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Abstract

We introduce a subclass of Kripke’s fixed points in which falsehood is the preferred truth
value. In all of these the truthteller evaluates to false, while the liar evaluates to undefined (or
overdefined). The mathematical structure of this family of fixed points is investigated and is
shown to have many nice features. It is noted that a similar class of fixed points, preferring
truth, can also be studied. The notion of intrinsic is shown to relativize to these two subclasses.
The mathematical ideas presented here originated in investigations of so-called stable models in
the semantics of logic programming.

1 Introduction

Briefly stated, the job of a theory of truth is to assign truth values to sentences in a language allowing
self-reference, in a way that respects intuition while avoiding paradox. Of course this can not be
done in the framework of classical, two-valued logic because of liar sentences. Some generalization
allowing partial truth assignments, or perhaps contradictory ones is needed. Kripke [13] (partly
anticipated by [15]), provided a satisfactory mathematical mechanism using partiality. But for
several reasons it did not eliminate the problem — primarily because it did not produce a unique
candidate for a truth assignment, but rather a whole family of ‘fixed points,’ any of which is a good
candidate. Some of these fixed points stand out as warranting special attention — most notably,
the smallest one. But all of them are of interest, and any of them could serve as a truth assignment.

Given this multiplicity of possible truth assignments, it is of importance to find subclasses that
are narrower in scope, ones that are characterized in natural ways. Kripke himself began this with
his intrinsic fixed points. (We give proper definitions later, in order to keep things relatively self-
contained.) In this paper we propose another natural subclass of interest (actually, we propose four
related ones). It is a subclass having very nice mathematical properties, and is characterized by a
condition having a creditable intuition. We put forward this subclass (or rather, these subclasses)
for special attention.
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2 Melvin Fitting

The liar sentence, asserting its own falsehood, acquires no classical truth value in any of Kripke’s
fixed points. This is as it should be — the sentence is paradoxical, after all. But the truth-teller,
asserting its own truth, is true in some fixed points, false in some, and left without a classical truth
value in still others. As a consequence, in both the smallest of Kripke’s fixed points and in the
biggest intrinsic fixed point the truth-teller lacks a classical truth value. In other words, in the most
prominent of Kripke’s fixed points the truth assignment treats the liar and the truth-teller alike,
though for different reasons. The liar cannot be assigned a value; the truth-teller can be assigned
anything, so a particular value is not determined. But the truth-teller is not contradictory, and
there is no evidence to support its truth (other than itself, provided we assume its truth), so perhaps
we should simply take it to be false.

We do not intend to argue in this paper for the correctness of the position sketched in the
previous paragraph. We will say, however, that it is a plausible position that warrants investigation.
In particular, what would the mathematics of such a position look like? This is what will be
developed here: the theory of a subclass of Kripke’s fixed points that, roughly, take falsehood
as the preferred value whenever possible. This yields a class of fixed points having a very nice
mathematical structure, with properties that are worth further investigation for this reason, as well
as for their more ‘philosophical’ features.

The treatment just sketched can be dualized: one can take truth as the preferred value instead of
falsehood. The resulting structure is essentially like that which results when falsehood is preferred,
so we do not present the development explicitly. It is enough to mention the possibility, and leave
its investigation to those who wish to chose truth over falsehood.

Finally, Kripke’s notion of an intrinsic fixed point combines with either of the subclasses men-
tioned above. This is not the same thing as considering those members of the falsehood (or truth-
hood) preferring subclass that are intrinsic in Kripke’s sense — rather, the definition itself is
relativized. This yields two more natural subclasses of Kripke’s fixed points, subclasses whose
properties are largely open questions.

A few words about the origins of the development presented here. There is often a close rela-
tionship between theories of truth and the semantics of logic programming. Generally speaking,
the same mathematical machinery is appropriate for both. Some years ago I showed how a devel-
opment, much like Kripke’s, could supply meanings for logic programs that made use of negation
[4]. Other semantical approaches were developed as well, motivated by various concerns that need
not be gone into here. One very successful such approach was the stable model semantics, due to
Michael Gelfond and Vladimir Lifschitz [9], and independently to Kit Fine [3]. In [8] I gave an ab-
stract, generalized treatment of this stable model semantics, using in part machinery developed by
Stephen Yablo for application to the theory of truth [19]. The present paper can be seen as shifting
the mechanism of stable model semantics for logic programming back to the philosophical arena,
repaying the debt incurred to Kripke years ago. Since the term “stable” already has a meaning
in philosophical logic, in work of Gupta and Herzberger [11, 12], the term GLF-stable, to credit
Gelfond, Lifschitz, and Fine, will be used here.

The basic subject matters of this paper and of logic programming, as in [8], are quite different.
Nonetheless, starting from different domains, the immediate goal is to define certain operators and
prove certain monotonicity conditions for these operators. Once this is done the mathematical
machinery to be applied is the same in either case, and is essentially algebraic in nature, deriving
entirely from lattice theory. This should not be surprising since programming language semantics
and natural language semantics both rely heavily on inductive definability notions. It is well-known,
for instance, that Kripke’s concept of intrinsic fixed point appeared independently in computer
science [14]. The two communities have much to learn from each other.
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2 Logic

Kripke carried out his development in [13] using three-valued logic — actually he considered several
different versions: Kleene’s weak, Kleene’s strong, and supervaluations. Here we will use yet
another, a four-valued logic credited to Dunn [2] and to Belnap [1]. This is a multiple-valued
logic that contains Kleene’s strong three-valued logic as a natural sub-logic (and in a certain sense
Kleene’s weak three-valued logic as well — see [7]). It has decided advantages. One is that, adding a
fourth truth value (of overdefined or inconsistent) simplifies the mathematics by giving us a lattice,
rather than a semi-lattice to work with. Another is that it adds a degree of symmetry between
under-defined and over-defined that allows us to state and prove some striking theorems bounding
the family of GLF-stable valuations. And finally, allowing overdefined as a truth value has a degree
of naturalness to it. After all, a liar sentence can just as well be taken as having both classical
truth values, as having neither. Other investigations, notably [17] and [18], have used the same
logic. Still we hasten to point out that nothing critical depends on our choice of logic. We could
have used Kleene’s weak, or strong, three-valued logic instead. The situation with supervaluations
remains to be investigated. In addition, any distributive bilattice could have been chosen (see [8]).
The methodology is fairly robust.

Now for the details of the four-valued logic we have chosen to use. We denote the four values
as false, true, ⊥ and >. Think of ⊥ as undefined, or neither false nor true. Likewise think of >
as overdefined, or both false and true. As Belnap observed, these values can be given two natural
orders. One is on the degree of information or knowledge involved. In this ordering ⊥ is least,
strictly below both false and true, which are incomparable. These, in turn are strictly below >.
Intuitively, an increase in this ordering amounts to a gain of a classical truth value (possibly in
addition to one already possessed), without loosing anything. We use ≤k for this ordering. In
effect, when Kripke talks about a least fixed point for his truth revision operator, it is least with
respect to this ordering.

In addition there is a second natural ordering of the four values, one in which an increase
intuitively signifies an increase in truth content, or a decrease in falsehood content. We use ≤t for
this ordering. The value false is least in this ordering. Moving from it to ⊥ decreases the degree of
falsehood (because ⊥ is neither true nor false), while moving from false to > increases the degree
of truth (because > is both true and false, while false is only false). So both ⊥ and > are strictly
above false in this ordering, though they are not comparable with each other. Finally, moving
from ⊥ to true increases the degree of truth, while moving from > to true decreases the degree of
falseness, so both ⊥ and > are below true in this sense.

Both orderings can be displayed simultaneously, in the double Hasse diagram of Figure 1. This
way of displaying such things is due to Matt Ginsberg [10]; Belnap’s logic is the simplest example
of a bilattice in Ginsberg’s sense.

Both orderings give FOUR the structure of a complete lattice. That is, all meets and joins
exist, with respect to both orderings. We will use the following notation for meets and joins. For
the ≤t ordering, binary meets are denoted ∧, binary joins are denoted ∨. Arbitrary meets and joins
are denoted

∧
and

∨
. It is important to note that, restricted to the substructure {false, true}, the

operations ∧ and ∨ are the usual conjunction and disjunction of classical logic. Likewise, restricted
to {false,⊥, true} they are the operations of Kleene’s strong three-valued logic. Thus working with
Belnap’s system loses nothing that working with Kleene’s would have obtained for us. Incidentally,
the relationship between Kleene’s and Belnap’s logics is a special case of a general phenomenon —
see [7] for a discussion of this point.

With respect to the ≤k ordering, we use ⊗ and ⊕ for binary meet and join, and
∏

and
∑
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Figure 1: The Logic FOUR

for the arbitrary versions. These operations are less familiar, doubtless. I have been calling ⊗ a
consensus operation, because it produces the most information that two truth values can agree on.
Likewise I have been calling ⊕ a gullibility operation — it accepts anything it’s told.

The two sets of operations are not independent of each other: all possible distributive laws hold.
For instance:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∧ (y ⊗ z) = (x ∧ y)⊗ (x ∧ z)
x⊕ (y ⊗ z) = (x⊕ y)⊗ (x⊕ z)

and so on. All these play a significant role later on.
It is an easy consequence of the various distributive laws that each of the operations is monotonic

with respect to both orderings. For example,

x ≤t y ⇒ x⊗ z ≤t y ⊗ z
x ≤t y ⇒ x ∧ z ≤t y ∧ z
x ≤k y ⇒ x ∧ z ≤k y ∧ z

and so on. These are called the interlacing conditions. These too play a significant role below.
Finally, there is a natural negation operation: ¬false = true; ¬true = false; ¬> = >; and

¬⊥ = ⊥. This is a natural generalization of both classical negation and the negation of Kleene’s
logic. Negation reverses the ≤t ordering, while preserving the ≤k ordering. It is an easy consequence
that the usual DeMorgan laws hold with respect to the operations ∧ and ∨, but the operations ⊗
and ⊕ are self-dual.

Things can be summed up generally by saying FOUR is extraordinarily well-behaved. The rest
is details.

3 Language and valuations

We need a language in which self-reference is possible. For this purpose we use Gödel numbering,
though other mechanisms are possible. For the rest of this paper L is a first-order language with a
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one-place relation symbol T , intended to represent the truth predicate; 0 is a constant symbol; s
is a one-place function symbol intended to represent successor (so we have representatives for the
natural numbers); d1, d2, d3, . . . are function symbols, with dk being k+1-place (these are intended
to represent substitution functions — more on this below); and otherwise, there can be constant,
function, and relation symbols intended to represent various ‘real world’ things. This part is rather
arbitrary. Propositional connectives are limited to ∧, ∨, and ¬. Both existential and universal
quantifiers are assumed present.

Since we have 0 and a successor function symbol in L, there is a numeral for every natural
number. We denote the numeral representing n by n. That is, n = sn(0). Next, we assume that a
Gödel numbering has been introduced, so that every sentence of the language has a number. We
write pXq for the Gödel number of the sentence X. We assume the Gödel numbering is onto, so
that for every number n there is some sentence X such that pXq = n. This is not necessary, but
it does simplify things mildly. We also assume that for each k we have an effective enumeration
of the collection of all formulas with x1, . . . , xk as free variables. We write φkn(x1, . . . , xk) for
the n-th formula in this enumeration. Finally, we assume that D1, D2, D3, . . . are primitive
recursive functions, with Dk being k + 1-place, such that Dk(n,m1, . . . ,mk) is the Gödel number
of φkn(m1, . . . ,mk). Dk is the intended interpretation of dk.

As far as models for the language L go there is an intended domain, containing the natural
numbers and possibly other ‘real world’ objects. For simplicity we assume every member of the
domain has a closed term of L intended to name it. Interpretations of all symbols except T are
fixed. The symbol 0 is always interpreted by the number 0; the function symbol s is interpreted
by the successor function; symbols intended to denote various ‘real world’ items are interpreted by
those items; and so on. In particular, the function symbol dk is always interpreted by the function
Dk mentioned in the previous paragraph. Thus the only thing up for grabs is the interpretation of
T , which we specify using the notion of a valuation.

Definition 3.1 A valuation is a mapping of closed formulas of the form T (t) to the space of truth
values FOUR. We assume that if t is any closed term whose interpretation is not a natural number,
v(T (t)) = ⊥.

The action of a valuation is extended to all sentences in a straightforward way. If R(t1, . . . , tn)
is any atomic sentence whose relation symbol is not T , v(R(t1, . . . , tn)) is taken to be true or
false according to whether the intended interpretation of R holds or does not hold of the intended
interpretations of t1,. . . , tn. Then, inductively, v(X ∧ Y ) = v(X) ∧ v(Y ), where the ∧ on the
right is the meet operation of FOUR with respect to the ≤t ordering, and similarly for ∨ and
¬. v((∀x)φ(x)) =

∧{v(φ(t)) | all closed terms t}, where this is the arbitrary meet of FOUR with
respect to ≤t, and similarly for the existential quantifier.

The aim of a theory of truth is to produce a valuation that gives T a meaning as closely
approximating its intended interpretation as a truth predicate as possible. A minimum requirement
is that T (pXq) and X should have the same truth value for every sentence X.

Finally, a word on the substitution function. It is, of course, used to produce self-referential
sentences in the standard way. We omit details at this point, but we assume it can be used in the
usual way to create liar sentences, truth tellers, and so on. One caution, however. We write X ↔ Y
to indicate that X and Y have the same truth value (member of FOUR) under every valuation.
This is not a definable connective of our language. One sometimes sees a connective ≡, introduced
by: X ≡ Y abbreviates (¬X ∨ Y ) ∧ (¬Y ∨X). This does not have the behavior one might expect.
For instance, X ≡ X evaluates to ⊥ if X itself does. The relation ↔ is purely two-valued, and
X ↔ X is simply true. A liar sentence is a sentence X such that X ↔ ¬T (pXq).
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4 Kripke’s way of doing things

Kripke introduced a truth revision operator, which we will denote by Φ. It maps valuations to
valuations, and the intention is that Φ(v) will make the truth predicate reflect the way that v sees
the world.

Definition 4.1 Let v be a valuation. Then Φ(v) is the valuation such that, for each sentence X
of L,

Φ(v)(T (pXq)) = v(X).

Kripke argued that a fixed point of Φ would be a good candidate for a valuation of L (where
v is a fixed point if Φ(v) = v). It is not immediately clear that Φ has any fixed points, so Kripke
gave an argument that amounts to the following.

The underlying space of truth values, FOUR, has two partial orderings, ≤t and ≤k. These, in
turn, induce orderings on the space of valuations, as follows.

Definition 4.2 We say v1 ≤t v2 provided v1(A) ≤t v2(A) for each closed atomic formula A.
Similarly v1 ≤k v2 if v1(A) ≤k v2(A) for each closed atomic formula A.

It is not hard to check that the space of valuations is a complete lattice under both ≤t and ≤k.
For instance, the meet of v1 and v2 in the ≤t ordering exists, and is the valuation v3 such that for
each closed atomic formula A, v3(A) = v1(A) ∧ v2(A). And so on.

The orderings of valuations were defined using closed atomic formulas. This extends to non-
atomic formulas well or badly, depending.

Proposition 4.3

1. Suppose v1 ≤k v2. Then v1(X) ≤k v2(X) for every sentence X.

2. Suppose v1 ≤t v2. Then v1(X) ≤t v2(X) for every sentence X that does not contain negation.

The verification of this Proposition is by a straightforward induction on formula complexity, and
uses the interlacing conditions mentioned earlier. In a sense, it is the fact that the ≤t ordering
behaves badly when negation is present that is the source of all difficulties. And it is the good
behavior of the ≤k ordering that saves things.

Proposition 4.4 The truth revision operator Φ is monotonic with respect to the ≤k ordering. That
is, if v1 ≤k v2 then Φ(v1) ≤k Φ(v2).

Proof Suppose v1 ≤k v2. By the previous Proposition, v1(X) ≤k v2(X) for every sentence X, so
by definition Φ(v1)(T (pXq)) ≤k Φ(v2)(T (pXq)). It follows that Φ(v1) ≤k Φ(v2).

There is a well-known theorem of Knaster and Tarski [16] that says a monotonic function on a
complete lattice has a smallest, and a biggest fixed point. (More generally, the collection of fixed
points will, itself, be a complete lattice.) Since Φ is monotonic under ≤k, and the space of valuations
is a complete lattice under this ordering, Φ has a smallest, and a biggest, fixed point. In particular,
fixed points exist. The smallest fixed point of Φ is a natural candidate for a truth assignment since
it contains the minimum information to which we are entitled. Kripke also singled out another
fixed point of interest, the largest intrinsic one. We will say more about this in Section 10.
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In point of fact, Kripke’s argument did not look quite like this. Instead of a four-valued logic
he used a three-valued one; consequently he did not have a complete lattice to work with, so the
Knaster-Tarski theorem was not applicable. Still, the structure he used was that of a complete
semi-lattice, and a Knaster-Tarski like theorem still applies (see [5]). His valuations were not given
directly as mappings to a many-valued logic, but rather in terms of extension/anti-extension pairs.
It is not hard to see that this is an equivalent alternative. Thus what we have presented is essentially
Kripke’s version, despite the dissimilar appearance.

5 GLF-Stable fixed points

As we said earlier, whenever possible we want to give preference to falsehood over truth. But this
implies we should distinguish those occurrences of the truth predicate in which it essentially repre-
sents truth from those in which it essentially represents falsehood. That is, we should distinguish
between positive and negative occurrences, between those inside an even number of negation signs
and those inside an odd number. Actually, to keep notation and terminology simple, we will assume
formulas have been ‘normalized.’

Normal Form Assumption From now on we assume all formulas are in negation normal form:
all occurrences of the negation symbol are at the atomic level.

Since the DeMorgan laws hold for the ≤t connectives, every formula is equivalent to one in negation
normal form, so the Assumption is no restriction.

With formulas in negation normal form, we can think of occurrences of ¬T (x) as if they were
occurrences of a new atom, a falsehood atom, now disconnected from T (x). We introduce the
notion of a pseudo-valuation, which is a mapping from sentences of the forms T (t) and ¬T (t) to
FOUR. Pseudo-valuations can be concocted from valuations in a convenient way.

Definition 5.1 Let v1 and v2 be valuations. We define a pseudo-valuation v14v2 as follows.

(v14v2)(T (t)) = v1(T (t))
(v14v2)(¬T (t)) = ¬v2(T (t))

Pseudo-valuations are extended to arbitrary sentences following the usual inductive rules (except
for negation, which no longer comes into things).

The idea is, in v14v2, v1 supplies positive information, about ‘truth,’ while v2 supplies negative
information, about ‘falsehood.’ Now we generalize the truth revision operator in a straightforward
way, to use separate inputs for positive and for negative occurrences of T .

Definition 5.2 Let v1 and v2 be valuations. Then Ψ(v1, v2) is the valuation such that, for each
sentence X of L,

Ψ(v1, v2)(T (pXq)) = (v14v2)(X).

The mapping Φ was monotonic under ≤k but not under ≤t. In fact, with respect to ≤t little of
use could be said. The mapping Ψ is considerably better behaved. We leave it to you to check the
following.

Proposition 5.3

1. Ψ is monotonic in both inputs, under ≤k. That is, if v1 ≤k v2 and w1 ≤k w2 then Ψ(v1, w1) ≤k
Ψ(v2, w2).
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2. Ψ is monotonic in its first input, under ≤t. That is, if v1 ≤t v2 then Ψ(v1, w) ≤t Ψ(v2, w).

3. Ψ is anti-monotonic in its second input, under ≤t. That is, if w1 ≤t w2 then Ψ(v, w1) ≥t
Ψ(v, w2).

The space of valuations is a complete lattice under ≤t as well as under ≤k, though no use could
be made of this when dealing with Φ. But since Ψ is monotonic under ≤t in its first input, if we
hold the second input fixed, as a parameter, and consider it only as a function of its first input, we
have a monotonic function on a complete lattice, and the Knaster-Tarski Theorem applies. It is
here that the notion of giving preference to falsehood is explicitly introduced.

Definition 5.4 The derived operator of Ψ is the single input mapping Ψ′ given by: Ψ′(v) is the
smallest fixed point, in the ≤t ordering, of the function (λx)Ψ(x, v).

The mapping Ψ′ can be thought of as a new candidate for a truth revision operator. The
intuition is a little more complex than it was with Φ, however. Suppose we make a ‘guess’ at
falsehood — that is, we choose a valuation v telling us how occurrences of ¬T (t) behave. Subject
to this guess at falsehood behavior, the least fixed point of (λx)Ψ(x, v) will reflect how truth —
occurrences of T (t) — should be valued, provided we use false as the value whenever possible. If
the result is the guess we began with, then v was a good guess; it is a valuation we can not reason
ourselves away from, given that false is our ‘default’ truth value. This is formalized in the following.

Definition 5.5 A GLF-stable valuation is a fixed point of Ψ′.

Now we face technical problems similar to those of Kripke: for instance, are there any GLF-
stable valuations? We will show there are and the family of them has a nice mathematical structure
worth further investigation. Moreover, we will show that every GLF-stable valuation is one of
Kripke’s fixed points, so we are singling out a subclass of the valuations Kripke considered, for
special attention.

Assuming there are GLF-stable valuations, how do various problematic sentences behave in
them? Suppose X is a liar sentence, X ↔ ¬T (pXq). We will produce a GLF-stable valuation in
which X is ⊥ and another in which it is >. There are none in which it is true or false, since these
values are impossible in Kripke’s fixed points. Thus the liar sentence behaves essentially as it does
in Kripke’s theory.

Now suppose X is a truth-teller, X ↔ T (pXq). We will see later on that X evaluates to false in
every GLF-stable valuation. Since it can take on any of the four truth values in various of Kripke’s
fixed points, it follows that GLF-stable valuations are a proper subset of Kripke’s fixed points.

For a slightly more complicated example, suppose X and Y each say the other is lying. That
is, X ↔ ¬T (pY q) and Y ↔ ¬T (pXq). In one of Kripke’s fixed points X is true and Y is false;
in another X is false and Y is true; in still others both X and Y are ⊥, or both X and Y are >.
GLF-stable valuations will assign a sentence the value false whenever possible; the problem now is
the symmetry between X and Y — which of the two should be assigned false? We will see that in
all GLF-stable valuations either X and Y are >, or both are ⊥. An assignment of false to one and
true to the other is not possible in a GLF-stable valuation.

As a final example, consider a sentence that asserts either it or its negation is true. That is,
construct a sentence X so that X ↔ T (pXq) ∨ T (p¬Xq). This will evaluate to ⊥ in every GLF-
valuation. By way of contrast, in Kripke’s fixed points it can be either true or ⊥, though never
false. Incidentally, in the “truth” ordering, ⊥ <t true, so our general preference for falsehood has
prevailed in the sense that we minimized values in the ≤t ordering as far as possible.
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6 Background on the Knaster-Tarski theorem

We have used the Knaster-Tarski theorem several times, to ensure that various fixed points exist.
It has two essentially different proofs which we will need, so we take a moment to describe them.
Also we introduce an anti-monotonic analog that apparently first appeared in a paper of Stephen
Yablo’s on the theory of truth [19], and which will play a curious role here.

Suppose M is a complete lattice, and f is a monotonic function on it. In particular we are
assuming that in M there is a partial ordering, ≤, and every subset of M has a least upper bound
and a greatest lower bound with respect to this ordering. If S ⊆M , the least upper bound of S is
customarily denoted

∨
S, and the greatest lower bound is denoted

∧
S. Further, we are assuming

that if x ≤ y then f(x) ≤ f(y). The Knaster-Tarski theorem says that under these circumstances
f will have a smallest (and by duality a largest) fixed point. There are two quite different ways of
characterizing this fixed point: from below, and from above. We sketch the techniques.

In the ‘from below’ approach, one draws near to the smallest fixed point of f by a sequence of
approximations, each of which is below it. The sequence of approximations may need a transfinite
number of steps, so it is indexed by ordinal numbers. More specifically, a sequence, f0, f1, . . . , fα, . . .
is defined as follows. f0 is the smallest member of M (which exists in every complete lattice). For
a successor ordinal α+1 we set fα+1 = f(fα). And for a limit ordinal λ we set fλ =

∨{fα | α < λ}.
One can show this is an increasing sequence, that is, if α < β then fα ≤ fβ. If the inequality
fα ≤ fβ were always strict, always <, we would have a 1 − 1 mapping from the class of ordinals
into M . Since we are assuming that M is a set such a thing is impossible, so there must be an
ordinal α such that fα = fα+1 = f(fα). Thus f has a fixed point.

If it can be shown by transfinite induction that every fα has a certain property, that property
will be shared by the fixed point just produced, since it is one of the fα. As one example, it can be
shown that if x is some fixed point of f , then for each α, fα will be ≤ x. Consequently the fixed
point constructed by this approximation technique will be below any fixed point, so it is the least
fixed point.

In Kripke’s paper [13] this is the approach he describes, approximating to the least fixed point
through a transfinite sequence of extension/anti-extension pairs.

There is quite another way of producing the least fixed point, yielding a different method of
proving things about it. Let S = {x ∈ M | f(x) ≤ x}. S is not empty since it contains the
biggest member of M (which always exists in a complete lattice). Set s =

∧
S — s turns out to

be the smallest fixed point of S by the following simple argument. First, if x ∈ S then s ≤ x
so by monotonicity f(s) ≤ f(x) ≤ x (the latter since x ∈ S). Since x was an arbitrary member
of S, it follows that f(s) ≤ s, so s ∈ S. Next S is closed under f since, if x ∈ S, f(x) ≤ x, so
by monotonicity f(f(x)) ≤ f(x), and this says f(x) ∈ S. Consequently f(s) ∈ S, so s ≤ f(s).
Combining this with an earlier inequality, f(s) = s. Finally, if x is any fixed point of f , x ∈ S, so
s ≤ x, and hence s is the least fixed point.

Notice that this method of producing the least fixed point also gives a way of proving things
about it. Suppose z is any point in M such that f(z) ≤ z. Then z ∈ S, so s ≤ z. This gives an easy
way of showing various things are upper bounds for the least fixed point of f — it is something we
will use often.

Finally we turn to Yablo’s curious modification of the Knaster-Tarski theorem.

Definition 6.1 Let M be a complete lattice and let µ and ν be in M . We say these are oscillation
points for a function f if f(µ) = ν and f(ν) = µ. We say these are extreme oscillation points if: 1)
µ ≤ ν and, 2) if x and y are any pair of oscillation points for f , then x and y lie between µ and ν.
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Now Yablo’s result is easily stated.

Proposition 6.2 Let f be anti-monotonic on the complete lattice M . Then f has a pair of extreme
oscillation points.

If f has a pair of extreme oscillation points they must be unique, since if there were another
extreme oscillation pair, each pair must be between the other. Yablo established his result using a
proof much like the approximation sequence argument for the Knaster-Tarski result, under approx-
imating to one of the points, and over approximating to the other. There is a different, simpler,
argument whose details we leave to you. If f is anti-monotonic, f2 is monotonic. Then by the
Knaster-Tarski theorem f2 has a smallest fixed point, and by dualizing the argument, it also has a
biggest fixed point. These can be shown to be a pair of extreme oscillation points for the function
f itself.

7 GLF-Stable valuations exist

The mapping Ψ′, despite its somewhat elaborate characterization, is quite well-behaved. The proof
that it is so is essentially algebraic, once some basic facts about monotonicity have been established.
This is where we begin.

Theorem 7.1 The function Ψ′ is monotonic in the ≤k ordering, but is anti-monotonic in the ≤t
ordering.

Proof In order to show Ψ′ is anti-monotonic in the ≤t ordering we can use one of the arguments
for the Knaster-Tarski theorem in quite a direct way. Recall that if a function f is monotonic on
a complete lattice, and if f(x) ≤ x, then the least fixed point of f will be ≤ x.

Now suppose v1 ≤t v2; we show Ψ′(v2) ≤t Ψ′(v1). Since Ψ is anti-monotonic in its second
argument under ≤t,

Ψ(Ψ′(v1), v2) ≤t Ψ(Ψ′(v1), v1).

Since Ψ′(v1) is a fixed point of (λx)Ψ(x, v1) this yields:

Ψ(Ψ′(v1), v2) ≤t Ψ′(v1).

Since Ψ′(v2) is the least fixed point of (λx)Ψ(x, v2) under ≤t, it follows that

Ψ′(v2) ≤t Ψ′(v1).

In showing monotonicity under ≤k a similar argument is not as straightforward, since Ψ′ is
defined in terms of the least fixed point operation of ≤t, and we are interested in behavior relative
to ≤k, so the two orderings are rather badly mixed up. Konstantinos Georgatos recently showed
that one can still establish monotonicity by a slightly more complicated version of this proof, but
for the sake of variety we base our approach on the other proof of the Knaster-Tarski theorem, the
one that approximates to a least fixed point from below.

Suppose v1 ≤k v2; we will show Ψ′(v1) ≤k Ψ′(v2). Define two sequences of valuations, aα and
bα, as follows. a0 = b0 is the valuation that assigns false to every closed instance of T (x) — thus
we have the least valuation in the ≤t ordering. Set aα+1 = Ψ(aα, v1) and bα+1 = Ψ(bα, v2). Finally,
for a limit ordinal λ, aλ =

∨
α<λ aα and bλ =

∨
α<λ bα. Both sequences are increasing in the ≤t
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ordering since Ψ is monotone in its first argument. The aα sequence approximates to Ψ′(v1) while
the bα sequence approximates to Ψ′(v2). So it is enough to show that for each α, aα ≤k bα.

If α = 0 the result is trivial. Now suppose aα ≤k bα. Then aα+1 = Ψ(aα, v1) ≤k Ψ(bα, v2) = bα+1,
using the monotonicity of Ψ in both arguments, under ≤k. Finally, if aα ≤k bα for each α < λ
it follows that

∨
α<λ aα ≤k

∨
α<λ bα using the interlacing conditions. This yields that aλ ≤k bλ

and completes the transfinite induction proof that aα ≤k bα for all α, establishing the rest of the
theorem.

Now we have enough machinery to show there are GLF-stable valuations. Very simply, since Ψ′

is monotonic in the ≤k ordering, an application of the Knaster-Tarski theorem yields that it has a
smallest and a biggest fixed point with respect to this ordering. We will denote the smallest fixed
point under ≤k by sk, and the biggest by Sk.

Next we want to get some feeling for the behavior of GLF-stable valuations. Suppose we
construct a truth-teller in the usual way, which we briefly sketch. The formula T (d1(x, x)) is φ1

n(x1)
for some n (we are using our effective enumeration of all formulas with only x1 free). Let X =
φ1
n(n) = T (d1(n, n)). The function symbol d1 is always interpreted by D1, and D1(n, n) = pφ1

n(n)q,
so X is a truth-teller, since X = T (d1(n, n))↔ T (pφ1

n(n)q) = T (pXq).
Now let v be any valuation, we calculate the behavior of Ψ′(v) on X = T (d1(n, n)) using the

ordinal approximation technique. Ψ′(v) is the least fixed point, with respect to ≤t, of (λx)Ψ(x, v) =
f(x) and we approximate to this via f0, f1, . . . , fα, . . . .

f0 is the smallest valuation in the ≤t ordering — it assigns false to every instance of T , in
particular to T (pXq), and hence also to X since X ↔ T (pXq).

Suppose fα(X) = fα(T (pXq)) = false Then

fα+1(T (pXq)) = (f(fα))(T (pXq))
= Ψ(fα, v)(T (pXq))
= (fα4v)(X)
= (fα4v)(T (d1(n, n)))
= fα(T (d1(n, n)))
= fα(X)
= false

Hence also fα+1(X) = false since X ↔ T (pXq).
Finally, if fα(T (pXq)) = false for every α < λ, it follows immediately that fλ(T (pXq)) = false.
All this establishes that the limit of the fα sequence assigns false to T (pXq), and hence to X.

Thus Ψ′(v)(X) = false. Now, if v is a GLF-stable valuation, Ψ′(v) = v, hence v(X) = false. That
is, the truth-teller is false in every GLF-stable valuation.

In a similar way we can construct mutual truth-tellers, X ↔ T (pY q) and Y ↔ T (pXq). These
too turn out to be false in every GLF-valuation.

Liar sentences are a little more complicated in behavior. If ¬T (d1(x, x)) is φ1
n(x), then Z = φ1

n(n)
will be a liar sentence: Z ↔ ¬T (pZq). It can be shown by an argument similar to the one above,
that in the smallest fixed point of Ψ′, Z evaluates to ⊥. That is, this liar sentence is ⊥ in the ≤k
smallest GLF-stable valuation. Dualizing the argument shows that in the ≤k largest GLF-stable
valuation it evaluates to >. Since (as we will show later) every GLF-valuation is a fixed point of
Kripke’s operator Φ, it follows that no GLF-stable valuation can make the liar sentence either true
or false.

The situation is similar with sentences X and Y constructed so that X ↔ ¬T (pY q) and Y ↔
¬T (pXq). That is, they are both ⊥ or both > in every GLF-stable valuation.
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Finally, we can construct two sentences, X and Y , so that

X ↔ T (pXq) ∨ T (pY q)
Y ↔ ¬T (pXq) ∧ ¬T (pY q)

Then Y ↔ ¬X, so in effect X ↔ T (pXq) ∨ T (p¬Xq). We leave it to you to verify that there are
no GLF-stable valuations in which X is true, but there are some in which X is ⊥, and others in
which it is >.

8 Structural results

We have said several times now that the GLF-stable valuations are among Kripke’s fixed points.
The verification is rather simple.

Theorem 8.1 Every GLF-stable valuation is a Kripke fixed point. That is, every fixed point of Ψ′

is a fixed point of Φ.

Proof It follows directly from the definitions of Φ and Ψ that Φ(x) = Ψ(x, x). Also Ψ′(t) is a fixed
point of (λx)Ψ(x, t) so Ψ(Ψ′(t), t) = Ψ′(t). Now suppose s is a fixed point of Ψ′. Then:

Φ(s) = Ψ(s, s) = Ψ(Ψ′(s), s) = Ψ′(s) = s.

Next we will make use of Yablo’s anti-monotonicity result, Proposition 6.2. Since Ψ′ is anti-
monotonic in the ≤t ordering, there is a pair of extreme oscillation points, let us call them st and St.
These are not GLF-stable valuations. For instance, st makes the liar sentence false while St makes
it true, and we already observed the liar sentence must come out either ⊥ or > in every GLF-stable
valuation. But there is a rather remarkable way of obtaining GLF-stable valuations from st and
St. Recall, the operations ∧, ∨, ⊗ and ⊕ extended from FOUR to the space of valuations using
pointwise extensions: (v⊗w)(T (t)) = v(T (t))⊗w(T (t)), and so on. We will show both st⊗St and
st ⊕ St are GLF-stable valuations. We first need a simple lemma, then we can prove the principle
result.

Lemma 8.2 Let v1, v2, v3 be valuations. Then:

1. if v1 ≤t v2 ≤t v3 then v1 ⊗ v3 ≤k v2;

2. if v1 ≤t v2 ≤t v3 then v2 ≤k v1 ⊕ v3;

3. if v1 ≤k v2 ≤k v3 then v1 ∧ v3 ≤t v2;

4. if v1 ≤k v2 ≤k v3 then v2 ≤t v1 ∨ v3.

Proof We only show item 1; the others are similar. Suppose v1 ≤t v2 ≤t v3. Then for an atomic
sentence A of the form T (t), v1(A) ≤t v2(A) ≤t v3(A). We must show v1(A) ⊗ v3(A) ≤k v2(A).
Now, if any of the two ≤t are actually =, then it is immediate that v1(A)⊗ v3(A) ≤k v2(A). If all
the inequalities are strict it must be that v1(A) = false, v3(A) = true, and v2(A) is either ⊥ or >;
the result is immediate in either case.

Theorem 8.3 The valuations st ⊗ St and st ⊕ St are both GLF-stable.
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Proof We show st ⊗ St is a fixed point of Ψ′; the other part has a similar proof.
We know Ψ′ is monotonic under ≤k. Also Ψ′(st) = St, and the other way around as well, since

these are oscillation points for Ψ′. Finally st⊗St is below both st and St in the ≤k ordering. Hence:

Ψ′(st ⊗ St) ≤k Ψ′(st) = St

Ψ′(st ⊗ St) ≤k Ψ′(St) = st

It follows that:
Ψ′(st ⊗ St) ≤k st ⊗ St.

Next, st ≤t St by Proposition 6.2. Then, using the interlacing conditions:

st = st ⊗ st ≤t st ⊗ St ≤t St ⊗ St = St

So, using anti-monotonicity,
Ψ′(St) ≤t Ψ′(st ⊗ St) ≤t Ψ′(st)

from which we obtain
st ≤t Ψ′(st ⊗ St) ≤t St.

From this, using Lemma 8.2,
st ⊗ St ≤k Ψ′(st ⊗ St).

This, together with the earlier inequality, establishes the fixpoint result.

This theorem can be considerably improved — we can say which GLF-stable valuations st⊗St
and st⊕St are. Recall, sk and Sk are the smallest and biggest fixed points of Ψ′ in the ≤k ordering.

Theorem 8.4

1. sk = st ⊗ St
2. Sk = st ⊕ St.

Proof By definition, sk is the least fixed point of Ψ′ under ≤k. By the previous Theorem, st ⊗ St
is a fixed point. Hence sk ≤k st ⊗ St.

Also by definition, st and St are extreme oscillation points of Ψ′ under ≤t. Since sk is a fixed
point, sk, sk is an oscillation pair, so it must lie between the extreme pair. That is, st ≤t sk ≤t St.
Then it follows from Lemma 8.2 that st ⊗ St ≤k sk.

The other item has a similar proof.

We have seen that the least and greatest GLF-stable valuations, under ≤k, can be expressed
easily, using the extreme oscillation pair under ≤t. Now we show the connection goes the other
way as well. First we need a simple lemma concerning fixpoints.

Lemma 8.5 If f is a monotonic function on a complete lattice, then f and f2 have the same least
and greatest fixed points.

Proof Let a be the least fixed point of f , and let b be the least fixed point of f2. Since every fixed
point of f is also a fixed point of f2, f2(a) = a. Since b is the least fixed point of f2, b ≤ a.

In the other direction, if x is a fixed point of f2, so is f(x), because f2(f(x)) = f(f2(x)) = f(x).
But then f(b) must be a fixed point of f2, and since b is the least fixed point of f2, b ≤ f(b). Using
monotonicity, f(b) ≤ f2(b), so f(b) ≤ b, and b is a fixed point of f . Since a is the least fixed point
of f , a ≤ b.
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Now we show a companion to Theorem 8.4.

Theorem 8.6

1. st = sk ∧ Sk

2. St = sk ∨ Sk.

Proof The function Ψ′ is monotonic under ≤k, with sk and Sk as least and greatest fixed points.
Then (Ψ′)2 is also monotonic under ≤k and, by the Lemma, it has the same least and greatest fixed
points. Now, (Ψ′)2 is also monotonic under ≤t, with st and St as least and greatest fixed points.
By definition,

sk ∧ Sk ≤t sk
so

(Ψ′)2(sk ∧ Sk) ≤t (Ψ′)2(sk) = sk

and similarly
(Ψ′)2(sk ∧ Sk) ≤t Sk

so
(Ψ′)2(sk ∧ Sk) ≤t (sk ∧ Sk).

Now, since st is the least fixed point of (Ψ′)2 under ≤t,

st ≤t sk ∧ Sk.

But also, since st is a fixed point of (Ψ′)2, and sk and Sk are its least and greatest fixed points
under ≤k,

sk ≤k st ≤k Sk
and so by Lemma 8.2

sk ∧ Sk ≤t st.
The other part of the Theorem has a similar proof.

We noted earlier that st values the liar sentence as false, while St values it true. It is now
simple to verify this using the Theorem above. If X is the liar sentence, we know from earlier that
sk(X) = ⊥ and Sk(X) = >. But ⊥ ∧> = false and ⊥ ∨> = true.

It follows from Theorems 8.4 and 8.6 that the collection of GLF-stable valuations can be bounded
rather neatly. The set-up is displayed in Figure 2. Briefly, all GLF-stable valuations lie between sk
and Sk under the ≤k ordering, with these particular valuations included. Also they all lie between st
and St under the ≤t ordering, with these valuations not included. And each set of these valuations
can be calculated from the other, using the Theorems above.

9 Why FOUR?

Why was a four-valued logic used in this work? There are several reasons which will be discussed
here, but the fact of the matter is that the use of four truth values is not essential. We could have
used more — or less.
FOUR is the simplest example of a bilattice, a notion due to Matt Ginsberg [10]. Bilattices

constitute a special class of many-valued logics with very nice properties. We will not go into a
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Figure 2: GLF-stable valuations

discussion of them here — [6] gives a general idea. Suffice it to say that bilattices, like FOUR, have
two orderings, ≤k and ≤t, which are inter-connected in various ways. They arise naturally. The
collection of valuations as used in this paper has ≤k and ≤t orderings and many of the properties
of FOUR carry over to it; in fact, it is a bilattice. Bilattices come up if one is discussing imperfect
knowledge of several people; reasoning in which one assigns probabilities for and against sentences;
and truth across several possible worlds.

Every fundamental result established in this paper continues to apply if FOUR is replaced by
an arbitrary bilattice in which the operations satisfy distributive laws (this includes all the bilattices
mentioned in the previous paragraph). Not only that, but virtually all the proofs continue to apply
with no changes. The proof of Lemma 8.2 is a exception since we used the particular values of
FOUR explicitly, but the Lemma holds generally with a more complicated proof. Thus the results
presented here are really much broader than they would seem at first glance.

Probably not having enough truth values is not the objection to FOUR that would occur to
most people. More commonly an objection is made to the use of > as one of the truth values.
Kripke used three truth values — why bring in four? Well in fact, we didn’t need to. The general
idea of GLF-stable valuations could have been introduced in the framework of Kleene’s strong (or
weak) three-valued logic instead. In logic programming, where the notion originated, this is the
way it is most commonly done. We would, of course, lose some results. Theorem 8.6 could not
be stated if we did not have Sk, and it would not be available if a three-valued logic were used.
Similarly part 2 of Theorem 8.4 could not be stated. Still, the essential ideas of a GLF-stable
valuation can be developed in a three-valued setting.

The use of three instead of four truth values does make the mathematics a little more compli-
cated. Without > the space of truth values is not a complete lattice under ≤k, so the Knaster-Tarski
theorem can not be used to establish the existence of a GLF-stable valuation. Fortunately there are
generalizations that apply instead. The structure under ≤t is still that of a complete lattice when
there are three truth values, so Definition 5.4 continues to make sense. Nothing basic disappears.

Finally, Kripke considered the use of supervaluations as well as Kleene’s three valued logics.
Presumably this could be applied here as well. It remains to be investigated.
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10 Intrinsic fixed points

From the class of his fixed points, Kripke singled out a subclass for special attention, the intrinsic
ones. These were the ones compatible with every fixed point. We must modify the definition
somewhat, because we have four truth values instead of Kripke’s three, but our version is equivalent.

Definition 10.1 A valuation v is consistent if v(T (t)) 6= > for every closed atomic sentence T (t).

In Kripke’s version all valuations must be consistent since there is no > truth value. So the issue
of consistency for us corresponds to the issue of existence in Kripke’s approach.

Definition 10.2 A fixed point v of Φ is intrinsic if v ⊕ w is consistent, for every consistent fixed
point w.

An intrinsic fixed point must, itself, be consistent. The argument is elementary. Suppose v is
intrinsic. Let v0 be the smallest fixed point with respect to ≤k; v0 will be consistent. Since v0 ≤k v,
v ⊕ v0 = v, and this must be consistent according to the definition. This same little argument also
shows that v0, the smallest fixed point, must itself be intrinsic, so intrinsic fixed points exist.

Let I be the collection of all intrinsic fixed points of Φ. I is directed, that is if v1, v2 ∈ I, there
is some v3 ∈ I with v1 ≤k v3 and v2 ≤k v3. We sketch the argument for this. Since v1 is intrinsic
and v2 is a consistent fixed point, v1 ⊕ v2 is consistent. Now, v1 ≤k v1 ⊕ v2, so by monotonicity,
v1 = Φ(v1) ≤k Φ(v1 ⊕ v2). Similarly v2 ≤k Φ(v1 ⊕ v2). Consequently v1 ⊕ v2 ≤k Φ(v1 ⊕ v2).
The argument that Φ has a consistent least fixed point under ≤k generalizes directly to show that
if v ≤k Φ(v), where v is consistent, there is a consistent fixed point of Φ above v that is least
among all the fixed points above Φ. It follows that there is a fixed point, v3, that is least among
those above v1 ⊕ v2, and v3 is consistent. A proof that v3 exists can be produced that follows the
‘approximate by a transfinite sequence’ approach of the Knaster-Tarski theorem. One can show
that every member of this sequence will be compatible with every consistent fixed point of Φ, and
consequently the limit, v3 will have this property. Then v3 must be intrinsic.

Since the space of valuations is a complete lattice under ≤k,
∨ I exists. Once it has been shown

that I is directed, it is not difficult to show
∨ I is, itself, intrinsic. Consequently a biggest intrinsic

fixed point of Φ exists.

Let X be a truth teller. In some of Kripke’s fixed points X is true, in some, false. It follows
that if v is an intrinsic fixed point, X can be neither true nor false in v. Consistency rules out X
being >. Consequently X must be ⊥ in every intrinsic fixed point. But we have already seen that
a truth teller is false in every GLF-stable valuation. No GLF-stable valuation is intrinsic.

This does not mean the notion of intrinsic plays no role in the present development. Rather, it
must be relativized suitably.

Definition 10.3 A GLF-stable valuation v is GLF-intrinsic if v ⊕ w is consistent, for every con-
sistent GLF-stable valuation w.

Arguments like those above show that the smallest GLF-stable valuation is GLF-intrinsic, and
a largest GLF-intrinsic valuation exists. Beyond this, very little is known about the family of GLF-
intrinsic valuations. We leave this as an open problem: what are the properties of GLF-intrinsic
valuations, and how does the notion relate to Kripke’s version of intrinsic.
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