
On Quantified Modal Logic

Melvin Fitting
Dept. Mathematics and Computer Science

Lehman College (CUNY), Bronx, NY 10468
Depts. Computer Science, Philosophy, Mathematics

Graduate Center (CUNY)
33 West 42nd Street, NYC, NY 10036

fitting@alpha.lehman.cuny.edu
http://math240.lehman.cuny.edu/fitting

October 18, 1998

Abstract

Propositional modal logic is a standard tool in many disciplines, but
first-order modal logic is not. There are several reasons for this, including
multiplicity of versions and inadequate syntax. In this paper we sketch
a syntax and semantics for a natural, well-behaved version of first-order
modal logic, and show it copes easily with several familiar difficulties.
And we provide tableau proof rules to go with the semantics, rules that
are, at least in principle, automatable.

1 Introduction

Propositional modal logic is a well-known tool, since possible worlds can rep-
resent computational states or moments of time or ways an agent thinks the
world is. The addition of quantifiers, however, opens the door to a labyrinth
full of twists and problems (see [7], for instance) and comparatively few have
been willing to enter. Should quantificational domains be constant domain or
varying or varying with restrictions, and what does “should” mean in this con-
text anyway? Should constant symbols, and terms more generally, be rigid or
flexible? If they are flexible, how should equality behave? In fact, if terms can
be non-rigid, standard first-order modal syntax is actually ambiguous. This
is behind many of the well-known “paradoxes” of modal logic. (A solution to
this problem exists, though it is still not as well-known as it deserves to be. It
was explicitly introduced to modal logic in [10, 11], though as we will see, the
underlying ideas are much earlier.)

It is always interesting to find that problems in disparate areas have a com-
mon solution. The difficulty mentioned above with non-rigid terms actually

1



2 Melvin Fitting

manifests itself elsewhere as well. Aspects of it appear in: the theory of defi-
nite descriptions of Bertrand Russell; certain classical philosophical problems;
inadequate expressibility of logics of knowledge; and the treatment of the as-
signment statement in dynamic logic. The source of difficulty in all these cases
is the same: classical symbolic logic is taken as the standard. In classical logic
assumptions are made that preclude certain kinds of problems—they cannot
arise. Since these problems do not arise in classical logic, machinery for a solu-
tion is missing as well. Since the problems are significant, and the solution is
trivial, the issues should be better known.

My colleague Richard Mendelsohn and I have written a book, [6], presenting
a coherent approach to first-order modal logic that addresses the problems raised
above. While our book is primarily aimed at philosophers, it contains much
discussion of formal semantics and tableau-based proof procedures. A very brief
summary of the material from the book appeared in [5]; this is an expanded
version of that paper and presents a rough outline of our approach. Also, many
of the basic ideas are more general than first-order, and a full treatment of
higher-order modal logic is in preparation.

2 Problems

Let us begin with issues involving the syntactical ambiguity of modal logics that
was mentioned above. Actually, it is a broader issue than just a modal one, and
its solution was proposed a long time ago.

2.1 Frege

The morning star is the evening star. Let us symbolize this by m = e, a state-
ment of identity. When the ancients came to know the truth of this statement
it was a discovery of astronomy. But why could it not have been established by
pure logic as follows. Certainly the ancients knew objects were self-identical; in
particular, K(m = m)—we are using K as a knowledge modality. Since m = e
in fact, using substitutivity of equals for equals, occurrences of m can be re-
placed by occurrences of e. Doing so with the second occurrence in K(m = m)
gives us K(m = e). Yet this does not appear to be how the Babylonians did it.

The philosopher Frege introduced a famous distinction between sense (sinn)
and denotation (bedeutung) to deal with just this sort of problem. Frege came
to insist that terms such as “morning star” have both a denotation (in this
case, a particular astronomical object) and a sense (roughly, how the object is
designated). Identity of denotation is expressed by m = e, but in a non truth-
functional context, such as K(m = e), sense is what matters. This distinction
has given rise to a vast literature, but it is enough here to point out that in
classical mathematical logic, all contexts are truth-functional, and the problem
fades into the background.



On Quantified Modal Logic 3

2.2 Russell

Bertrand Russell, in a famous paper [9], gave a formal theory of definite de-
scriptions like “the positive square root of 3” in a formal language. This was to
be of special significance later in Principia Mathematica since it allowed classes
to be introduced via definite descriptions. Like Frege, Russell had a guiding
example—in his case it was how to assign a truth value to “the King of France
is bald,” given that France has no King.

Russell’s solution involved a distinction between grammatical form and log-
ical form. In this case the grammatical form is B(f) (where B is the bald
predicate and f is the King of France). But this cannot be the logical structure
since f does not designate. According to Russell’s theory the expression should
be expanded to the following, where F is a predicate specifying what it means
to be King of France: (∃x){F (x) ∧ (∀y)(F (y) ⊃ y = x) ∧ B(x)}. Something
Kings France, only one thing does so, and that thing is bald. Clearly, then, the
sentence is false.

Russell noted an ambiguity with the sentence “the King of France is not
bald.” Should this be the assertion that the King of France has the non-baldness
property, or should it be the negation of the assertion that the King of France
has the baldness property? Using the Russell translation, do we negate the
predicate B(x), or do we negate the entire formal expression containing it?
These are not equivalent formally, and the original English sentences do not
seem equivalent informally.

To deal with this, Russell at first introduced a narrow scope/broad scope
distinction, which I won’t discuss further because it turned out to be inadequate.
Eventually he was led to introduce an explicit scoping mechanism, one that is
used systematically in Principia Mathematica. Russell’s notation is somewhat
fierce, and I won’t reproduce it here. But the underlying idea is critical, and
it’s a wonder it came with such difficulty. It amounts to this. When definite
descriptions are translated away, an existential quantifier is introduced. That
quantifier has a formal scope, given by the usual quantifier rules. Then it must
be that definite descriptions themselves have scopes within sentences. Generally
that scope is implicit in natural language, but machinery can be introduced to
make it explicit in formal language. In short, terms of a formal language can
have scopes, just as quantified variables do.

Today Russell’s treatment of definite descriptions is well-known, at least
among those to whom it is well-known. But the explicit introduction of a
scoping mechanism is pushed into the background and generally ignored. In
fact, it is a central point.

2.3 Explicitly Modal Issues

We assume a general familiarity with the machinery of Kripke possible-world
semantics. Suppose we have a first-order modal frame 〈G,R,D〉, consisting of a
collection G of possible worlds, an accessibility relation R between worlds, and a
domain function D assigning non-empty domains for quantification to possible



4 Melvin Fitting

worlds. No special assumptions are needed for the points I am about to make. R
can be any relation; likewise D can be the constant function, entirely arbitrary,
or something inbetween.

Now, consider the behavior of the formula ♦P (c), where c is a non-rigid
constant symbol and P is a predicate symbol. Note that c is non-rigid, perhaps
designating different things at different worlds. For instance, if “the King of
France” were to be represented by a constant symbol in a temporal model,
it would designate different people at different times. Of course sometimes it
would not designate at all—ignore this point for now. Formally, let us say we
have an interpretation I that assigns to constant symbols such as c, and to each
possible world Γ ∈ G some object I(c,Γ)—the “meaning” of c at Γ. We also
assume I assigns to each relation symbol and each possible world some actual
relation. We thus have a model M = 〈G,R,D, I〉, based on the original frame.
Finally let us symbolize by M,Γ ° X the notion that the closed formula X is
true at world Γ of the model M. Now, just what should the following mean?

M,Γ ° ♦P (c) (1)

First Possibility The formula ♦P (c) asserts that, whatever c means, it has
the “♦P” property. A reasonable way of formalizing this in models is to
allow the occurrence of free variables, together with a valuation function to
assign values to them, so we writeM,Γ °v X to mean: X is true at world
Γ of modelM, with respect to valuation v which assigns values to the free
variables of X. With this extra machinery, (1) could be taken to mean
M,Γ °v ♦P (x) where v(x) = I(c,Γ). That is, whatever c designates at
Γ is something for which ♦P (x) is true (at Γ).

Since ♦P (x) is a formula whose main connective is ♦, sinceM,Γ °v ♦P (x)
there is some accessible world ∆ ∈ G (that is ΓR∆) such that M,∆ °v
P (x), and this is the case provided v(x) is in the relation I(P,∆), the
“meaning” of P at ∆. Tracing back, for (1) to be true, we should have
I(c,Γ) ∈ I(P,∆).

Second Possibility The formula ♦P (c) has ♦ as its main connective, so (1)
says there is a possible world Ω ∈ G with ΓRΩ such that M,Ω ° P (c)
and, most reasonably, this should be so if I(c,Ω) is in the relation I(P,Ω).
Thus (1) means I(c,Ω) ∈ I(P,Ω).

We got two ways of reading (1). The world ∆ of the First Possibility and
the world Ω of the Second Possibility need not be the same, but for simplicity
suppose they are, ∆ = Ω. Then we still have the following alternate readings
for (1):

1. I(c,Γ) ∈ I(P,Ω)

2. I(c,Ω) ∈ I(P,Ω)

and these are not equivalent. They are not equivalent because we allowed c to
be non-rigid, so I(c,Γ) and I(c,Ω) can be different.



On Quantified Modal Logic 5

3 Formal Semantics

There is a common solution to all the problems mentioned in the previous sec-
tion. We need Russell’s scoping mechanism, and just such a device was intro-
duced into modal logic in [10, 11]. What it amounts to is separating the notion
of formula and predicate. Using notation based on the Lambda-calculus, we
abstract from a formula ϕ(x) a predicate 〈λx.ϕ(x)〉. For instance, this separates
♦P (c) into the following two distinct formulas:

1. 〈λx.♦P (x)〉(c)

2. ♦〈λx.P (x)〉(c)
What we now do is set out a formal modal semantics incorporating this idea,
which we refer to as predicate abstraction. I have sketched these ideas before
[1, 2] but these were essentially preliminary versions. The definitive treatment
is in [6] and what follows is a partial sketch. I have already said what a modal
frame was above, but the present notion of model is considerably broadened.

First, in a modal frame 〈G,R,D〉, recall that we place no restrictions on the
domain function D—it assigns to each world some non-empty set, the domain
of that world. Members of the domain of a world should be thought of as the
things “actually” existing at that world. If something exists at a world ∆, at a
different world Γ we can think of that thing as a “possible existent.” Also, by
the domain of the frame we mean ∪Γ∈GD(Γ). Thus the members of the domain
of the frame are the things that are actually or possibly existent at every world.

A modal model is a structure 〈G,R,D, I〉 where 〈G,R,D〉 is a modal frame
and I is an interpretation such that:

1. For each relation symbol P and each Γ ∈ G, I(P,Γ) is a relation on the
domain of the frame.

2. For all constant symbols c and for some, not necessarily all Γ ∈ G, I(c,Γ)
is a member of the domain of the frame.

This can be extended to include function symbols, though because of space
limitations in this paper, we do not do so—see [6] for a full treatment.

Think of I(P,Γ) as the “meaning” of the relation symbol P at the world Γ.
Note the important point that it may include in its extension things that do not
exist at Γ. It is true to say, “Pegasus is a mythological beast,” and we interpret
this to mean that “Pegasus” designates something in a world other than this
one (a make-believe world, if you will), the thing designated does not exist in
this world, but in this world the property of being mythological correctly applies
to it.

Think of I(c,Γ) as what c designates at the world Γ. As with relation
symbols, what is designated need not exist. Thus “the first president of the
United States” designates George Washington, who in a temporal sense once
existed but no longer does. Note the added complication that for constant
symbols I is allowed to be partial. This gives us the start of a mechanism to
deal with “the present King of France.”



6 Melvin Fitting

Next we specify the class of formulas.

1. As atomic formulas we take expressions of the form R(x1, . . . , xn) where
R is an n-place relation symbol and x1, . . . , xn are variables. (Recall,
formulas are not properties, but rather, properties are abstracted from
formulas.)

2. Complex formulas are built up from simpler ones using ∧, ∨, ¬, ⊃, ≡,
¤, ♦, ∀, and ∃ in the usual way, with the usual conventions about free
variables.

3. If t is a term (here a variable or a constant symbol), ϕ is a formula, and
x is a variable, 〈λx.ϕ〉(t) is a formula. Its free variables are those of ϕ,
except for occurrences of x, together with the free variables of t.

Think of 〈λx.ϕ〉(t) as asserting of the object t designates that it has the
property 〈λx.ϕ〉, the property abstracted from the formula ϕ.

LetM = 〈G,R,D, I〉 be a model. A valuation inM is a mapping v assigning
to each variable x some member v(x) in the domain of the frame underlying the
model. Note that valuations are not world dependent.

We say a term t designates at Γ if t is a variable, or if t is a constant symbol
and I(t,Γ) is defined. If t designates at Γ we use the following notation:

(v ∗ I)(t,Γ) =
{
v(x) if t is the variable x
I(c,Γ) if t is the constant symbol c

Finally we must define M,Γ °v ϕ: formula ϕ is true at world Γ of model
M with respect to valuation v.

1. For an atomic formula R(x1, . . . , xn), M,Γ °v R(x1, . . . , xn) just in case
〈v(x1), . . . , v(xn)〉 ∈ I(R,Γ).

2. M,Γ °v X ∧ Y if and only if M,Γ °v X and M,Γ °v Y (and similarly
for the other Boolean connectives).

3. M,Γ °v ¤X if and only if M,∆ °v X for every ∆ ∈ G such that ΓR∆
(and similarly for ♦).

4. M,Γ °v (∀x)ϕ if and only ifM,Γ °v′ ϕ for every valuation v′ that is like
v except that v′(x) is some arbitrary member of D(Γ) (and similarly for
∃).

5. If t does not designate at Γ, M,Γ 6°v 〈λx.ϕ〉(t).

6. If t designates at Γ, M,Γ °v 〈λx.ϕ〉(t) if and only if M,Γ °v′ ϕ where
v′ is like v except that v′(x) is what t designates at Γ, that is, v′(x) =
(v ∗ I)(t,Γ).



On Quantified Modal Logic 7

Item 4 makes explicit the idea that quantifiers quantify over what actually
exists—over the domain of the particular possible world only. Such quantifiers
are called “actualist” by philosophers. They are not the only version available,
but a choice among quantifiers is not the issue just now. Item 5 is the formal
counterpart of the informal notion that no assertion about what is designated by
a term that fails to designate can be correct. Note that the issue is designation
by the term, not existence of the object designated. And item 6 expresses the
idea that properties are properties of objects, and so we must know what object
a term designates before knowing if a property applies.

One last item before turning to examples. We will always assume our models
are normal : there is a relation symbol =, written in infix position, and I(=,Γ)
is the equality relation on the domain of the model, for every world Γ.

4 Problems Addressed

We discuss several examples to show the richness these simple ideas provide us.
We give more examples once tableau proof machinery has been introduced.

4.1 Frege’s Problem

Recall Frege’s morning star/evening star problem. Suppose we consider an epis-
temic model in which the various possible worlds are those compatible with the
knowledge possessed by the early Babylonians, including the actual situation,
of course. The constant symbols m and e are intended to designate the morn-
ing and the evening stars respectively. (They designate the same object in the
actual world, but need not do so in every possible world.) Also, let us read ¤ as
“the ancients knew that.” How can we have m = e without, by substitutivity
of equality, having ¤(m = e) follow from ¤(m = m)?

There is a certain amount of deception in the paragraph above. Neither
m = e nor ¤(m = e) is a formula in our formal system. (Recall, constants
cannot appear in atomic formulas, rather they enter via predicate abstraction.)
The incorrect m = e should be replaced with 〈λx.〈λy.x = y〉(e)〉(m), which we
abbreviate as 〈λx, y.x = y〉(m, e). More significantly, for ¤(m = e) we have a
choice of replacements: ¤〈λx, y.x = y〉(m, e), or 〈λx, y.¤(x = y)〉(m, e), or even
〈λx.¤〈λy.x = y〉(e)〉(m). These do not behave the same. And, as a matter of
fact, the formula

〈λx, y.x = y〉(m, e) ⊃ 〈λx, y.¤(x = y)〉(m, e) (2)

is valid (true at all worlds of all models) while

〈λx, y.x = y〉(m, e) ⊃ ¤〈λx, y.x = y〉(m, e) (3)

is not. (We leave the demonstration to you.) A little thought shows that in
formula (2), 〈λx, y.¤(x = y)〉(m, e) asserts that the ancients knew, of the objects
denoted by m and e (in the actual world) that they were identical. This, in fact,



8 Melvin Fitting

is so, since they certainly knew that an object is self-identical. But in formula
(3), ¤〈λx, y.x = y〉(m, e) asserts the ancients knew that m and e designated
the same object, and at one time they did not know this. The use of predicate
abstraction serves to disambiguate (m = e) ⊃ ¤(m = e) into a valid version
and an invalid version, corresponding roughly to Frege’s use of reference and
sense.

4.2 Non-Designation

The introduction of modal operators is not essential to see the effects of predicate
abstraction. Consider the formula

〈λx.¬ϕ〉(c) ≡ ¬〈λx.ϕ〉(c) (4)

If we evaluate the truth of this at a possible world at which c designates, the
equivalence is valid. But if we are at a world at which c does not designate,
the left side of (4) is false, since no abstract correctly applies to a term that
fails to designate. But for the same reason, 〈λx.ϕ〉(c) is false, so its negation,
the right side of (4), is true. Thus if c fails to designate, (4) is false. This
epitomizes precisely the distinction Russell made between the King of France
having the non-baldness property, and the King of France failing to have the
baldness property.

Note that if c does designate, (4) is true. And, whether c designates or
not, 〈λx.ϕ ∧ ψ〉(c) ≡ (〈λx.ϕ〉(c) ∧ 〈λx.ψ〉(c)) is true at each possible world. In
classical logic, it is assumed that terms designate, so the consequence of (4)
and this makes the effects of predicate abstraction invisible. Only when Russell
tried to treat definite descriptions, that may lack designation, or when Frege
considered non-truth functional contexts, did such effects turn up. Incidentally,
a full treatment of definite descriptions in a modal context can be found in [6].

4.3 Existence and Designation

A term t may or may not designate at a particular possible world Γ. If it
does, 〈λx.x = x〉(t) is true there, since whatever t designates is self-identical.
But also, if t does not designate at a world, 〈λx.x = x〉(t) is false there, since
predicate abstracts are false when applied to non-designating terms. Therefore
we can define a “designation” abstract:

D abbreviates 〈λx.x = x〉.

This allows us to move a semantic notion into syntax—as we have seen, D(t) is
true at a world if and only if t designates at that world.

Using our designation abstract, let us return to the discussion of 4.2. We
saw that formula (4) is true if c designates. Consequently we have the validity
of the following.

D(c) ⊃ [〈λx.¬ϕ〉(c) ≡ ¬〈λx.ϕ〉(c)] (5)



On Quantified Modal Logic 9

Remarkably enough, the equivalence holds the other way around as well.
That is, the following is valid.

D(c) ≡ [〈λx.¬ϕ〉(c) ≡ ¬〈λx.ϕ〉(c)] (6)

Just as the semantic notion of designation can be expressed syntactically,
we can express existence as well. We introduce the following abbreviation.

E abbreviates 〈λx.(∃y)(y = x)〉.

It is easy to show that t designates something that exists at world Γ if and only
if E(t) is true at Γ.

We do not have the validity of: (∀x)ϕ ⊃ 〈λx.ϕ〉(t). But if we assume that t
not only designates, but designates something that exists, things become better.
The following is valid: E(t) ⊃ [(∀x)ϕ ⊃ 〈λx.ϕ〉(t)].

In classical logic one cannot even talk about things that do not exist, and
the E(t) antecedent above is unnecessary.

4.4 Herbrand’s Theorem

In classical logic, Herbrand’s theorem provides a reduction of the first-order
provability problem to an open-ended search at the propositional level. It is
often considered to be the theoretical basis of automated theorem proving for
classical logic. Unfortunately, Herbrand’s theorem does not extend readily to
non-classical logics. Fortunately, the use of predicate abstraction allows us to
prove a reasonable version for first-order modal logics. Since the full statement
of the resulting theorem is somewhat complex, I only raise a few of the issues,
and refer to [3] for a fuller treatment.

Classically, the first step of formula processing in the Herbrand method
involves the introduction of Skolem functions. To cite the simplest case, the
formula (∃x)P (x) is replaced with P (c), where c is a new constant symbol. It is
not the case that the two formulas are equivalent, but they are equi-satisfiable—
if either is, both are.

One would like to Skolemize modally as well, but consider the following for-
mula: ¤(∃x)P (x). If this is true at a possible world Γ of some modal model,
then (∃x)P (x) is true at each world accessible from Γ. Say ∆ and Ω are two
such accessible worlds. Then at ∆, some member of the domain associated
with ∆ satisfies P (x)—let the new constant symbol c designate such an object
at ∆. The situation is similar with Ω, so let c designate some member of the
domain associated with Ω that satisfies P (x) there. In general, c will designate
different things at ∆ and Ω, and so will be non-rigid. Thus the Skolemization
of ¤(∃x)P (x) seems to be ¤P (c), where c is a new non-rigid constant symbol.
But, as we have seen, once non-rigid constant symbols are admitted, conven-
tional syntax becomes ambiguous. Indeed, it would appear that ¤P (c) should
also be the Skolemization of (∃x)¤P (x), and this seems quite unreasonable,
since the two quantified formulas having a common Skolemization behave quite
differently.



10 Melvin Fitting

Of course, the solution involves using predicate abstraction. The proper
Skolemization for ¤(∃x)P (x) is ¤〈λx.P (x)〉(c), while (∃x)¤P (x) has a Skolem-
ization of 〈λx.¤P (x)〉(c), which is behaviorally distinct.

Similar results apply to more complex formulas, but function symbols must
be involved, and we do not attempt to give a full presentation here. Suffice it
to say that the full force of Herbrand’s theorem can be proven, even in a modal
setting.

4.5 Dynamic Logic

One of the interesting applications of multi-modal logic is dynamic logic, a
logic of programs, [8]. In addition to the usual machinery of modal logic, a
class of actions is introduced, with the class of actions closed under various
operations, such as sequencing, repetition, and so on. For each action α there
is a corresponding modal operator, generally written [α]. The formula [α]X
is informally read: after action α is completed, X will be true. (Since non-
determinism is allowed, there may be several ways of completing α.) There
is a corresponding semantics in which possible worlds are possible states of a
computation. Likewise there is a proof theory, at least for the propositional case.
A typical principle of dynamic logic is [α;β]X ≡ [α][β]X, where the semicolon
corresponds to sequencing of actions.

Dynamic logic provides an elegant treatment of compound actions, but what
about atomic ones? Consider the assignment statement c := c+ 1—what is its
dynamic characterization? We are all familiar with the before/after behavior of
assignment statements, where the right-hand side uses the current value of c,
while the left-hand side reflects the new value it acquires. To explain c := c+ 1
in English, we would say something like: “after execution, the value of c is one
more than its value before execution.”

To formalize this, it is enough to recognize that c is non-rigid—it designates
different things at different computational states. Then, assuming arithmetic
behaves in the expected way, the essential feature of the assignment statement
in question is captured by the following, in which we use ¤ as shorthand for
[c := c+ 1].

〈λx.¤〈λy.y = x+ 1〉(c)〉(c) (7)

What this expresses is: it is true of the current value of c that, after c := c+ 1
is executed, the value of c will be that plus 1.

If we assume, about arithmetic, only that incrementing a number gives us a
result unequal to the number, then it is easily shown to be a logical consequence
of (7) that

〈λx.¤¬〈λy.(y = x)〉(c)〉(c) (8)

Indeed, this simply amount to an assertion that c is, in fact, non-rigid.
Issues of designation and existence are relevant in dynamic logic as well.

Saying c designates at a computational state amounts to saying it has been ini-
tialized, in the standard programming sense. Saying c exists at a computational



On Quantified Modal Logic 11

state says something about c’s availability—we are in the scope of c. Formal
notions here are somewhat unclear, but it would be interesting to work them
out fully. Finally, saying that c is rigid is simply saying that c is const, as in C
or C++, or final as in Java.

Full first-order dynamic logic is not axiomatizable. What we propose is that
the addition of terms, equality, and predicate abstraction to propositional dy-
namic logic, without adding quantifiers, might serve as a satisfactory strength-
ening of propositional dynamic logic. It is a subject worth investigating.

5 Tableau Proof Methods

Formal proof rules based on prefixed tableaus are quite natural for the constructs
discussed above. Here I give rules for varying domain K—versions for many
standard modal logics are presented in [6], and in [5] I gave rules for S5. Because
of space limitations, rather than giving examples as we go along, I’ll reserve them
all until the following section.

For K, by a prefix we mean a finite sequence of positive integers separated
by periods. The intuition is that a prefix like 2.1.3 designates (or is) a possible
world, and 2.1.3.1, 2.1.3.2, etc. are worlds accessible from it. A prefixed formula
is an expression of the form σX, where σ is a prefix and X is a formula—think
of it as saying X holds in world σ. A signed prefixed formula is an expression
of the form T σX or F σX—the first asserts σX and the second denies it.

A tableau proof of a formula X (without free variables) is a closed tableau
for F 1X. A tableau for a signed prefixed formula is a tree, with that signed
prefixed formula at the root, and constructed using the various branch extension
rules to be given below. A branch of a tableau is closed if it contains an explicit
contradiction: both T σ Z and F σ Z, for some σ and Z. If every branch is
closed, the tableau itself is closed.

Intuitively, when we begin a tableau with F 1X we are supposing there
is some possible world, designated by 1, at which X fails to hold. A closed
tableau represents an impossible situation. So the intuitive understanding of
a tableau proof is that X cannot fail to hold at any world—X must be valid.
Proper soundness and completeness proofs can be based on this intuition but
there is not space here to present them. Now it remains to give the various
branch extension rules—the rules for “growing” a tableau. The propositional
connective rules are easily described, and we begin with them.

If T σX∧Y occurs on a tableau branch, X∧Y intuitively is true at world σ,
hence both X and Y must also be true there. Consequently the tableau branch
can be extended twice, with the first node labeled T σX and the second T σ Y .
If F σX ∧ Y occurs on a branch, X ∧ Y is false at σ, so either X or Y must be
false at σ. This gives rise to two cases, and so the branch “splits.” That is, the
last node is given two children, the left labeled F σX and the right F σ Y .

Rules for other binary connectives are similar, while those for negation are
simpler. In summary form, here they are.



12 Melvin Fitting

Negation:

T σ ¬X
F σX

F σ ¬X
T σX

Binary:

T σX ∧ Y
T σX
T σ Y

F σX ∧ Y
F σX | F σ Y

T σX ∨ Y
T σX | T σ Y

F σX ∨ Y
F σX
F σ Y

T σX ⊃ Y
F σX | T σ Y

F σX ⊃ Y
T σX
F σ Y

Modal rules are quantifier-like in nature. Here the prefixes play a significant
role.

Necessity: In these, σ.k is any prefix that already occurs on the branch, ex-
tending σ by one number.

T σ¤X
T σ.k X

F σ ♦X
F σ.kX

Possibility: In these, σ.k is a prefix that is new to the branch, extending σ by
one number.

T σ ♦X
T σ.k X

F σ¤X
F σ.kX

For quantifiers we need some additional machinery. For each prefix σ we
introduce an infinite alphabet of parameters associated with σ—typically we
write pσ, qσ, etc., for parameters associated with σ. Think of the parameters
associated with σ as (designating) the things that exist at world σ. From now
on we allow parameters to appear in proofs (though not in the formulas being
proved). They follow the syntax rules of free variables, though they are never
quantified. Now, here are the quantifier rules.

Universal: In these, pσ is any parameter associated with σ.

T σ (∀x)ϕ(x)
T σ ϕ(pσ)

F σ (∃x)ϕ(x)
F σ ϕ(pσ)

Existential: In these, pσ is a parameter associated with σ that is new to the
branch.

T σ (∃x)ϕ(x)
T σ ϕ(pσ)

F σ (∀x)ϕ(x)
F σ ϕ(pσ)



On Quantified Modal Logic 13

The rules so far are fairly standard. To deal with non-rigid constant symbols
(and this can be extended to include function symbols too), we again need to
extend the machinery. If c is a constant symbol and σ is a prefix, we allow cσ to
occur in a proof (though again, not in the formula being proved). Think of cσ
intuitively as the object that c designates at world σ. We have allowed partial
designation, that is, a constant symbol may not designate at every world. All
this is incorporated rather easily into our rules for predicate abstracts, which
we give in a moment.

First, however, a little more notation. For each term t we define t@σ, which
we can think of as what t designates at σ. (This gets more complicated when
function symbols are present.) For a prefix σ:

1. For a parameter pσ′ , let pσ′@σ = pσ′ .

2. For a subscripted constant symbol cσ′ , let cσ′@σ = cσ′ .

3. For an unsubscripted constant symbol c, let c@σ = cσ.

Now, here are the abstraction rules.

Positive Abstraction:

T σ 〈λx.ϕ(x)〉(t)
T σ ϕ(t@σ)

Negative Abstraction: If t@σ already occurs on the branch,

F σ 〈λx.ϕ(x)〉(t)
F σ ϕ(t@σ)

Finally we have the rules for equality, and these are quite straightforward.
Let us say a term is grounded on a branch if it is a parameter or a subscripted
constant symbol, and it already occurs on the branch.

Reflexivity: If t is grounded on the branch, T σ t = t can be added to the end,
for any already occurring prefix σ. Briefly,

T σ t = t

Substitutivity: If t and u are grounded on the branch, and T σ′ t = u occurs
on the branch, any occurrences of t can be replaced with occurrences of
u. Again briefly,

T σ′ t = u
T σ ϕ(t)
T σ ϕ(u)

T σ′ t = u
F σ ϕ(t)
F σ ϕ(u)

This completes the full set of tableau rules.



14 Melvin Fitting

6 Tableau Examples

We give several simple examples of K tableau proofs. Many more can be found
in [6].

Example In Section 4 we gave formula (6) as an interesting example of a valid
formula involving designation. We now give a tableau proof of part of this,

D(c) ⊃ [¬〈λx.P (x)〉(c) ⊃ 〈λx.¬P (x)〉(c)]

Line numbers are for explanation purposes only. Since no modal operators are
present, only world 1 is involved throughout.

F 1 D(c) ⊃ [¬〈λx.P (x)〉(c) ⊃ 〈λx.¬P (x)〉(c)] 1.
T 1 D(c) 2.
F 1¬〈λx.P (x)〉(c) ⊃ 〈λx.¬P (x)〉(c) 3.
T 1¬〈λx.P (x)〉(c) 4.
F 1 〈λx.¬P (x)〉(c) 5.
F 1 〈λx.P (x)〉(c) 6.
T 1 〈λx.x = x〉(c) 2′.
T 1 c1 = c1 7.
F 1¬P (c1) 8.
F 1P (c1) 9.
T 1P (c1) 10.

In this, 2 and 3 are from 1, and 4 and 5 are from 3 by an implication rule; 6 is
from 4 by a negation rule; 2′ is line 2 unabbreviated; 7 is from 2′ by a positive
abstraction rule; then 8 is from 5 and 9 is from 6 by negative abstraction; and
10 is from 8 by negation. The single branch is closed because of 9 and 10.

Example We give a tableau proof of a formula discussed in Subsection 4.3 of
Section 4. Again this does not involve modal operators.

F 1 E(c) ⊃ [(∀x)P (x) ⊃ 〈λx.P (x)〉(c)] 1.
T 1 E(c) 2.
F 1 (∀x)P (x) ⊃ 〈λx.P (x)〉(c) 3.
T 1 (∀x)P (x) 4.
F 1 〈λx.P (x)〉(c) 5.
T 1 〈λx.(∃y)(y = x)〉(c) 2′.
T 1 (∃y)(y = c1) 6.
T 1 p1 = c1 7.
T 1P (p1) 8.
T 1P (c1) 9.
F 1P (c1) 10.

In this, 2 and 3 are from 1 and 4 and 5 are from 3 by an implication rule;
2′ is 2 unabbreviated; 6 is from 2′ by positive abstraction; 7 is from 6 by an
existential rule (p1 is a new parameter at this point); 8 is from 4 by a universal



On Quantified Modal Logic 15

rule (note that a parameter is involved, as the rule requires); 9 is from 7 and 8
by substitutivity of equality; 10 is from 5 by negative abstraction (note that c1
already occurs on the tableau branch). Closure is by 9 and 10.

Example Our final example is an interesting modal example. It is a proof of

〈λx.¤〈λy.x = y〉(c)〉(c) ⊃ [〈λx.¤P (x)〉(c) ⊃ ¤〈λx.P (x)〉(c)]

In [6] we make a case that the antecedent of this expresses rigidity of c and the
consequent asserts that a de re usage of c implies the corresponding de dicto
version. There is no space here to discuss just what this is all about. Just take
it as providing an illustrative tableau proof.

F 1 〈λx.¤〈λy.x = y〉(c)〉(c) ⊃ [〈λx.¤P (x)〉(c) ⊃ ¤〈λx.P (x)〉(c)] 1.
T 1 〈λx.¤〈λy.x = y〉(c)〉(c) 2.
F 1 〈λx.¤P (x)〉(c) ⊃ ¤〈λx.P (x)〉(c) 3.
T 1 〈λx.¤P (x)〉(c) 4.
F 1 ¤〈λx.P (x)〉(c) 5.
T 1 ¤P (c1) 6.
F 1.1 〈λx.P (x)〉(c) 7.
T 1.1P (c1) 8.
T 1 ¤〈λy.c1 = y〉(c) 9.
T 1.1 〈λy.c1 = y〉(c) 10.
T 1.1 c1 = c1.1 11.
F 1.1P (c1.1) 12.
T 1.1P (c1.1) 13.

In this, 2 and 3 are from 1 and 4 and 5 are from 3 by an implication rule; 6
is from 4 by positive abstraction; 7 is from 5 by a possibility rule (the prefix
1.1 is new to the branch at this point); 8 is from 6 by a necessity rule; 9 is
from 2 by positive abstraction; 10 is from 9 by a necessity rule; 11 is from 10
by positive abstraction; 12 is from 7 by negative abstraction (c1.1 occurs on the
branch already); and 13 is from 8 and 11 by substitutivity of equality.

We leave it to you to provide a proof of

〈λx.¤〈λy.x = y〉(c)〉(c) ⊃ [¤〈λx.P (x)〉(c) ⊃ 〈λx.¤P (x)〉(c)]

7 Monotonicity and Constant Domains

Up to this point we have been working with varying domain models—domains
associated with worlds can be entirely arbitrary. This amounts to an actualist
approach to quantification. That is, we think of the domain at each world as
what actually exists at that world. It is, of course, not the only approach: con-
stant domain models are common. In these all worlds have the same quantifier
domain. Also one sees monotonic models, in which quantifier domains asso-
ciated with worlds must be subsets of the domains associated with accessible
worlds. The constant domain semantics corresponds to a possibilist approach



16 Melvin Fitting

to quantification. One thinks of the common domain as constituting what does,
or what could, exist—something that is the same from world to world. The
monotonic approach is less easy to characterize philosophically, but has some
technically nice features.

It is well-known that varying domain semantics “turns into” the monotonic
version by requiring the validity of the converse Barcan formula, and into con-
stant domain by also requiring the validity of the Barcan formula. In effect,
this means the varying domain approach can simulate the others. The draw-
back is that both the converse Barcan formula and the Barcan formula are
axiom schemes, with infinitely many instances. But, as we showed in [6], and
also in [4], these infinitely many instances can be replaced by single formulas!
In this section we briefly sketch how.

We begin with the converse Barcan formula—the schema ¤(∀x)ϕ ⊃ (∀x)¤ϕ.
Requiring validity of it corresponds to requiring monotonicity of frames. Mono-
tonicity says that whatever exists here continues to exist at alternative worlds.
And this can be said quite directly, using the existence predicate abstract from
Subection 4.3, as (∀x)¤E(x). Formally, one can show that validity of this in all
models based on a frame is equivalent to monotonicity of the frame. Moreover,
note that the only relation involved in the formula is equality, whose behavior
does not depend on details of an interpretation since all our interpretations are
normal. Thus validity of this formula in a single model on a frame is sufficient
to establish its validity in all models based on the same frame. It is a powerful
formula.

Example Here is a tableau proof showing that an instance of the converse
Barcan formula is a consequence of (∀x)¤E(x).

F 1 ¤(∀x)P (x) ⊃ (∀x)¤P (x) 1.
T 1 ¤(∀x)P (x) 2.
F 1 (∀x)¤P (x) 3.
F 1 ¤P (p1) 4.
F 1.1P (p1) 5.
T 1.1 (∀x)P (x) 6.
T 1 (∀x)¤E(x) 7.
T 1 ¤E(p1) 8.
T 1.1 E(p1) 9.
T 1.1 〈λx.(∃y)(y = x)〉(p1) 9′.
T 1.1 (∃y)(y = p1) 10.
T 1.1 q1.1 = p1 11.
F 1.1P (q1.1) 12.
T 1.1P (q1.1) 13.

In this, 2 and 3 are from 1 by an implication rule, 4 is from 3 by an existential
rule (p1 is a new parameter), 5 is from 4 by a possibility rule, 6 is from 2 by
a necessity rule. Notice that the formula in 6 cannot be instantiated using p1

since the prefix is 1.1! Now we add 7 as an assumption, 8 follows from 7 by a
universal rule, 9 is from 8 by a necessity rule, 9′ is 9 unabbreviated, 10 is from



On Quantified Modal Logic 17

9′ by positive abstraction, 11 is from 10 by an existential rule (q1.1 is a new
parameter), 12 is from 11 and 5 by substitutivity of equality, and 13 is from 6
by a universal rule.

Capturing the Barcan formula scheme with a single formula in a similar way
is a little more work. First we note that, instead of using the closed formula
(∀x)¤E(x) above, we could have used the open formula E(x) ⊃ ¤E(x). It too
corresponds directly to monotonicity and to the converse Barcan formula. To
use an open formula in a tableau, we simply allow instances of it to appear,
where the free variable x has been replaced by a grounded term. Now that free
variables are permitted, the Barcan formula itself can be shown to correspond
to the following single formula.

♦E(x) ⊃ E(x)

Thus both monotonicity and constant domain versions of first-order modal
logic can easily be captured with no essential changes in the semantics or the
tableau machinery.

We have shown, in effect, that varying domain semantics can simulate the
constant domain version. It can also be shown that constant domain semantics
can simulate the varying domain version. Philosophically, this means one can
think of the distinction between actualist and possibilist quantification as being
about a “manner of speaking.” Technically, it means we can use whichever
approach is simpler to formulate and to work with, since we get the other as
well.

8 Conclusions

I hope I have been able to get across something of the naturalness of this ap-
proach to first-order modal logic. It need not be the labyrinth it sometimes
appears. Once again I refer you to [6] for a full treatment. I also want to
remark that predicate abstraction carries over smoothly to higher type levels,
and so the work sketched here can be seen as a fragment of a rich higher-order
modal logic. A presentation of this is currently in preparation.

References

[1] M. C. Fitting. Modal logic should say more than it does. In J.-L. Lassez
and G. Plotkin, editors, Computational Logic, Essays in Honor of Alan
Robinson, pages 113–135. MIT Press, Cambridge, MA, 1991.

[2] M. C. Fitting. Basic modal logic. In D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 1, pages 368–448. Oxford University Press,
1993.



18 Melvin Fitting

[3] M. C. Fitting. A modal Herbrand theorem. Fundamenta Informaticae,
28:101–122, 1996.

[4] M. C. Fitting. Barcan both ways. Forthcoming, 1997.

[5] M. C. Fitting. Bertrand Russell, Herbrand’s theorem, and the assignment
statement. In J. Calmet and J. Plaza, editors, Artificial Intelligence and
Symbolic Computation, pages 14–28. Springer Lecture Notes in Artificial
Intelligence, 1476, 1998.

[6] M. C. Fitting and R. Mendelsohn. First-Order Modal Logic. Kluwer, 1998.
Forthcoming.

[7] J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic, volume 2, pages 249–307.
D. Reidel, 1984.

[8] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, volume 2, pages 497–604. D. Reidel, 1984.

[9] B. Russell. On denoting. Mind, 14:479–493, 1905. Reprinted in Robert C.
Marsh, ed., Logic and Knowledge: Essays 1901-1950, by Bertrand Russell,
Allen & Unwin, London, 1956.

[10] R. Stalnaker and R. Thomason. Abstraction in first-order modal logic.
Theoria, 34:203–207, 1968.

[11] R. Thomason and R. Stalnaker. Modality and reference. Nous, 2:359–372,
1968.


