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Abstract

One can add the machinery of relation symbols and terms to a propositional modal logic
without adding quantifiers. Ordinarily this is no extension beyond the propositional. But
if terms are allowed to be non-rigid, a scoping mechanism (usually written using lambda
abstraction) must also be introduced to avoid ambiguity. Since quantifiers are not present,
this is not really a first-order logic, but it is not exactly propositional either. For propositional
logics such as K, T and D, adding such machinery produces a decidable logic, but adding it
to S5 produces an undecidable one. Further, if an equality symbol is in the language, and
interpreted by the equality relation, logics from K4 to S5 yield undecidable versions. (Thus
transitivity is the villain here.) The proof of undecidability consists in showing that classical
first-order logic can be embedded.

1 Introduction

The best known propositional modal logics are decidable—something that can be
shown by filtration to produce finite models, or by using special characteristics of a
proof procedure such as tableaus. Of course first-order versions are undecidable, since
they conservatively extend classical logic. But there are modal logics that are, in a
sense, intermediate between first-order and propositional, between the dark and the
daylight, so to speak. For these decidability is not obvious, and in fact it fails for a
whole range of them. I will state the results of this paper properly after appropriate
machinery has been introduced.

The syntax of a first-order logic involves more than simply admitting quantifiers—
one also needs relation symbols, variables, and perhaps constant and function symbols
as well. In a modal setting these are all rather straightforward, unless the semantics
allows terms to be non-rigid, taking on different values at different possible worlds. If
this happens, ambiguity results. The standard example is ¢ P(c), where the constant
symbol c is interpreted non-rigidly. To say this is true at possible world I' could mean
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that P(c) is true at an alternative world, meaning that P holds of what ¢ designates
at that alternative world. Or we could say ¢ P(c) is true at I' if whatever ¢ designates
at ' has the “possible-P” property, meaning that at an alternative world P holds of
what ¢ designated back at I'. If ¢ is non-rigid, these can lead to different outcomes—
we are seeing the de re/de dicto distinction at work. Since both readings are useful
for different purposes, some mechanism must be introduced to disambiguate things.

Some time ago an abstraction device was proposed for modal logic, and this has
proved quite useful [11, 12]. An extensive study of its virtues can be found in [7]. It will
be defined properly below, but for now it should suffice to say that the two readings of
OP(c) just discussed correspond to two distinct syntactic expressions Q{\x.P(z))(c)
and (Az.0P(x))(c).

Throughout this paper, by a propositional modal logic L, I mean one characterized
by a class of frames. If L is a propositional modal logic, I'll use LA for the logic
that syntactically allows relation symbols, constant symbols, abstraction, but not
quantification. Semantically, I'll extend the possible world semantics for L, with a
domain in which to interpret constant and relation symbols. I'll take this domain to
be the same from world to world—constant domain semantics—but I'll allow constant
symbols to be interpreted non-rigidly. I will assume one of the relation symbols is =,
and I will use LA= for the logic determined by using L frames, but requiring = to be
interpreted by the equality relation on the domain. Since no quantifiers are present,
we do not really have a first-order logic, but since a domain must be specified, there
are some of the characteristics of one. Now, here are the results to be proved in this

paper.

Theorem 1

1. If L is one of K, D, T, B, then LA and LA_ are decidable (this is not an
exhaustive list).

2. S5 is undecidable.
3. If L is between K4 and S5, then LA_ is undecidable.

To keep things simple, I have omitted function symbols. Allowing them keeps the
decidable logics L, listed in part 1 above, decidable. I don’t know if the decidability
of LA_ is preserved if function symbols are allowed.

2 Syntax and Semantics

So far things have been described rather informally. Now it is time to get serious,
beginning with syntax. Let L be a propositional modal logic. Recall that in this
paper L will always be assumed to be determined by a class of frames.

I'll assume we have an alphabet of variables (typically x, y, x1, ... ), an alphabet
of constant symbols, (typically ¢, d, ¢1, ... ), and for each n an alphabet of n-ary
relation symbols (typically P, R, Ry, ... ). One of the relation symbols is =, and I’ll
write x = y rather than = (z,y), in the usual way. A term is a constant symbol or a
variable.
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Definition 2 (Formula of L)) The set of formulas, and their free variables, is de-
fined as follows.

1. If R is an n-ary relation symbol and x1, xa, ... , 2, are variables, then R(x1, za,
., Zn) 18 a formula, with z1, za, ..., 2, as its free variable occurrences.

2. if ® is a formula, so are =®, (¢, and (P. Free variable occurrences are those
of .

3. If ® and ¥ are formulas, so are (P A U), (P V ¥), and (¢ D ¥). Free variable
occurrences are those of ® together with those of W.

4. If ® is a formula, x is a variable, and ¢ is a term, (Az.®)(t) is a formula. Free
variable occurrences are those of ®, except for occurrences of z, together with
t if it is a variable.

I'll sometimes write ®(x) to indicate x is a free variable that may have occurrences
in ®, and ®(¢) to denote the result of substituting ¢ for free occurrences of x in ®.

Next we turn to semantics. Besides the usual machinery of propositional modal
logic, a domain must be provided to supply objects to serve as values for constant
symbols and variables. Constant symbols will be interpreted non-rigidly, by functions
mapping worlds to objects. Likewise a non-rigid interpretation must be supplied for
relation symbols.

Definition 3 (Model of L)) A model is a structure M = (G, R, D, T), where:

1. (G,R) is a frame for the propositional modal logic L (G is the set of possible
worlds and R is the accessibility relation).

2. D is a non-empty set, the domain;
3. 7 is a mapping that assigns:

(a) to each constant symbol some function from G to D;
(b) to each m-ary relation symbol some function from G to the power set of
Dn.
If Z(=) is the constant function assigning the equality relation on D to every

member of G, I'll say we have a model of LA_.

While constant symbols are interpreted non-rigidly, variables are thought of as
rigid, as in [7]. This is not the only possible way to do things—see [5, 4, 6]—but it is
certainly the simplest approach.

Definition 4 (Valuation) A wvaluation v in a model M = (G, R,D,Z) is a mapping
that assigns to each variable some member of D. A mapping (v *Z) from terms and
worlds to D is defined as follows:

1. For a variable z, (v« T)(z,T) = v(x).

2. For a constant symbol ¢, (v*Z)(c,I") = Z(c)(T).
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Now the main semantic notion, which is symbolized by M, T Ik, ®, and is read:
formula @ is true in model M, at possible world I', with respect to valuation v. For
simplicity, take V, D, 3, and { as defined symbols, in the usual way.

Definition 5 (Truth in an L\ Model) Let M = (G,R,D,Z) be an LA model,
and v be a valuation in it.

1. If R(z1,... ,zy) is atomic, M, T Ik, R(z1,... ,x,) iff
(v(z1),. .. ,v(xy)) € Z(R)(T).

2. M,T Ik, ~® iff M,T I, ®.
M, Tl ® AV iff M,T I, & and M, T IF, T.

- W

M, T+, O iff M,Al-, ® for all A € G.

5 M,T' Ik, (Az.®)(t) if M,T Ik, @, where v’ is like v except that
v(x) = (v+I)(¢,T).

As usual, a formula is called valid in a model if it is true at every world of it, with
respect to every valuation, and valid in L\ if it is valid in all LA models. Similarly
for LA— validity. Also, as usual, for closed formulas the specification of a valuation
does not matter.

One can say some quite sophisticated things using this syntax and semantics. Here
is an example from [7]. Define the following formula abbreviations.

Az = DOQy.(Az.2(y) > ®(c))(c))(¢) D
(Ay.O0Az.@(y) > @())(c))(c)

Ay .00 (2))(c) > Oz 0(2))(c)

Notice that A4 is an arbitrary instance of de re implying de dicto for ¢, while A3 is a
more specialized instance of de dicto implying de re. It can be shown that A3 D Ay
is valid in KA. Thus if, for ¢, de dicto always implies de re, then in fact de re implies
de dicto as well. (This works the other way around too.)

For an example involving equality, it is convenient to introduce the following
abbreviation.

Rigid(c) = (\z.0{\y.y = z)(c))(c)

This characterizes what was called local rigidity in [7]. Now, Rigid(c) D A4 is valid
in KA\_.

What Rigid(c) says is that, at accessible worlds ¢ keeps the same designation that
it has in this one. I'll actually need a weaker notion saying that, from any accessible
world one can always move to some world where c recovers the designation that it
had in this world.

Definition 6 Recur(c) = (Az.00(\y.y = x)(c))(c).
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3 Tableaus, In Brief

In [7] prefixed tableau systems are given for many standard first-order modal logics
with non-rigid constant symbols (and function symbols) and the A-abstraction mech-
anism. Rules for equality are also given. Here is a brief presentation of a tableau
system for K\, which results when the quantifier rules from [7] are dropped.

A prefiz is a finite sequence of positive integers. A prefized formula is an expression
of the form o X, where o is a prefix and X is a formula. I write prefixes using periods
to separate integers, as in 1.2.3.2.1. If ¢ is a prefix and n is a positive integer, o.n is
o followed by a period followed by n. A prefix o intuitively names a possible world in
some modal model, and o X ‘says’ that X is true at the world ¢ names. The prefix
o.n is intended to name a world that is accessible from the one that ¢ names. A
tableau will contain prefixed formulas as node labels.

A tableau proof of a closed formula Z is a tree with 1 -2 at its root, that is
‘grown’ according to certain Branch Extension Rules, given below, and that is closed.
A tableau is closed if each branch is closed, and a branch is closed if it contains o X
and 0 —X, for some o and some X. Finally, here are the Branch Extension Rules
(taking A as a representative propositional connective). For any prefix o,

c XNY c(XAY) o——X
o X U“X‘O"\Y o X
oY

if the prefix o.n is new to the branch,

ocOX o-0X
onX on-X

if the prefix o.n already occurs on the branch,

odX o—-0X
onX on—X

To take care of abstraction rules, a new family of constant symbols is introduced,
which will only appear in proofs. If ¢ is a (standard) constant symbol, and o is a
prefix, ¢, is an extended constant symbol. Think of it as what the non-rigid symbol ¢
designates at the world named by o.

o (Ax.®(x))(c) o —~(Ax.®(z))(c)
O'(I)(Ca-) O'"CI)(CU)

These rules correspond to KA—a proof of soundness and completeness can be
extracted from the more general setting of [7]. A careful look at the completeness
argument shows that the rules for $. X and —[0X never need to be applied to a formula
more than once on a branch. Since each rule application reduces formula complexity,
decidability of the system is immediate.

To extend the tableau system to one for KA—, two more rules must be added.

First, reflexivity: If ¢, occurs on the tableau branch, and ¢’ is a prefix which
also occurs on the tableau branch, then ¢’ (¢, = ¢,) can be added to the end of the
branch.
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Second, substitutivity: Let ®(z) be a formula (allowing extended constant sym-
bols) in which at most z occurs free, let t and u be extended constant symbols, and
let ®(t) be the result of substituting occurrences of ¢ for all free occurrences of x in
®(x), and similarly for ®(u). If o1 (t = u) and o9®(t) both occur on a tableau branch,
09®(u) can be added to the end.

Once again a carefully formulated completeness argument shows that if a formula
is unprovable, a finite tableau construction is sufficient to construct a counter-model.
This ensures decidability.

Modifications to the specifically modal rules above yield systems for logics such
as K, D, T, B, and these too can be used to establish decidability. See [3] for further
discussion of tableau methods and decidability (without abstraction).

We now have the first part of Theorem 1.

4 Two Embeddings

There are well-known embeddings of classical first-order logic into first-order versions
of S5 and S4. They can be described easily: for S5, insert [J in front of every
subformula; for S4, insert [J¢ in front of every subformula. The S5 translation
comes from [8] and [9]; the S4 version comes from [2], where its connection with
forcing was noted. In [10] the S4 translation was a key step in the proof of the
independence of the continuum hypothesis from the axioms of Zermelo-Fraenkel set
theory. Now two variations of these translations are introduced, mapping first-order
classical logic formulas into the language LA. The embeddings involve only a single
non-rigid constant symbol, which we fix to be ¢. Throughout I'll assume first-order
classical formulas are defined as usual, and do not contain equality, constant, or
function symbols.

Definition 7 Let X be a formula of first-order classical logic. Modal formulas X°
and X*, in the language L), are defined as follows.

1. For an atomic formula A, A° = 0A and A* = OO A.

2. [+®]° = O-[®]° and [~®]* = O~ [D]*.

3. For ® one of A, V, O, [0 ® ¥]° = 0@ ® ¥)° and [® © U]* = OO[@ © T]*.
4. [(V2)®)° = O(\z.9°)(c) and [(Vz)®]* = OOO(Az.*)(c).

5. [(32)3)° = O(A2.8°)(c) and [(Fz)®]* = OO (Az.B*)(c).

I’ll generally be interested in logics that are at least as strong as KD4, and for
these part of the definition of the embedding for the existential quantifier will generally
be simplified a bit, to OO(Az.®*)(c).

Here is a statement of the central result. It provides undecidability for a range
of logics, not quite the range that was promised, but the full version is then an easy
consequence.

Theorem 8 Let ® be a closed classical first-order formula. The following are equiv-
alent.
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1. ® is classically valid.
ORecur(c) D ®* is valid in LA—, where L is between KD4 and S5.
®* is valid in S5A.

Ll

P° is valid in S5.

The proof of this theorem will be spread over the next few sections.

5 Complete sequences

Complete sequences originated in Cohen’s work on forcing, [1]. In [2] I modified them
to prove a result concerning first-order S4. That work is further modified here to
prove the following.

Proposition 9 Let ® be a closed classical first-order formula. If ® is classically valid
then ORecur(c) D @* is valid in KD4A_, and hence in LA= for any L stronger than
KD4.

The proof of this Proposition occupies the rest of the section. Assume M =
(G,R,D,TI) is some KD4A_ model. It will be convenient for this section to expand
the language by adding a new family of free variables, called parameters, one for each
member of D. These will never be bound by A abstracts or quantifiers, and it is
understood that the only valuations that will be considered are such that v(p) = p for
every parameter. In short, we add names for members of the domain to the language.
T’ll extend the use of the word closed so that a formula whose only free variables are
parameters is considered closed.

A few observations. Because of transitivity, 0X D OOX and 00X D ¢X are
valid in KD4. Because of seriality, X D X is valid in KD4. It follows that
00X = O0O0X is also valid. One way, O0X D OO0X D OOOOX D O0OOX.
The other way, 00X D OOOOX D OOOX D OOX. More generally, any sequence
of modal operators beginning with [J and ending with ¢ can be replaced by [J¢, and
conversely, in KD4. Also, since every formula of the form X* begins with (I, it
follows that X* = O0X™* is valid in KD4)\.

Lemma 10 Let ® be any closed formula of classical first-order logic (allowing pa-
rameters), and let I be an arbitrary member of G.

1. f M,TIF, @* and I'RA then M, A I+, ®*.
2. If M, T I, ®* then M, A Ik, [-®]* for some A € G with T'RA.
3. It M,T Iy, [(32)®()]* then M, A I, [@(p)]* for some A € G such that TRA

and some parameter p.

4. f M,T Ik, [~(Va)®(z)]* then M, A I, [-®(p)]* for some A € G such that
T'RA and some parameter p.

5. If M,T I, [(V2)®(2)]* and M, T Ik, O0(A\y.y = p)(c) for a parameter p, then
M, T Iy [@(p)]".
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6. If M,T Ik, [-(32)®(z)]* and M, T Ik, OO (Ay.y = p)(c) for a parameter p, then
M, T Ik, [P (p)]*.

Proof Since ®* =[O0®*, (1) is immediate.

Suppose M, T I}, ®*. Since ®* = OOP*, for some A with 'RA, M, A I+, O-d*,
But also O0-®* D O0O-®* D O0-d*, so M, A Ik, [-P]*. We thus have (2).

M, T Ik, [(3z)®@(2)]* then M, T I, O0(Az.9*(x))(c) so (making use of seriality)
there is some accessible world A at which we have (Az.®*(z))(c). Let p be what ¢
designates at A, that is, p = Z(c)(A). Then M, A Ik, ®*(p), and we have (3).

(4) results by combining (2) and (3).

For (5), assume M, T Ik, O00(Az.®*(x))(c) and M, T Ik, OO0(Ay.y = p)(c). Let
A be a world such that TRA. Then M, A Ik, 0O(Az.®*(z))(c), so for some Oy,
ARy and M, Q4 Ik, OAz.®*(x))(c). Also M,y Ik, O(Ay.y = p)(c) so for some
Qo with QRO M, Qs IH, (Ay.y = p)(c). Also M, Qs I, (Az.®*(2))(c) and it
follows that M, Qy Ik, ®*(p). Thus M, A I, 0P*(p) and since A was arbitrary,
M, T I, TIOD* ().

Finally, (6) is similar to (5).

Now, suppose I' is a world of M, and let X7, X5, X3, ... be an enumeration
of all closed formulas of classical first-order logic (allowing parameters).. A complete
sequence starting at I is any sequence I'g, I'1, I's, . .. , of worlds constructed as follows.

Iy=T.

Suppose I';, has been defined. There are several cases, depending on X, ;. Parts
of Lemma 10 play a role, in particular part 1.

1L If M, T, Ik, X and X4 is not of the form (Jz)®(x), let ')y =T

2. f M, Ty Ik, X5y and X4 is (32)®(x), there is a parameter p and a world A
such that I',;RA and M, A Ik, [®(p)]*. Choose one such A and set I',, 11 = A.

3. M, T, Iy, Xy and X, 41 is not of the form (Va)®(x), there is a world A such
that T',, RA and M, A Ik, [-X,,41]*. Choose one such A and set T',, 11 = A.

4. Suppose M, Ty, I, X5 1 and X, 41 is (Vz)®(x). By combining various parts
of the Lemma, there is a parameter p and a world A such that I',RA, and
M, A -, [-®(p)]*, and also M, A I, [-X,,11]*. Choose such a A and set
Tpi1 = A

In a complete sequence, each world is accessible from its predecessor, and for each
classical formula @, either ®* is true from some point in the sequence on, or [-®]* is
true from some point on. But much more than this can be said. A classical model
is associated with a complete sequence as follows. Let I'g, I'y, I's, ... be a complete
sequence. Call a parameter p realized in this sequence if Z(c)(I';) = p for some IT'; in
the complete sequence, where ¢ > 0. Let D be the set of parameters that are realized.
For an n-place relation symbol P, define I(P) to be the n-place relation on D such
that (p1,...,pn) € Z(P) if and only if [P(p1,... ,ps)]" is true from some point on
in the complete sequence. We thus have a classical model (D, I) which is associated
with the complete sequence.
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Lemma 11 Let 'y, T'y, T's, ... be a complete sequence, and let (D, I') be the classical
model associated with it. Also, assume M, Ty Ik, ORecur(c). Then, for each closed
classical first-order formula ® (allowing parameters from D), ® is true in (D, I) if
and only if M,T; I+, ®* for some I'; (and hence for all T'; from some point on in the
complete sequence).

Proof The proof is by induction on formula complexity. For simplicity, I’ll assume
=, A, and V are the only connectives and quantifiers.

Atomic Case: Here the definition of associated model gives us what we need.

Negation Case: Assume the result for ®. If =@ is true in (D, I) then ® is false,
so by the induction hypothesis, ®* is not true at any world of the complete sequence.
Then by construction, [=®]* must be true at some I';. In the other direction, suppose
M, T; Ik, [~®]* for some T';. If ®* held at some member of the complete sequence,
there would be a single world at which both ®* and [~®]* held, but this is impossible
because —{®* A [-®]*} is easily verified to be KD4 valid. Thus ®* fails at every
member of the complete sequence, so by the induction hypothesis ® is false in (D, I),
and hence —® is true.

Conjunction Case: This is straightforward, using the KD4 validity of (®* AT*) =
(@ A W)*. (In verifying this one needs the validity of X* = 00 X*.)

Universal Case (one direction): Suppose (Vz)®(x) is true in (D, I), and the result
is known for simpler formulas. Then [(Vz)®(z)]* must be true at some member of
the complete sequence because otherwise, by construction, [-®(p)]* would be true at
some member of the complete sequence, for some parameter p. Then, as we saw in
the Negation Case above, [®(p)]* would be false at every member of the complete
sequence, and so ®(p) would be false in (D, I'), which contradicts the supposition.

Universal Case (other direction): Suppose [(Vz)®(z)]* is true at I'; of the complete
sequence, and the result is known for simpler formulas. Let p be an arbitrary member
of D. Say p is realized at I';, so Z(c)(I';) = p. Since ORecur(c) is true at I'g, then
Recur(c) is true at I';, that is, at I'; we have (Az.00(\y.y = z)(c))(c), and hence
we also have OO(Ay.y = p)(c). Let n be the larger of i and j. Then at T',, we have
both [(Vz)®(z)]* and OO0(Ay.y = p)(c), so by Lemma 10, we have [®(p)]* at T',,. By
the induction hypothesis, ®(p) is true in (D, I) and since p was arbitrary, (Vz)®(x)
is true.

Proof of Proposition 9 Suppose that CRecur(c) D ®* is not valid in KD4A_;
say that M = (G, R,D,7) is a KD4A_ model, I € G, and M, T I, ORecur(c) but
M, T I, ®*. By Lemma 10 there is some A with I'RA such that M, A I, [~®]*.
Of course also M, A Ik, ORecur(c). Now, construct a complete sequence starting at
A, and consider the associated model (D, I). In it —=® will be true, and so ® is not
classically valid.

6 Extensions and alternatives

Proposition 12 Let ® be a closed first-order classical formula (without parameters
or equality). If @ is classically valid then ®* is valid in S5A.

Proof Suppose ® is classically valid, and let M = (G, R,D,Z) be an S5\ model.
Modify 7 so that it interprets the equality symbol by the equality relation on D. Since
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®* does not contain equality, this has no effect on its truth or falsity at members of
G. By Proposition 9, ORecur(c) D ®* must be valid in M. It is not hard to see that
Recur(c) is also valid in any S5 A= model. It follows that ®* is valid in M.

Proposition 9 can be given an alternative proof. Choose some standard axiom
system for classical first-order logic. One can show, by induction on proof length,
that if X has a proof, then Recur(c) D (VX)* is valid in KD4A_, where VX is the
universal closure of X. There are no special tricks, but I omit the details. A similar
argument, by induction on proof length, can be used to establish the following—I do
not know of a direct semantic argument.

Proposition 13 Let ® be a closed formula in the language of classical first-order
logic, without equality. If ® is classically valid then ®° is valid in S5A.

The following connection between the two translations will play an important role
in the next section. The proof is again a straightforward induction on formula degree,
and is omitted.

Proposition 14 Let M be an S5\ model in which ¢ A D A is valid, for all atomic
A. Then, for every classical formula ®, without equality, ®° = ®* is valid in M.

7 The converse direction
The following completes the argument for Theorem 8.

Proposition 15 Let & be a closed classical first-order formula. If ® is not valid
classically, then ®° is not valid in S5\. Further, ®° fails in an S5\ model in which
QA D OA is valid for all atomic A, and hence ®* is not valid in S5).

Proof Suppose @ is false in the classical model M = (D, I). An S5\ model M =
(G,R,D,T) is specified as follows. G = D = D, that is, the domain and the collection
of worlds are the same, both D. R always holds. For relation symbols: Z(P)(I") =
I(P) for all worlds I'. (Hence 0A D OA is valid for atomic A.) For the constant
symbol ¢, Z(c)(T) =T.

Claim: for a classical formula X, allowing free variables, X is true in M with
respect to valuation v if and only if M, T I, X° for every I' € M.

The proof of the claim is by induction on formula degree. Most cases are straight-
forward. I'll give the negation and universal quantifier cases in some detail.

Negation: Suppose - is true in M with respect to valuation v, and the claim is
known for simpler formulas. Since ¢ is not true in M, by the induction hypothesis
° must be false at some world of M, with respect to v. But ¢° = Op°, so it must
be that ¢° is false at every world of M, and so O—¢° is true at every world, that is,
[—¢]° holds at every world. The converse direction is similar.

Universal Quantifier: Suppose (Vz)p is true in M with respect to v, and the claim
is known for simpler formulas. Let I" be an arbitrary member of D. Then ¢ is true
in M with respect to v’, where v’ is the z-variant of v such that v'(x) = T'. By the
induction hypothesis, ©° is true at every world of M with respect to v/, and since T’
is one of the worlds, M, T Ik, ¢°. But I is also a member of D, and Z(c)(T') =T It



Modal Logics Between 11

follows that M, T Ik, (Az.¢°)(c). Since T’ was arbitrary, (Az.¢°)(c) is true at every
world, hence so is O{Az.¢°)(c), and thus [(Vz)p]°® is true at every world of M with
respect to v.

In the other direction, suppose [(Vz)¢]° is true at every world of M with respect
to v, and the claim is known for simpler formulas. Let I' be an arbitrary world.
Then M, T Ik, (Az.¢°)(c), so M,T" I, ¢° where v is the z-variant of v such that
v'(z) =Z(c)(T') =T. But ¢° = Op°, and so ¢° is true at every world with respect to
v'. Then by the induction hypothesis, ¢ is true in M with respect to v’. But T was
an arbitrary world, that is, an arbitrary member of D, so v’ is an arbitrary z-variant
of v. Then (Vx)y is true in M with respect to v.

8 Conclusion

By combining Propositions 9, 12, 13, and 15, the proof of Theorem 8 is complete.
This gives us most of Theorem 1. What is missing is that, while undecidability has
been established for logics between KD4A_ and S5A_, the range between K4A_ and
KD4)_ has not been included. But the extension is easy, using the observation that
X is KD4M_ valid iff (0T ADOT) D X is K4A_ valid.

In a preliminary announcement of the results of this paper there was an error, and
the undecidability of logics between K4\ and S5\ was asserted. While the assertion
is correct for S5\, for other logics in the range, equality had to be brought in. This
still leaves, as an open problem, the decidability status of LA for L between K4 and
S5, except for S5 itself.

There are other problems connected with the introduction of the abstraction mech-
anism. As I noted in Section 1, the decidability of LA— with function symbols is not
known if LL is one of K, D, T, B. In addition, referees for this paper suggested the fol-
lowing questions. For propositional modal logics that are decidable, and that remain
so if an abstraction mechanism is added, are there any for which the satisfiability
problem becomes computationally more complex? And, what is the status of the
one-variable fragment, or of other natural subsystems for which the corresponding
classical fragment is decidable?
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