{k_ %

R “A‘

Fundamenta Informaticae XI (1988) 209-218
North-Holland 209

LOGIC PROGRAMMING ON A TOPOLOGICAL BILATTICE

Melvin FITTING

Department of Mathematics and Computer Science:
Herbert H. Lehman College (CUNY), Bronx, NY 10468

Department of Computer Science: Department of Philosophy:
The Graduate School and University Center (CUNY),
33 West 42 Street, New York, NY 10036

Bitnet MLFLC@CUNYVM

Received October 1987
Accepted December 1987

We investigate the semantics of logic programming using a generalized space of truth values. These truth
values may be thought of as evidences for and against — possibly incomplete or contradictory. The truth
value spaces we use essentially have the structure of M. Ginsberg’s bilattices, and arise from topological
spaces. The simplest example is a four-valued logic, previously investigated by N. Belnap. The theory of
this special case properly contains that developed in earlier research by the author, on logic programming
using Kleene’s three-valued logic.

1. INTRODUCTION

Logic programming has generally, though not exclusively, been done in the context of
two-valued Classical logic. In [3] (and also [6]) we argued that a three-valued generalization
might be better, allowing for undefined as well as true and false. See also [12], [13] and
[14]. Undefined ought to be taken into account because of the possibility of infinite regress
inherent in logic — or any — programming. More recently we began exploring the utility of
adding a fourth truth value, overdefined, to allow for inconsistencies in logic programs. It
turns out the semantic techniques of [3] extend readily to the four-valued setting and we
can treat programs which are inconsistent but which still may contain useful information
provided we ‘stay away from’ the inconsistent parts. This four-valued logic was introduced
to Computer Science in [2], a paper which we strongly recommend. That it applies to logic
programming was noted independently by the author and in [8].

Further, in 7] we showed that one can even make good operational and denotational
sense of logic programming with a Heyting algebra as the space of truth values. It is
possible to think of the elements of the Heyting algebra as being the ‘justifications’ for
statements, rather than just an indication of their truth or falsity.

It is a reasonable question, then, what is common to all these generalizations of logic
programming? M. Ginsberg’s notion of bilattice ([9] and [10]) provides a framework in
which this question can be addressed. Indeed, it provides a nice conceptual setting for
many notions connected with default logic, and database theory as well. But we find
the version of negation that he uses too restrictive, and some of the other machinery too
weak. We leave for another time an abstract formalization of a bilattice generalization
that is suitable for our purposes. Instead we work with a concretely defined class of
examples, arising from topological spaces, which in turn can be thought of as arising from
Kripke Intuitionistic models. These can be treated uniformly, and provide a common
generalization of the various logic programming extensions discussed above.

* Research supported in part by NSF grant CCR-8702307 and by PSC-CUNY grant 667295.

© 1988, Polish Mathematical Society

210 M. Fitting | Logic Programming

2. MOTIVATION

The following is meant to be suggestive only. Suppose we have a Kripke Intuitionistic
logic model, K [11]. Then a topological space can be associated naturally with K: the
domain D is the set of possible worlds of K, and a subset O of D is called open if it is
closed under the accessibility relation of K. This topological space, in turn, gives rise to
the Heyting algebra of its open sets, and there are well-known relationships between this
algebra and the Kripke model K with which we began. At any rate, it is the topological
space that concerns us now.

For any proposition P, the set of worlds of K in which P holds is a set closed under the
accessibility relation of K, hence an open set of D. Dually, the set of worlds of K in which
P fails will be a closed set. We might think of the set of worlds in which a proposition
holds as a measure of our belief in that proposition: the larger the set, the stronger our
belief. Likewise the set of worlds in which a proposition fails can be taken to reflect our
disbelief. Thus, ideally, corresponding to a proposition P we could associate an ordered
pair (O, C), where O is the set of possible worlds in which P holds (an open set), and C is
the set of possible worlds in which P fails (a closed set), and O and C are complementary
sets. This pair is an exact depiction of our beliefs for and against the proposition P.

In general, though, our information may be less than perfect. We may not know how
P behaves in all worlds. Of course, if we know that P holds in some possible world, we
also know it holds in any world accessible from it, so the set of worlds in which we know P
holds will be open, though it may be smaller than the set of all worlds in which P holds.
Similarly for the worlds in which P fails. Thus, in ‘real life’ we may have to settle for
a pair (O, C) where O and C do not, between them, exhaust all possible worlds. Even
worse, information we have may be erroneous, leading us to the pair (O, C) where O and
C overlap! So, adopting a generous viewpoint, we will take as our ‘truth-values’ all pairs
{0, C) whatsoever, subject only to the conditions that O be open and C be closed.

Next, following [9] and [10], we define two natural partial orderings on these ‘truth-
values’. The first is the knowledge or k-ordering: our knowledge has increased if our degree
of belief, or our degree of disbelief, or both, have gone up. The second is the truth or ¢-
ordering: the ‘degree’ of truth has increased if our degree of belief has gone up, or our
degree of disbelief has gone down, or both. It turns out that these orderings are intimately
connected with each other. We consider them formally starting in the next section.

3. TOPOLOGICAL BILATTICES

Let D be a topological space, fixed for this section. All our definitions are relative to
it. We introduce several constructs in this section, based on D. The resulting collection
of sets and relations constitutes what we loosely term a topological bilattice. An exact
definition will not be needed.

Definition. A D truth value is a pair (O, C) where O is open and C is closed. We write
T(D) for the space of D truth values. A D truth value is:

1) overdefined if ONC # 0,

2) consistent f ONC =0,

3) exact fONC =0 and OUC =D.
Definition. We define two partial orderings on the family T(D):

1) the knowledge order: {(O1,C1) <i (02,C2) if O1 C O3 and C, C Cs.

2) the truth order: (01,01) St (02, Cg) if 01 g 02 and C‘z g C].

We give diagrams of the two simplest topological bilattices. The first, Figure 1, arises
from the one-world model whose only world is a. It is the bilattice of Classical logic, since
the one-world Kripke models are essentially the Classical models. It is also fundamental in
the sense that an isomorphic copy of it occurs as part of every bilattice. The logic arising
from this bilattice was extensively investigated in {2].

L%

M. Fitting | Logic Programming 211

. {{a), (2>

k| <o @) {ta). o)

N\

{e.2>

t

L 4

Figure 1.

Figure 1 is essentially a double Hasse diagram, and is intended to be read in the
following way. A path uphill from z to y indicates that z <; y; a path to the right from
z to y indicates that z <, y. This convention applies throughout the paper.

The second example, Figure 2, is the topological bilattice deriving from a two-world
Kripke model, with worlds a and b, such that b is accessible from a but not conversely. By
changing the accessibility relation but not the set of worlds, other topological bilattices
based on the same set of worlds can result.

{{ab}, (ab})

T (U} {‘6 <{\a,b}, (a))
@ @) < {'<f b). &>
@, {(a,b} {b}, {a} a,b}, @

‘1 N/ \ /

.a) bh o)
N /
&.2>

.t

A\ 4

Figure 2.

Now we look at the properties of the space T(D) under the knowledge and the truth
orderings separately, then together, and finally we introduce a weak notion of negation.

Under the truth order: i

T(D) is a complete lattice. The smallest element is (§, D), which we denote false; the
largest element is (D, #), which we denote true. Note that false indicates no belief, but
total disbelief, while true is the dual. We denote the least upper bound of a non-empty
set S in this ordering by \/ S, and the greatest lower bound by A S. It is easy to see that
V § = (0,C), where O = | J{O | (0,C) € S} and C =({C | (0,C) € S}. Also, AS =

212 M. Fitting | Logic Programming

{0, C), where O = interior [\{O | (O,C) € S} and C = closure | J{C | {(O,C) € S}. Note
that if S is finite, the interior and closure operations are not needed. We also use the
notation a V b for \/{a, b}, and a A b for A{a,b}. T(D) is a distributive lattice as well.

Of course the family T(D) is closed under the operations \/ and A, but a moments
work will show that so are the family of consistent truth values and the family of exact
truth values. Thus, each of these is a complete, distributive lattice. In fact, the family of
exact truth values is isomorphic to the family of open subsets of D, and hence is even a
Heyting algebra.

Under the knowledge order:

Again T(D) is a complete lattice. This time the smallest element is (@,0), which we
denote L; the largest element is (D, D), which we denote T. L indicates neither belief nor
disbelief, while T is simultaneous total belief and total disbelief. We denote the least upper
bound of a non-empty set S in the knowledge ordering by > .S, and the greatest lower
bound by [[S. And now, }_ .S = (O, C), where O = J{O | (0,C) € S} and C = closure
U{C | (0,C) € S}; and [[S = (O, C), where O = interior[{O | (O,C) € S} and
C =){C | (0,C) € 8}. We use the notation a + b for }_{a,b}, and a x b for [[{a, b}.
T(D) is a distributive lattice under this ordering as well.

The family of exact truth values is never closed under + or x. For example, true and
false are exact, but true + felse = T and true X false = L, neither of which is exact.
The family of consistent truth values is closed under [], and under directed Y, and so
constitutes what is sometimes called a complete semi-lattice.

Interconnections:

Of course, if a <; a' and b <; b' then a+ b <; a’ +¥'. This is a trivial consequence
of T(D) being a lattice under <. But more surprisingly, if a <; a’ and b <, ' then
a+b <, a' +b. More generally, suppose that for A, B C T(D) we use A <; B to mean:
for each a € A there is some b € B with a <; b, and for each b € B there is some a € 4
with @ <; b. Then A <; B implies 3 A < 3_ B. In fact, each of the two lattice orderings
respects the meet and join of the other. In [9] and [10] this was taken as one of the defining
properties of the abstract notion of bilattice.

The features in the preceeding paragraph are the interconnections we will need in this
paper. But there are others, notably distributive laws. Each of the four operations +, x,
V and A is distributive over the others. This played no role in the definition of bilattice in
Ginsberg’s work.

Negation:

We define negation on members of T(D) in a straightforward way. Roughly, the idea
is to reverse the roles of belief and of disbelief, but we must also respect the topological
mechanism.

Definition. —{0,C) = {interior C,closure O).

The family of all truth values is closed under negation, and so are the families of
consistent, and of exact truth values.

If a <, b then —b <; —a. But also, if a < b then —a <; -b. (If we know more about
b than about a, we also know more about its negation than we do about the negation of
a.) These were also among the defining conditions for the abstract notion of bilattice in
Ginsberg’s work.

Finally, though we will not need it in what follows, we also have a <; ——a, which
means our negation is something like that of Intuitionistic logic. This is weaker than what
was assumed in Ginsberg’s version, which postulated that —=—a = a.

M. Fitting | Logic Programming 213

4. LOGIC

Formulas in a first-order language may be assigned truth values in T(D) in two ways,
since we could naturally associate logical conjunction and disjunction with the meet and
join operations of the <; or of the <; ordering. We use the truth ordering here. The role
of the operations arising from the knowledge ordering will be considered in a subsequent
paper.

Let M be a non-empty set. By L(M) we mean the first-order language whose terms
are variables and members of M, and in which formulas are built up using A, V, =, V and
3 in the usual way. We are going to think of quantifiers in this language as being over M,
and we will assign members of T(D) as truth values.

Definition. An interpretation is a mapping from closed atomic formulas of L(M) to
T(D). If v and w are interpretations, we write v <t w provided v(A) <y w(A) for every
closed atomic formula A. Similarly for v <; w.

Interpretations can be extended to maps from all closed formulas to T(D), valuations.
We use the same notation for an interpretation and for its valuation extension. Formally,
we have the following.

Definition. Let v be an interpretation. v is extended to all formulas using the following:
(X AY)=v(X)Av(Y)
(X VY)=v(X)Vo(Y)
o(~X) = ~o(X)
v((Yz)é(2)) = A{v(d(m)) | m € M}
v((3x)é(z)) = V{v(¢(m)) | m € M}.
Proposition 4-1. Let X be a closed formula of L(M), and let v and w be interpretations.
Then
1) v <x w implies v(X) < w(X);
2) v <; w implies v(X) <, w(X), provided X does not contain any negations.

Proof. Item 2) follows immediately because the operations of a lattice are monotone with
respect to the lattice ordering. Item 1) makes use of the fact that the operations associated
with the truth ordering are respected by the knowledge ordering, and also of the fact that
the knowledge ordering respects negation.

5. KRIPKE MODELS, GENERALIZED

We give a simple generalization of Kripke Intuitionistic logic models that allows partial
or conflicting information. This generalization is then related with the valuations in topo-
logical bilattices that we have been considering. We confine things to the propositional
case, because the fit between Kripke and topological models for intuitionistic logic is not
a good one where the universal quantifier is concerned. This arises from the feature of
Kripke models that allows different possible worlds to have different domains of quantifi-
cation. But the propositional case should be su{ﬁment to illustrate the naturalness of the
valuation rules we have been using.

A (propositional) Kripke Intuitionistic mode] is a triple (G, R, |=) where G is a non-
empty set (of possible worlds), R is a transitive, reflexive relation on G (of accessibility),
and = is a relation between possible worlds and propositional atomic formulas meeting
the condition that, for any world ' € G, if T' = A and T'RA then A | A.

Given a Kripke model (G, R, |=), the relation [= is extended to all propositional formulas
using the conditions:

F'E(XAY)<=TEXandTEY

214 M. Fitting | Logic Programming

Fr=E(XvY)<TEXoalkEY

I' | X <= for every A with TRA,
AEX

' E (X DY) <= for every A with 'RA,
AEX=AEY

In a Kripke model, if I" |= A and 'RA, then A = A, where A is atomic. It is easily
shown by induction on formula complexity that this extends to all formulas. Since we have
not been taking D into account in earlier sections, we will not consider it further here,
though we note that the work below extends naturally to incorporate it.

In any Kripke model, at a world T, some formulas will hold, others will not. We
introduce some notation that will allow us to state facts of this sort directly. For this
purpose we use signed formulas, expressions of the forms TX and FX, where X is a
formula and T and F are two new symbols. We write:

FETX fooTEX
FrEFXforTEX

Then the general properties of this extended notation follow easily from the conditions
satisfied by Kripke models stated above.

TET(XAY)<>TETX andT = TY
'EFXAY)<TEFXolEFY
FrET(XVY)<=TETXoxTETY
TEFXVY)«s>TEFXandT | FY

Il T-X < for every A withTRA, A= FX
T} F-~X < for some A withTRA, A =TX

T | TX = for every A with TRA, A | TX
Al FX = for every I' with TRA, T | FX

exactlyoneof T ETX and T' | FX

These conditions can be thought of as saying under what circumstances (in what
worlds) we have positive information and under what circumstances we have negative
information. Further, we can take these conditions as basic, and forget the original Kripke
model conditions that gave rise to them. Now, it is the final condition above that requires
consistency and completeness in our information. At no world can we ever have both T'X
and FX, though we must have one of them. Suppose we drop this condition, thus allowing
information to be inconsistent or incomplete.

Definition. A weak Kripke model is a structure (G, R, |=) that meets all the signed for-
mula conditions stated above, except possibly the final one.

Let (G, R, =) be a weak Kripke model. As sketched in §2, we can associate a topological
space with a Kripke structure: in this case the set of points is G, and a set is topologically
open if it is closed under the R relation. Then a topological bilattice can be associated
with this space. Further, we define a valuation as follows. For each atomic formula A,
set v(A) = (0,C) where O = {T € G | [TA} and C = {T' € § | T |= FA}. This
interpretation then extends to all formulas in the usual way. The principle fact about the
resulting map is the following.

M. Fitting | Logic Programming 215

Proposition 5—1. For any propositional formula X, v(X) = (0,C) where O = {T' € G |
'eETX}andC={T G |T E FX}.

We omit the proof of this. It says that the evaluation of truth values in this topo-
logical bilattice can be thought of as corresponding to evaluation in a Kripke model, but
treating positive and negative information as if each came from different sources, and thus
is independent of the other.

Finally we observe that, for one-world weak Kripke models, the conditions required
above essentially collapse to those of saturated sets in [3] or [4] that are not required to be
consistent or complete.

6. PROGRAMS

We present a logic programming language that generalizes Horn clause programming.
The choice of underlying data structure is left open; in this we follow {5]. And of course
we allow truth values in T(D), a topological bilattice.

Definition. A data structure is a tuple (M; Ry, ..., R,) where M is a non-empty set
and Ry, ..., R, are relations on M, called the given relations of the data structure.

From now on we assume that a unique relation symbol R; has been associated with
each given relation R; of the data structure (M;Ry,...,R,). We refer to these relation
symbols as reserved, and think of them as representing the given relations.

Definition. A definition of the n place relation symbol P is an expression of the form
P(z1,...,z,) « F(z1,...,z,), where the body, F(z1,...,zy,), is any formula of L(M)
whose free variables are among z,,...,T,. A program is a finite set of definitions such
that no relation symbol has more than one definition, and no definition is for a reserved
relation symbol. A program is positive if no definition body contains a negation symbol.

Conventional Horn clause programs are a special case of the programs defined above.
Horn clause bodies can be taken to be conjunctions; multiple Horn clauses containing the
same relation symbol in the head can be combined using disjunction; and free variables
in bodies that do not appear in heads can be thought of as existentially quantified. Not
every program in our sense corresponds to a Horn clause, however.

Definition. An interpretation v from the language L(M) to the topological bilattice T(D)
is said to be in the data structure (M;Ry,...,R,) provided, foreach: = 1,...,n, v(R;) =
R;.

Definition. v is a model for a program P in the data structure (M;R,,...,R,) provided
v is an interpretation in this data structure and, for each n-place relation symbol P: if P
has no definition in P then v(P(ay,...,a,)) = false for each ai,...,a, € M; and if P has
a definition P(z,, ..., ,) « F(zy, ..., z,) in P, then for each a;,...,a, € M, v(P(a,,
ey @) = (F (a1, .., n)). .

Thus a model is a valuation that assigns instances of definition heads the same values
it assigns to their bodies. The condition covering relation symbols without definitions is
related to the idea of negation as failure. It would also be reasonable to take the ‘default’
value to be L in this case, though doing so would affect several key results below.

The problem now is to show that models exist, and that among them there is a sim-
plest. Of course the word ‘simplest’ can be given a meaning with respect to either the
knowledge ordering or the truth ordering. In what follows we consider both possibilities,
and establish relationships between them. For this purpose, we associate an operator with
each program, mapping interpretations to interpretations. We denote this operator by ®.
It is a generalization of the T operator of [1].

216 M. Fitting [Logic Programming

Definition. Let P be a program and (M; R, ..., Ry) be a data structure. ®p is the
map on interpretations given by the following conditions: for any interpretation v, ®p(v)
is the interpretation w such that

1) if R; is a reserved relation symbol, w(R;) = R;;

2) if P is an unreserved relation symbol, with definition P(z1,...,%Zs) < F(z1,...,25)
in program P, then for a;,...,a, € M, w(P(ay,...,a,)) = v(F(a1,...,a.));

3) if P is neither reserved nor has a definition in P then w(P(ay,...,a,)) = false.

It is easy to see that the models of a program P are exactly the fixed points of &p. So
from now on we concentrate on the behavior of ®p. The key result is the following, which
follows immediately from Proposition 4-1. We omit a detailed proof.

Proposition 6—1. For an arbitrary program P, ®p is monotone with respect to the <;
ordering and, if P is positive, ®p is monotone with respect to the < ordering.

T(D) is a complete lattice with respect to both knowledge and truth orderings. Since
the family of all maps from a set to a complete lattice yields another complete lattice using
the induced pointwise ordering on the maps, then the family of interpretations becomes
a complete lattice under both the <y and the <, orderings. Then it follows from the
Knaster-Tarski Theorem that ®p always has a smallest and a greatest fixed point in the
knowledge ordering, and also does in the truth ordering provided program P is positive.

In §3 we defined notions of exact and consistent for truth values. These are extended
pointwise to interpretations. Thus we call an interpretation v exact if it assigns to each
closed atomic formula an exact truth value. Similarly for consistent.

Proposition 6—2. The least fixed point of ®p in the knowledge ordering is consistent.

Proof. The least fixed point of a monotone operator in a complete lattice can be ‘con-
structed’ as the limit of a transfinite sequence in the following way. The initial term of the
sequence is the smallest member of the lattice. The o + 1** term is the result of applying
the monotone operator to the a'® term. And at limit ordinals we take the least upper
bound of the family of earlier terms (which will constitute a chain).

In the lattice of interpretations under the < ordering, the smallest member is the
interpretation that maps every closed atomic formula to L, which is a consistent inter-
pretation. We noted in §3 that the family of consistent truth values was closed under A,
V, A, V and -. It follows that ®p applied to a consistent interpretation yields another
consistent interpretation. Finally, again in §3, we observed that the family of consistent
truth values was closed under directed .. It follows that the lub, in the <; ordering, of
a chain of consistent interpretations is another consistent interpretation.

Then, by transfinite induction, the least fixed point of ®p must be a consistent inter-
pretation.

Proposition 6-3. Suppose P is a positive program. Then both the least and the greatest
fixed points of ®p in the <, ordering must be exact.

Proof. The argument that the smallest fixed point is exact is similar to that of Proposition
6-2. Now, of course, we need to use the closure of the family of exact truth values under
A, V, A and V. The smallest interpretation in the truth ordering is the one that maps
every closed atomic formula to false, which is an exact interpretation.

The argument to establish the assertion concerning the.greatest fixed point is dual.
This time we use a transfinite sequence of interpretations that begins with the biggest, and
comes down to a fixed point, rather than starting with the smallest and working upward.
The biggest interpretation now is the one that maps every closed atomic formula to true,
which is exact. And the rest of the argument dualizes in a similar, straightforward manner.

M. Fitting |/ Logic Programming 217

For the rest of this section let P be a fixed positive program with ®p the corresponding
operator. Let vy and V; be the least and greatest fixed points of &p in the <; ordering,
and let v be the least fixed point of ®p in the <; ordering. Then, by the preceeding
propositions, v; and V; are exact, and vy is consistent, and each of these is a model for the
program P. There are some simple relationships between these models which are easy to
establish.

Since vy is the smallest fixed point in the <; ordering, and both v, and V; are fixed
points, then v <j vy and vy <z V;.

Since v is the smallest and V; is the biggest fixed point in the <; ordering, and v} is
a fixed point, then v; <; v <o Vs

Proposition 6—4. Let vy, V; and v be as above. Then vy and v, give the same closed
atomic formulas the value true, and vy and V; give the same closed atomic formulas the

value false.

Proof. Let A be a closed atomic formula. Since v; <; v, and true is the largest truth
value in the <; ordering, v;(A) = true implies vi(A) = true. In the other direction, since
v <k v¢ then vg(A) = true implies true < v¢(A). It is easy to see that no exact, or even
consistent truth value can be strictly above an exact truth value in the knowledge order.
Since true is exact and v, is exact, it follows that v4(A) = true. This establishes the first
claim.

Since vg <; V4, and false is the smallest truth value in the <, ordering, V;(A) = false
implies vg(A) = false. Further, since vx <i v¢, vi(A) = false implies false <z V;(A). But
again, V; is exact, so if false <p V;(A) then false = V4(A). This establishes the second
claim.

The simplest bilattice, arising from a one-world or Classical Kripke model, was shown
earlier as Figure 1. We repeat it as Figure 3, but without the inessentials due to Kripke
models shown. Instead we only notate items by their role in the bilattice. The four-valued
logic depicted in Figure 3 was examined in detail in [2]. .

In Figure 3 the only exact truth values are false and true, those of conventional two-
valued Classical logic. Also the only consistent truth values are false, true and 1, and the
operations on these corresponding to the truth ordering are those of Kleene’s three-valued
logic, which was the logic used in [3]. Since v, and V; must be exact, Proposition 6—4
completely determines their characteristics for this bilattice. This result was essentially
established in §7 of [3].

Conventional logic programming can be considered to be working with the sublogic of
this four-valued logic consisting of exact truth values, namely false and true. Further, the
ordering used is <y; if there is nothing in a program to force an atomic formula to be true,
then the default is false. Proposition 6-3 then says why only the Classical two truth values
arise for logic programming without negation. .

In [3] we used Kleene’s three-valued logic, which amounts to working with just the
consistent truth values of the four-valued logic above. The key innovation of that paper,
though we did not think of it in these terms at the time, was to use the logical operations
associated with the truth ordering, but take least fixed points with respect to the knowledge
ordering. Proposition 6-2 accounts for why this approach never got us beyond a three-
valued logic. .

Just as negation moves us from a two to a three valued logic, truth values that are
not consistent can arise naturally if more general constructs are allowed in writing logic
programs. For example, suppose a logic program is distributed over two sites which do not
communicate. If I issue the query @ and one site responds #rue while the other responds

218 M. Fitting | Logic Programming

T

AN
I

false true

Figure 3.

false, how am I to merge these answers? One possibility is to accept both, thus assigning
Q the value T, or overdefined. Another possibility is to insist on consensus, and so in
this case assign @} the value L or undefined. These informal actions correspond to the
bilattice operations + and X. It is reasonable then, to consider extensions of conventional
logic programming languages that allow such operations. But this is a topic for further
research.

REFERENCES

[1] Apt, K.R. and Van Emden, M.H., Contributions to the theory of logic programming,
J. Assoc. Comput. Mach., 29 (1982), 841-862.

[2] Belnal, N.D. Jr., A useful four-valued logic, in Modern Uses of Multiple Valued Logic,
J. M. Dunn, J.M. and Epstein, G. (eds.), Reidel (1977), Dordrecht, 8-37.

[3] Fitting, M., A Kripke-Kleene semantics for logic programs, Journal of Logic Program-
ming, 2 (1985), 295-312. :

[4] Fitting, M., Notes on the mathematical aspects of Kripke’s theory of truth, Notre Dame
J. of Formal Logic, 27 (1986) 75-88.

[5] Fitting, M., Computability Theory, Semantics, and Logic Programming, Oxford
University Press, New York (1987).

[6] Fitting, M., Partial models and logic programming, Theoretical Computer Science, 48
(1987) 229-255.

[7] Fitting, M., Pseudo-Boolean valued Prolog, forthcoming in Studia Logica.

[8] Foo, N.Y. and Rao, A.S., Open world and closed world negations, manuscript (1987).

[9] Ginsberg, M., Multi-valued Logics, technical report 86-29 KSL, Stanford University
(1986).

[10] Ginsberg, M., Multi-Valued logics, Proc. AAAI-86, fifth national conference on arti-
ficial intelligence, (1986), 243-247, Morgan Kaufmann, Los Altos, CA.

[11] Kripke, S., Semantical analysis of intuitionistic logic I, in Formal systems and recursive
functions, (1963), 92-130, North-Holland, Amsterdam.

[12] Kunen, K., Negation in logic programming, K. Kunen, J. of Logic Programming, 4
(1987), 289-308.

[13] Lassez, J.L. and Maher, M.J., Optimal fixedpoints of logic programs, Theoretical
Computer Science, 39 (1985), 15-25.

[14] Myecroft, A., Logic programs and many-valued logic, Proc. first STACS Conf. (1983).

A et

oo

L

