
γ-rule applications in proofs of AE formulas can be limited to constant
symbols that were previously introduced by δ-rule applications, all of which
must come first. It follows that a boundable number of γ-rule applications
is always enough. (If there are no initial universal quantifiers, add a dummy
one, then apply the procedure just outlined.)

Wang implemented the AE system just described. Of the 158 first-order
propositions with equality in Principia Mathematica his program proved
139 of them. Subsequent modifications made possible proofs of all the
theorems of *9 to *13 of Principia in about four minutes. Although Wang
only worked with a decidable portion of first-order logic,

“A rather surprising discovery, which tends to indicate our
general ignorance of the extensive range of decidable subdo-
mains, is the absence of any theorem of the predicate calculus
in Principia which does not fall within the simple decidable
subdomain of the AE predicate calculus.”

38

It is not clear what this says about the work of Russell and Whitehead,
but it is a curious discovery.

One interesting experiment that Wang undertook was to have the com-
puter generate propositional formulas at random, test them for theorem-
hood, and print out those that passed an ad hoc test for being ‘nontrivial.’
In a way, the experiment was a failure, because 14,000 propositions were
formed and tested in one hour, and 1000 were retained as nontrivial. The
mass of data was simply too great. It is interesting just how hard it is to
say what is interesting, and why.

This work seems to have had few direct successors. Possibly the intro-
duction of the Davis-Putnam method, and then resolution, drew research
attention elsewhere. Popplestone, in 1967 [66], implemented a Beth tableau
style theorem prover and specifically noted its relationship with Wang’s ver-
sion. The universal quantifier rule was still seen as a central problem, and
heuristics were introduced to deal with it. In 1978 Mogilevskii and Os-
troukhov [60] implemented (in ALGOL) a Smullyan-style theorem prover,
but only for propositional classical logic, though they mention variations
for S4 and for intuitionistic logic.

4.2 Dummy Variables and Unification
It is universally recognized that the γ or universal quantifier rule is the
most problematic for a first-order tableau implementation. The rule allows
passage from γ to γ(t) for any term t. Without guidance on what term
or terms to choose, automation is essentially hopeless. Systematically try-
ing everything would, of course, yield a complete theorem-prover, but one
that is hopelessly inefficient. Wang avoided the problem by confining his
theorem-prover to a subsystem of full first-order logic. In the meantime
Robinson, anticipated by Herbrand, introduced unification into automated
theorem-proving [74] and this, or its weaker cousin matching, serves very
nicely as an appropriate tool for dealing with the universal quantifier prob-
lem. The idea, simply expressed, is to modify the γ-rule so that it reads:
from γ pass to γ(x), where x is a new free variable (a dummy, to use ter-
minology from [67]). Then we use unification to discover what is a good
choice for x—a good choice being something that will aid in tableau clo-
sure. For instance, if a branch contains T P (t) and F P (u), a substitution
that unifies t and u will close the branch. What is wanted is a substitution
that will simultaneously close all branches.

Unification was introduced independently into tableau theorem proving
by several people, beginning with the 1974 paper of Cohen, Trilling, and
Wegner [20]. While their paper was primarily devoted to presenting the
virtues of ALGOL-68, it in fact gave a first-order theorem-prover based
on Beth tableaus. It was written using a systematically-try-everything
approach to the γ-rule, but then the introduction of Skolem functions and
unification were specifically considered. This paper was followed in 1980

39

by Bowen [15, 14] and Broda [16] (neither of which seems to be aware of
[20]), both motivated by logic programming issues. Bowen used a sequent
calculus, though he noted relationships with work of Beth and Smullyan;
Broda used semantic tableaus directly. Wrightson in 1984 [97], Reeves in
1985 [71], and Fitting in 1986 [27] also explicitly brought unification into
the picture, while Oppacher and Suen in their HARP theorem-prover of
1988 [65] use matching, only moving to unification when “necessitated by
the presence of complex terms.”

The technique of using dummy variables to deal with universal quan-
tifiers was described in too simple a way above. If we restrict things so
that the rule, passing from γ to γ(x), can be applied to a given formula
only once, an incomplete theorem-prover results. No general upper limit
on the number of applications can be set (or else first-order logic would
be decidable). On the other hand, if we place no restrictions on which
unifiers we can accept, an unsound system can result. The problem is this.
Applications of the δ-rule require introduction of new constants. If we use
free variables in γ-rules and delay determination of their ultimate values,
we don’t know what is new and what is not when δ-rule applications come
up. Wrightson [97] and Reeves [71] deal with this difficulty essentially by
imposing constraints on the unification process. Neither Bowen nor Broda
discuss the issue explicitly, though they may have had a similar device in
mind.

Matching with constraints gets quite complicated when function sym-
bols are present. Of course the problem of what to do with the δ-rule can
be easily avoided by Skolemizing away quantifier occurrences that would
lead to δ-rule applications before the proof actually starts. If this is done,
a rather simple sound and complete proof procedure combining tableaus
and unification results. Such an approach was discussed by Reeves in [71].
An implementation of tableaus involving initial Skolemization, written in
LISP, was presented by Fitting in 1986 [27].

4.3 Run-Time Skolemization
Above we noted that the combination of unification and tableaus leads to
problems with the δ-rule, and that Skolemization provides one possible way
out. Unfortunately, classical logic (more generally, many-valued logic with
a finite number of truth values) is virtually the only first-order logic in
which one can Skolemize a formula ahead of time. Tableau systems have
been developed for a wide variety of logics, and this problem with the δ-
rule could limit their usefulness. Fortunately there is a modification that
works for many non-classical logics. It is commonly known as run-time
Skolemization, a name whose significance will soon become apparent.

Suppose we are using the version of the γ-rule described in the previous
section, passing from γ to γ(x), where x is a new free variable. This kind of
tableau system is sometimes referred to as a free-variable tableau system. In

40

applying the δ-rule, passing from δ to δ(t), we need to be able to guarantee
that the term t will be new to the branch, no matter how free variables are
instantiated. A simple way of ensuring this is to take for t the expression
f(x1, . . . , xn), where f is a new function symbol and x1, . . . , xn are all
the free variables that occur on the branch. Clearly, we can think of the
introduction of this term as part of a Skolemization process that goes on
simultaneously with the tableau construction. In effect, Skolem functions
come with an implicit ‘time stamp’ and this makes the technique suitable
for many modal and similar logics.

Run-time Skolemization for tableaus seems to have first appeared in
1987 in Schmitt’s THOT system [76], though it probably occurred to oth-
ers around the same time. It is not necessary for classical logic, but its use
does eliminate a preprocessing step, so it was included in the Prolog imple-
mentation of [29]. For non-classical logics, however, Skolemization ahead
of time is generally impossible, so the run-time version used by Fitting in
1988 for modal logics [28] was essential.

Soon after Fitting’s 1990 book [29] appeared, Hähnle and Schmitt noted
that the version of run-time Skolemization used was unnecessarily ineffi-
cient. In [37] they showed it is enough to take as a rule: from δ pass
to δ(f(x1, . . . , xn)) where x1, . . . , xn are all the free variables that oc-
cur in δ. This work was extended in [4]. Subsequently Shankar [78] used a
proof-theoretic analysis to show that a more complicated restriction on free
variables—but still simpler than using all those that occur on a branch—
suffices for first-order intuitionistic logic. Shankar also observed that his
way of analyzing a tableau system will yield similar results for modal and
other logics as well.

4.4 Where Now
If a logic has a tableau system at all, it probably will be the basis for
the first theorem-prover to be implemented for it, though other kinds of
theorem-provers may follow in time. For a given logic, tableaus may or may
not turn out to be the best possible, most efficient approach to automated
theorem-proving. Nevertheless, tableaus will continue to have a central
role because they are relatively easy to develop, and in turn can be used to
help create theorem-provers based on other methodologies. Many people
have noted connections with resolution; in fact Maslov’s method readily
converts tableau systems to resolution-style systems [59]. There is a clear
relationship with the connection method explored, among other places, in
[97, 96]. Wallen’s 1990 book on non-classical theorem-proving [94] exploits
a relationship between tableaus and the matrix method. Examples continue
to appear in the literature.

The development of theorem-provers that are not tableau-based, but are
derived from them, is a topic of current research. The field is developing
rapidly, so anything more specific we say about it will be out of date by the

41

time this appears in print. I don’t know what comes after post-modernism
generally, but for tableau theorem-proving, maybe we have reached it.

5 Conclusions
We have given a general overview of how tableaus began and developed.
Their history is much like their appearance—branching and re-branching.
Ideas occurred independently more than once; researchers influenced each
other directly and indirectly. Details are less important than the general
picture of tableau history, beginning with Gentzen, growing to encompass
semantical ideas with Beth and Hintikka, becoming an elegant tool with
Lis and especially Smullyan, extending to many logics, developing rela-
tionships with other proof techniques, and suggesting exciting automation
possibilities. Some of these topics will be explored further in subsequent
chapters.

With all this, there is much we have not discussed. Relationships with
logic programming were not mentioned though connections are many ([31]
will serve as a representative example). Equality is a central topic in logic,
but we said little about it (see Chapter ??). The system of Lis [52] includes
a complete set of rules for equality, but it was little known at the time.
Jeffrey’s book [45] presents essentially the same rules. Reeves discusses
the topic in [72] and there is a theoretical treatment in Fitting’s book
[29]. Much has occurred since then—we cannot discuss it adequately here.
Higher order logic has not been mentioned, though tableau systems for it
exist. Toledo, [92], investigates tableau systems for arithmetic that use the
ω-rule, allowing infinite branching. Andrews, [1], develops tableaus for type
theory. Smith, [80], presents two tableau systems for monadic higher-order
logic. Van Heijenoort did research on tableau systems for higher order
logic, but this has not yet been published.

The invention of tableau systems will continue, simply because they
are easier to think of than other formulations. There is something inher-
ently natural about them, whether they grow out of proof theory as with
Gentzen, or out of semantics as with Beth and Hintikka. The increasing
interest in non-classical theorem-proving has brought tableaus to a position
of prominence, because they exist for many, many logics. The creation of
logics, the development of tableau systems for them, all are very active
areas of research. May the history of tableaus need rewriting in another
generation.

Acknowledgements
I want to thank Perry Smith and Reiner Hähnle for their suggestions, which
considerably improved this chapter.

42

References
[1] Andrews, P. B. An Introduction to Mathematical Logic and Type

Theory: To Truth Through Proof. Academic Press, Orlando, Florida,
1986.

[2] Anellis, I. From semantic tableaux to smullyan trees: the history of
the falsifiability tree method. Modern Logic 1, 1 (June 1990), 36–69.

[3] Anellis, I. Erratum, from semantic tableaux to smullyan trees: the
history of the falsifiability tree method. Modern Logic 2, 2 (Dec. 1991),
219.

[4] Beckert, B., Hähnle, R., and Schmitt, P. H. The even more
liberalized δ-rule in free variable semantic tableaux. In Proceedings of
the third Kurt Gödel Colloquium KGC’93, Brno, Czech Republic (aug
1993), G. Gottlob, A. Leitsch, and D. Mundici, Eds., Springer LNCS
713, pp. 108–119.

[5] Bell, J. L., and Machover, M. A Course in Mathematical Logic.
North-Holland, Amsterdam, 1977.

[6] Belnap Jr., N. D. A useful four-valued logic. In Modern Uses of
Multiple-Valued Logic, J. M. Dunn and G. Epstein, Eds. D. Reidel,
Dordrecht and Boston, 1977, pp. 8–37.

[7] Beth, E. W. On Padoa’s method in the theory of definition. Indag.
Math. 15 (1953), 330–339.

[8] Beth, E. W. Some consequences of the theorem of Löwenheim-
Skolem-Gödel-Malcev. Indag. Math. 15 (1953).

[9] Beth, E. W. Semantic entailment and formal derivability. Mededelin-
gen der Kon. Ned. Akad. v. Wet. 18, 13 (1955). new series.

[10] Beth, E. W. Semantic construction of intuitionistic logic. Mededelin-
gen der Kon. Ned. Akad. v. Wet. 19, 11 (1956). new series.

[11] Beth, E. W. On machines which prove theorems. Simon Stevin
Wissen-Natur-Kundig Tijdschrift 32 (1958), 49–60. Reprinted in [79]
vol. 1, pp 79 – 90.

[12] Beth, E. W. The Foundations of Mathematics. North-Holland, Am-
sterdam, 1959. Revised Edition 1964.

[13] Bibel, W., Kurfess, F., Aspetsberger, K., Hintenaus, P., and
Schumann, J. Parallel inference machines. In Future Parallel Com-
puters, P. Treleaven and M. Vanneschi, Eds. Springer, Berlin, 1987,
pp. 185–226.

[14] Bowen, K. Programming with full first-order logic. In Machine
Intelligence, Hayes, Michie, and Pao, Eds., vol. 10. 1982, pp. 421–440.

[15] Bowen, K. A. Programming with full first order logic. Tech. Rep.
6-80, Syracuse University, Syracuse, NY, Nov. 1980.

[16] Broda, K. The relation between semantic tableaux and resolution
theorem provers. Tech. Rep. DOC 80/20, Imperial College of Science

43

and Technology, London, Oct. 1980.
[17] Carnielli, W. A. Systematization of finite many-valued logics

through the method of tableaux. Journal of Symbolic Logic 52, 2
(1987), 473–493.

[18] Carnielli, W. A. On sequents and tableaux for many-valued logics.
Journal of Non-Classical Logic 8, 1 (1991), 59–76.

[19] Chang, C. C., and Keisler, H. J. Model Theory, third ed. North-
Holland Publishing Company, 1990.

[20] Cohen, J., Trilling, L., and Wegner, P. A nucleus of a theorem-
prover described in ALGOL-68. International Journal of Computer
and Information Sciences 3, 1 (1974), 1–31.

[21] Dunn, J. M. Intuitive semantics for first-degree entailments and
‘coupled trees’. Philosophical Studies 29 (1976), 149–168.

[22] Dunn, J. M. Relevance logic and entailment. In Handbook of Philo-
sophical Logic, D. Gabbay and F. Guenthner, Eds., vol. 3. Kluwer,
Dordrecht, 1986, ch. III.3, pp. 117–224.

[23] Feys, R. Modal Logics. No. IV in Collection de Logique
Mathématique, Sèrie B. E. Nauwelaerts (Louvain), Gauthier-Villars
(Paris), 1965. Joseph Dopp, editor.

[24] Fitting, M. C. Intuitionistic Logic Model Theory and Forcing.
North-Holland Publishing Co., Amsterdam, 1969.

[25] Fitting, M. C. Tableau methods of proof for modal logics. Notre
Dame Journal of Formal Logic 13 (1972), 237–247.

[26] Fitting, M. C. Proof Methods for Modal and Intuitionistic Logics.
D. Reidel Publishing Co., Dordrecht, 1983.

[27] Fitting, M. C. A tableau based automated theorem prover for clas-
sical logic. Tech. rep., Herbert H. Lehman College, Bronx, NY 10468,
1986.

[28] Fitting, M. C. First-order modal tableaux. Journal of Automated
Reasoning 4 (1988), 191–213.

[29] Fitting, M. C. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, 1990.

[30] Fitting, M. C. Basic modal logic. In Handbook of Logic in Artificial
Intelligence and Logic Programming, D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, Eds., vol. 1. Oxford University Press, Oxford, 1993,
pp. 368–448.

[31] Fitting, M. C. Tableaux for logic programming. Journal of Auto-
mated Reasoning 13 (1994), 175–188.

[32] Gentzen, G. Untersuchungen über das logische Schliessen. Mathe-
matische Zeitschrift 39 (1935), 176–210, 405–431. English translation,
“Investigations into logical deduction,” in [89].

44

[33] Girard, J.-Y. Linear logic. Theoretical Computer Science 45 (1986),
159–192.

[34] Hähnle, R. Towards an efficient tableau proof procedure for multiple-
valued logics. In Proceedings Workshop on Computer Science Logic,
Heidelberg (1990), vol. 533 of LNCS, Springer-Verlag, pp. 248–260.

[35] Hähnle, R. Uniform notation of tableaux rules for multiple-valued
logics. In Proceedings International Symposium on Multiple-Valued
Logic, Victoria (1991), IEEE Press, pp. 238–245.

[36] Hähnle, R. Automated Theorem Proving in Multiple-Valued Logics,
vol. 10 of International Series of Monographs on Computer Science.
Oxford University Press, 1993.

[37] Hähnle, R., and Schmitt, P. H. The liberalized δ-rule in free vari-
able semantic tableaux. Journal of Automated Reasoning, to appear
(1993).

[38] Hertz, P. Über Axiomensysteme für beliebige Satzsysteme. Mathe-
matische Annalen 101 (1929), 457–514.

[39] Heyting, A. Intuitionism, an Introduction. North-Holland, Amster-
dam, 1956. Revised Edition 1966.

[40] Hintikka, J. A new approach to sentential logics. Soc. Scient. Fen-
nica, Comm. Phys.-Math. 17, 2 (1953).

[41] Hintikka, J. Form and content in quantification theory. Acta Philo-
sophica Fennica – Two Papers on Symbolic Logic 8 (1955), 8–55.

[42] Hintikka, J. Modality and quantification. Theoria 27 (1961), 110–
128.

[43] Hintikka, J. Knowledge and Belief. Cornell University Press, 1962.
[44] Hughes, G. E., and Cresswell, M. J. An Introduction to Modal

Logic. Methuen and Co., London, 1968.
[45] Jeffrey, R. C. Formal Logic: Its Scope and Limits. McGraw-Hill,

New York, 1967.
[46] Kanger, S. G. Provability in logic (Acta Universitatis Stockholmien-

sis, Stockholm Studies in Philosophy, 1). Almqvist and Wiksell, Stock-
holm, 1957.

[47] Kleene, S. C. Introduction to Metamathematics. D. Van Nostrand,
North-Holland, P. Noordhoff, 1950.

[48] Kripke, S. A completeness theorem in modal logic. Journal of Sym-
bolic Logic 24 (1959), 1–14.

[49] Kripke, S. Semantical analysis of modal logic I, normal proposi-
tional calculi. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik 9 (1963), 67–96.

[50] Kripke, S. Semantical considerations on modal logics. Acta Philo-
sophica Fennica, Modal and Many-valued Logics (1963), 83–94.

45

[51] Kripke, S. Semantical analysis of modal logic II, non-normal modal
propositional calculus. In The Theory of Models, J. W. Addison,
L. Henkin, and A. Tarski, Eds. North-Holland, Amsterdam, 1965,
pp. 206–220.

[52] Lis, Z. Wynikanie semantyczne a wynikanie formalne (logical conse-
quence, semantic and formal). Studia Logica 10 (1960), 39–60. Polish,
with Russian and English summaries.

[53] Manna, Z., and Waldinger, R. The Logical Basis for Computer
Programming. Addison-Wesley, 1990. 2 vols.

[54] Manna, Z., and Waldinger, R. The Deductive Foundations of
Computer Programming. Addison-Wesley, 1993.

[55] Matsumoto, K. Decision procedure for modal sentential calculus S3.
Osaka Mathematical Journal 12 (1960), 167–175.

[56] Miglioli, P., Moscato, U., and Ornaghi, M. An improved
refutation system for intuitionistic predicate logic. Rapporto interno
37/88, Dipartimento di Scienze dell’Informazione, Universitá degli
Studi di Milano, 1988.

[57] Miglioli, P., Moscato, U., and Ornaghi, M. How to avoid dupli-
cations in refutation systems for intuitionistic logic and Kuroda logic.
Rapporto interno 99/93, Dipartimento di Scienze dell’Informazione,
Universitá degli Studi di Milano, 1993.

[58] Miglioli, P., Moscato, U., and Ornaghi, M. An improved refu-
tation system for intuitionistic predicate logic. Journal of Automated
Reasoning 13, 3 (1994), 361–373.

[59] Mints, G. Proof theory in the USSR 1925 – 1969. Journal of Symbolic
Logic 56, 2 (1991), 385–424.

[60] Mogilevskii, G. L., and Ostroukhov, D. A. A mechanical
propositional calculus using Smullyan’s analytic tables. Cybernetics
14 (1978), 526–529. Translation from Kibernetika, 4, 43–46 (1978).

[61] Ohnishi, M. Gentzen decision procedures for Lewis’s systems S2 and
S3. Osaka Mathematical Journal 13 (1961), 125–137.

[62] Ohnishi, M., and Matsumoto, K. Gentzen method in modal calculi
I. Osaka Mathematical Journal 9 (1957), 113–130.

[63] Ohnishi, M., and Matsumoto, K. Gentzen method in modal calculi
II. Osaka Mathematical Journal 11 (1959), 115–120.

[64] Ohnishi, M., and Matsumoto, K. A system for strict implication.
Annals of the Japan Assoc. for Philosophy of Science 2 (1964), 183–
188.

[65] Oppacher, F., and Suen, E. HARP: A tableau-based theorem
prover. Journal of Automated Reasoning 4 (1988), 69–100.

[66] Popplestone, R. J. Beth-tree methods in automatic theorem-
proving. In Machine Intelligence, N. L. Collins and D. Michie, Eds.,

46

vol. 1. American Elsevier, New York, 1967, pp. 31–46.
[67] Prawitz, D. An improved proof procedure. Theoria 26 (1960).

Reprinted in [79] vol. 1, pp 162 – 199.
[68] Prawitz, D., Prawitz, H., and Voghera, N. A mechanical proof

procedure and its realization in an electronic computer. Journal of the
ACM 7 (1960), 102–128.

[69] Rasiowa, H. Algebraic treatment of the functional calculi of Heyting
and Lewis. Fundamenta Mathematica 38 (1951).

[70] Rasiowa, H. Algebraic models of axiomatic theories. Fundamenta
Mathematica 41 (1954).

[71] Reeves, S. V. Theorem-proving by Semantic Tableaux. PhD thesis,
University of Birmingham, 1985.

[72] Reeves, S. V. Adding equality to semantic tableaux. Journal of
Automated Reasoning 3 (1987), 225–246.

[73] Rescher, N., and Urquhart, A. Temporal Logic. Springer-Verlag,
1971.

[74] Robinson, J. A. A machine-oriented logic based on the resolution
principle. Journal of the ACM 12 (1965), 23–41.

[75] Rousseau, G. Sequents in many valued logic I. Fundamenta Mathe-
matica 60 (1967), 23–33.

[76] Schmitt, P. H. The THOT theorem prover. Tech. Rep. TR–
87.09.007, IBM Heidelbert Scientific Center, 1987.

[77] Schröder, J. Körner’s criterion of relevance and analytic tableaux.
Journal of Philosophical Logic 21, 2 (1992), 183–192.

[78] Shankar, N. Proof search in the intuitionistic sequent calculus. In
Automated Deduction — CADE-11, D. Kapur, Ed., no. 607 in Lecture
Notes in Artificial Intelligence. Springer-Verlag, Berlin, 1992, pp. 522–
536.

[79] Siekmann, J., and Wrightson, G., Eds. Automation of Reasoning.
Springer-Verlag, Berlin, 1983. 2 vols.

[80] Smith, P. Higher-Order Logic, Model Theory, Recursion Theory, and
Proof Theory. Unpublished Manuscript, 1993.

[81] Smullyan, R. M. A unifying principle in quantification theory. Pro-
ceedings of the National Academy of Sciences 49, 6 (June 1963), 828–
832.

[82] Smullyan, R. M. Analytic natural deduction. Journal of Symbolic
Logic 30 (1965), 123–139.

[83] Smullyan, R. M. Trees and nest structures. Journal of Symbolic
Logic 31 (1966), 303–321.

[84] Smullyan, R. M. First-Order Logic. Springer-Verlag, 1968. Revised
edition, Dover Press, NY, 1994.

47

[85] Smullyan, R. M. Abstract quantification theory. In Intuitionism
and Proof Theory, Proceedings of the Summer Conference at Buffalo
N. Y. 1968, A. Kino, J. Myhill, and R. E. Vesley, Eds. North-Holland,
Amsterdam, 1970, pp. 79–91.

[86] Smullyan, R. M. A generalization of intuitionistic and modal logics.
In Truth, Syntax and Modality, Proceedings of the Temple University
Conference on Alternative Semantics, H. Leblanc, Ed. North-Holland,
Amsterdam, 1973, pp. 274–293.

[87] Suchoń, W. La méthode de Smullyan de construire le calcul n-valent
des propositions de Lukasiewicz avec implication et négation. Reports
on Mathematical Logic, Universities of Cracow and Katowice 2 (1974),
37–42.

[88] Surma, S. J. An algorithm for axiomatizing every finite logic. In
Computer Science and Multiple-Valued Logics, D. C. Rine, Ed. North-
Holland, Amsterdam, 1977, pp. 143–149. Revised edition, 1984.

[89] Szabo, M. E., Ed. The Collected Papers of Gerhard Gentzen. North-
Holland, Amsterdam, 1969.

[90] Tarski, A. Der Aussagenkalkül und die Topologie. Fundamenta
Mathematica 31 (1938), 103–34. Reprinted as ‘Sentential calculus and
topology’ in [91].

[91] Tarski, A. Logic, Semantics, Metamathematics. Oxford, 1956. J. H.
Woodger translator.

[92] Toledo, S. Tableau Systems for First Order Number Theory and
Certain Higher Order Theories, vol. 447 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 1975.

[93] Troelstra, A. S. Lectures on Linear Logic. No. 29 in CSLI Lecture
Notes. CSLI, 1992.

[94] Wallen, L. A. Automated Deduction in Nonclassical Logics. The
MIT Press, 1990.

[95] Wang, H. Toward mechanical mathematics. IBM Journal for Re-
search and Development 4 (1960), 2–22. Reprinted in A Survey of
Mathematical Logic, Hao Wang, North-Holland, (1963), pp 224 – 268,
and in [79], vol 1, pp 244 – 264.

[96] Wrightson, G. Non-classical theorem proving using links and unifi-
cation in semantic tableaux. Tech. Rep. CSD-ANZARP-84-003, Vic-
toria University, Wellington, NZ, 1984.

[97] Wrightson, G. Semantic tableaux, unification and links. Tech. Rep.
CSD-ANZARP-84-001, Victoria University, Wellington, New Zealand,
1984.

