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Abstract

Strict/tolerant logic is a formally defined logic that has the same consequence re-
lation as classical logic, though it differs from classical logic at the metaconsequence
level. Specifically, it does not satisfy a cut rule. It has been proposed for use in work
on theories of truth because it avoids some objectionable features arising from the
use of classical logic. Here we are not interested in applications, but in the formal
details themselves. We show that a wide range of logics have strict/tolerant counter-
parts, with the same consequence relations but differing at the metaconsequence level.
Among these logics are Kleene’s K3, Priest’s LP, and first degree entailment, FDE. The
primary tool we use is the bilattice. But it is more than a tool, it seems to be the
natural home for this kind of investigation.

Keywords: strict/tolerant, bilattice, many valued logic, Kleene logic, logic of
paradox, first degree entailment

1 Introduction

A natural companion to the question “What is a logic?” (which won’t be asked here)
is the question “When are logics the same?” It is common to say that sameness
for logics means they have the same consequence relations. But then there is the
curious example of ST, which stands for strict/tolerant for reasons that will become
clear later. The idea of holding premises and conclusions of a consequence relation
to different standards comes from [22, 23, 24], where the standards for premises were
weaker. Today it corresponds to what is called TS, for tolerant/strict. Holding premises
to stronger standards was introduced in [14, 15] and today is called ST. It turns out
that the ST consequence relation coincides with that of classical logic, but a good
case has been made that ST is not identical with classical logic because the two differ
at the metaconsequence level. In fact, [5] shows there is a hierarchy of logical pairs,
with ST and classical logic at the bottom, where each pair agrees at the consequence
level, the metaconsequence level, the metametaconsequence level, and so on up to some
arbitrary finite level, and then they differ at the next level. Very curious indeed, and
very interesting.

In this paper we examine a different sort of generalization of the ST phenomenon:
wide instead of high. We show there is a family of logic pairs consisting of an ST-like
logic and a corresponding classical-like logic, where each pair agrees on consequences
but differs on metaconsequences. We do not examine working our way up the meta,
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meta2, meta3, . . . hierarchy as in [5]. Instead we complicate the structure of the truth
value space itself, of course going to three values and beyond. We set up the basics for
study, but we leave the meta levels to another time or to other people.

The machinery we use comes from bilattice theory, with the original ST/classical
example as the simplest case. We sketch the necessary bilattice background, to keep
this paper relatively self-contained.

2 ST, Classical Logic, and one new example

Logics can be specified proof theoretically, or semantically. In this paper we make no
use of proof theoretic methods. The work is entirely semantic.

Many valued logics are specified by giving a set of truth values, an interpretation
for propositional connectives, and a specification of what counts as “true.” A bit more
precisely, let T be a non-empty set of truth values, and for each logical connective (in
this paper conjunction, disjunction, and negation) assume we have a corresponding
operation on T . We will overload the use of the symbols ∧, ∨ and ¬ to serve as logical
connectives and also as operations on T , with context determining which is intended.
And finally a non-empty proper subset D of the truth value space is specified as the
designated truth values, often with some structural properties imposed.

With respect to a many valued logic, a valuation v is a mapping from propositional
variables to truth values, that is, to T . A valuation extends to all formulas in the
usual way, for instance setting v(X ∧ Y ) = v(X) ∧ v(Y ), where on the left ∧ is an
operation symbol, and on the right ∧ is the corresponding operation on T . A sequent
is an expression of the form Γ ⇒ ∆ where Γ and ∆ are finite sets of formulas. For a
valuation v we write v 
 Γ⇒ ∆ provided, if v(X) ∈ D for every X ∈ Γ then v(Y ) ∈ D
for some Y ∈ ∆. More informally, v 
 Γ ⇒ ∆ provided that if every member of Γ
is designated under v then some member of ∆ also is. A sequent Γ ⇒ ∆ is valid in
a many valued logic provided, for every valuation v in that logic, v |= Γ ⇒ ∆. We
take this notion of validity as determining the consequence relation of the many valued
logic.

Among the best-known three-valued logics are Kleene’s strong, K3, from [19, 20],
and Priest’s logic of paradox, LP, from [25] but with truth tables originating in [3].
We can take the truth values of both to be 0, 1

2 and 1. (Other names for these
values will also be used from time to time in this paper.) The intended intuition
is that in K3 the value 1

2 represents a truth value gap while in LP it represents a
glut. Either way, the truth tables for propositional operators turn out to be the same.
Assume we have an ordering so that 0 ≤ 1

2 ≤ 1. Conjunction, ∧, is greatest lower
bound (equivalently minimum in this case); disjunction, ∨, is least upper bound (or
maximum); and negation, ¬, is an order reversal so that ¬0 = 1, ¬1 = 0, and ¬1

2 = 1
2 .

The two logics differ in their choice of designated values. For K3 the designated value
set is {1} while for LP it is {12 , 1}. We do not go into the motivation for these choices;
discussions are available in many places—see [26] for instance.

The logic known as ST combines aspects of both K3 and LP through a mixed
definition of consequence. Note that since the space of truth values is the same for K3

and for LP, and the behavior of logical connectives is the same, these two standard logics
have the same valuation behavior. Γ⇒ ∆ is taken to be valid in ST provided, for every
valuation, if every member of Γ is designated in the K3 sense, then some member of
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∆ is designated in the LP sense. Now the reason for the name strict/tolerant becomes
a bit clearer: members of the antecedent Γ are held to stricter standards, only 1 is
acceptable, while we are more tolerant with members of ∆ accepting both 1 and 1

2 .
Of course classical logic also fits the many valued paradigm. Truth values are 0 and

1, with ∧ and ∨ defined as greatest lower bound and least upper bound respectively,
and negation as order reversal. {1} is the set of designated truth values. And Γ⇒ ∆ is
defined in the expected way: every valuation mapping all members of Γ to a designated
value must map some member of ∆ to a designated value.

The important connection between ST and classical logic is very simply stated:
they have the same consequence relation, see [7, 5] among other places.

But it has been argued that they still are not the same logics because they differ at
the metainference level. In particular, classical logic validates the cut rule but ST does
not, and there are other metainferences on which they differ as well. Current work
in [5] generalizes this result upward, as we discussed in section 1. We will generalize
it laterally. We will show there is an abundance of pairs of many valued logics where
one logic is analogous to ST, the other to classical logic, such that both agree on
consequence but differ on metaconsequence. Indeed, there are strict/tolerant analogs
for strong Kleene logic itself, for the logic of paradox of Priest, and for first degree
entailment. We present one example now, to give an idea of things. It will, perhaps,
seem a bit mysterious, but motivations and proofs for our assertions will come later
on.

(a) ST〈NINE , {t, ot,>}〉 (b) C〈NINE , {t, ot,>}〉, or Kleene’s
K3

Figure 1: A Strict/Tolerant Pair

In Figure 1 two lattices are shown. The lattice names will be explained in Section 7.
The truth value names trace back to Ginsberg, d is supposed to represent default, for
instance. Here the truth value names play no role other than letting us specify what
node we are talking about. Think of both lattices as having an ordering relation,
≤, represented graphically as upwards (with reflexivity tacitly assumed). For both
lattices, ∧ and ∨ are interpreted as greatest lower and least upper bound respectively.
Negation is order reversal for both, so ¬d> = d> in each, for instance. For the
lattice in Figure 1b the only designated truth value is t, shown circled, thus this is a
presentation of strong Kleene logic, K3. For the lattice in Figure 1a we introduce both
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a strict and a tolerant designated set, analogous to what is done with the logic ST. In
the present example, the strict set of truth values is {t}, shown heavily circled, and the
tolerant set is {t, ot,>}, shown lightly circled. We say Γ⇒ ∆ is valid in the resulting
strict/tolerant logic provided that for every valuation, if every member of Γ is strictly
designated then some member of ∆ is tolerantly designated. It will be shown later on
that the logics corresponding to these two lattices have the same consequence relation,
but differ at the metaconsequence level, and are thus connected in the same way that
ST and classical logic are. As we said earlier, we do not analyze higher level differences
in this paper.

3 ST and FOUR
Our unifying machinery will be bilattices. Before discussing the general machinery we
begin with the paradigm example, the Belnap-Dunn system, called FOUR. This was
presented in a very influential paper, [6]. Its truth values were intended to represent
sets of ordinary truth values, only true (t), only false (f), neither (⊥), both (>). It
has two partial orderings, one on degree of truth, one on degree of information. All
this is shown in Figure 2, in which the information ordering is vertical, and is denoted
≤k. This has become customary in bilattice literature, with k standing for knowledge,
though i for information would probably be better. The truth ordering is denoted ≤t

and is shown horizontally.

Figure 2: The Bilattice FOUR

Each of the two orderings gives us the structure of a bounded, distributive lattice.
For the truth ordering, greatest lower bound is symbolized using ∧ and least upper
bound by ∨. A negation operation, denoted ¬, is a horizontal symmetry, ¬t = f ,
¬f = t, ¬> = > and ¬⊥ = ⊥. The De Morgan laws hold, so with respect to ≤t we
have a De Morgan algebra. The ≤k ordering plays an important role, but we postpone
discussion until we have introduced the full notion of bilattice, for which FOUR is the
simplest non-trivial example.

In order to turn FOUR into a many valued logic, a set of designated truth values
must be specified. This is taken to be {t,>}, which one can think of as at least
true. The values we would naturally think of as consistent are f , ⊥, t, and the ≤t

ordering, restricted to them, gives us the operations of the strong Kleene logic, K3.
Likewise the set of designated truth values of FOUR, restricted to {f ,⊥, t}, gives us
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{t}, appropriate for K3. Similarly ≤t restricted to f , >, t gives us the operations of LP,
and the set of designated truth values of FOUR, similarly restricted, gives us {t,>},
appropriate for LP.

When working with ST we need both three valued logics K3 and LP and, although
their representation in FOUR as described above is quite natural, it has the conse-
quence of giving us different carrier sets for the two logics, with one containing ⊥ and
the other >. To avoid this, we do not work with the representation of K3 just described.
Instead we work with the set {f ,>, t}, and we refer to {t,>} as tolerantly designated,
and {t} as strictly designated. That is, we have one space of truth values, and two
versions of designated value. We will do something similar for other bilattices, when
we come to them.

Much more can be said about FOUR, but this is enough for the time being. It
is better to continue our discussion after the general family of bilattices has been
introduced.

4 Bilattices

A bilattice is an algebraic structure with two lattice orderings. Various conditions can
be imposed, connecting the orderings. We start at the simplest level.

A pre-bilattice is a structure B = 〈B,≤t,≤k〉 where each of ≤t and ≤k are bounded
partial orderings on B. (Notice that we overload B to stand for both the structure
with its orderings, and for its domain. This should cause no confusion since context
can sort things out. We do similar things with other structures as well.) Think of
the members of domain B as generalized truth values. The relation ≤t is intended to
order degree of truth in some sense (though it was noted in [27] that the ordering is
really about truth-and-falsity, and that to separate the two something more complex
than a bilattice is needed, namely a trilattice. We do not persue this point here). Meet
and join operations with respect to this ordering are denoted ∧ and ∨, and the least
and greatest elements are denoted f and t. The other relation, ≤k, is intended to
order degree of information, again in some sense. The meet operation with respect to
this ordering is denoted ⊗ and is called consensus; the join operation is denoted ⊕
and is called gullability, or sometimes accept all. The least and greatest elements with
respect to this ordering are denoted ⊥ and >. The Belnap-Dunn structure FOUR
from Figure 2 is the simplest pre-bilattice.

If a pre-bilattice has an operation ¬ that reverses ≤t, preserves ≤k, and is an
involution, such an operation is simply called negation. Formally, the conditions are
as follows.

(Neg-1) a ≤t b implies ¬b ≤t ¬a

(Neg-2) a ≤k b implies ¬a ≤k ¬b

(Neg-3) ¬¬a = a

Bilattices were introduced by Ginsberg in [17, 18], who defined a bilattice to be
a pre-bilattice with negation (though without using the terminology ‘pre-bilattice’).
FOUR is the simplest bilattice in Ginsberg’s sense. In any such bilattice, ¬t = f ,
¬f = t, ¬> = >, ¬⊥ = ⊥. It is not hard to show that we also have De Morgan’s Laws
for the t operations and something akin to them for the k operations.
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(NDeM-1) ¬(a ∧ b) = (¬a ∨ ¬b)

(NDeM-2) ¬(a ∨ b) = (¬a ∧ ¬b)

(NDeM-3) ¬(a⊗ b) = (¬a⊗ ¬b)

(NDeM-4) ¬(a⊕ b) = (¬a⊕ ¬b)

A pre-bilattice may have a negation-like operation with respect to ≤k as well. If
one exists it is denoted − and is called conflation, with the following conditions.

(Con-1) a ≤k b implies −b ≤k −a

(Con-2) a ≤t b implies −a ≤t −b

(Con-3) −− a = a

(Con-4) −¬a = ¬ − a

The last condition, that negation and conflation commute, is occasionally not assumed,
but will be here. FOUR is an example of a bilattice with conflation, where −> = ⊥,
−⊥ = >, −t = t, −f = f . When conflation is present, we have dual versions of the De
Morgan laws given earlier.

(CDeM-1) −(a ∧ b) = (−a ∧ −b)

(CDeM-2) −(a ∨ b) = (−a ∨ −b)

(CDeM-3) −(a⊗ b) = (−a⊕−b)

(CDeM-4) −(a⊕ b) = (−a⊗−b)

Monotonicity conditions for the operations with respect to the ordering defining it
are standard, because we have lattice structures. Thus, for instance, a ≤t b implies
a ∧ c ≤t b ∧ c. A bilattice is called interlaced if such conditions hold across the two
orderings. More precisely, we have interlacing if the following hold.

(Int-1) a ≤t b implies a⊗ c ≤t b⊗ c

(Int-2) a ≤t b implies a⊕ c ≤t b⊕ c

(Int-3) a ≤k b implies a ∧ c ≤k b ∧ c

(Int-4) a ≤k b implies a ∨ c ≤k b ∨ c

In any interlaced bilattice f ∧ t = ⊥, f ∨ t = >, ⊥ ⊗ > = f , and ⊥ ⊕ > = t. Once
again FOUR is an example, this time of an interlaced bilattice. There are bilattices
that are not interlaced. DEFAULT , shown in Figure 3, is an example of one. In it
f ≤t df but f ⊗d> = d> 6≤t df = df ⊗d>. DEFAULT goes back to [17], but will play
no further role here.

The following plays an important role in [4] when establishing representation the-
orems for interlaced bilattices. Representation theorems are discussed in Section 8.

Proposition 4.1 In an interlaced bilattice:

(1) if a ≤k b then a ≤k x ≤k b if and only if a ∧ b ≤t x ≤t a ∨ b;

(2) if a ≤t b then a ≤t x ≤t b if and only if a⊗ b ≤k x ≤k a⊕ b.
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Figure 3: The Bilattice DEFAULT

Proof We give the proof of the first, taken from [4], to give an idea of the uses of
interlacing. The second part is similar. Throughout, assume a ≤k b (it is actually
needed in only one part).

Suppose a ≤k x ≤k b. Using interlacing, a ∨ a ∨ b ≤k x ∨ a ∨ b ≤k b ∨ a ∨ b, and
hence a ∨ b ≤k x ∨ a ∨ b ≤k a ∨ b. Then x ∨ a ∨ b = a ∨ b and so x ≤t a ∨ b. By a dual
argument, a ∧ b ≤t x, and so a ∧ b ≤t x ≤t a ∨ b.

Now suppose a∧b ≤t x ≤t a∨b. Using interlacing, a⊗(a∧b) ≤t a⊗x ≤t a⊗(a∨b).
We have a ≤k b so by interlacing again, a = a ∧ a ≤k a ∧ b and hence a⊗ (a ∧ b) = a.
Similarly a ⊗ (a ∨ b) = a. Then a ≤t a ⊗ x ≤t a, so a ⊗ x = a, and so a ≤k x. By a
dual argument, x ≤k b.

A bilattice is distributive if all possible distributive laws hold. For instance, not
only should ∧ and ∨ distribute over each other, as in a∧ (b∨ c) = (a∧ b)∨ (a∧ c), but
over ⊗ and ⊕ as well, for example a ∧ (b⊗ c) = (a ∧ b)⊗ (a ∧ c). Altogether there are
12 such distributive laws combining ∧, ∨, ⊗, and ⊕.

FOUR is a distributive bilattice. Figure 4 shows a distributive bilattice, NINE , a
bit more complex than FOUR. This time the node names come from [2]. It is rather
easy to show that every distributive bilattice is interlaced. The converse is not true.

In Section 8 we will discuss bilattice representation theorems, which will help ac-
count for where our examples are coming from.

5 Consistent, AntiConsistent, Exact

The bilattice FOUR from Figure 2 is already complex enough to contain a subset
consisting of classical truth values, a subset of consistent truth values appropriate for
Kleene’s strong three valued logic K3, and a subset of what we might call anticonsistent
truth values, appropriate for Priest’s logic of paradox, LP. We next give structural
conditions that single these sets out, and we suggest that the analogous sets in other
bilattices should play analogous roles. For the rest of this section, B is an interlaced
bilattice with a negation and a conflation.
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Figure 4: The Bilattice NINE

Definition 5.1 a ∈ B is consistent if a ≤k −a, anticonsistent if −a ≤k a, and exact
if a = −a.

In FOUR, as desired, the consistent values are {f ,⊥, t}, those of Kleene’s logic,
the anticonsistent values are {f ,>, t}, those of Priest’s logic, and the exact values are
the familiar classical {f , t}. In NINE the exact values are {f , d>, t}, the consistent
values are the exact ones together with {df ,⊥, dt}, and the anticonsistent values are
the exact ones plus {of ,>, ot}. The following says certain features of FOUR extend
quite generally to interlaced bilattices with negation and conflation.

Proposition 5.2 In B, the sets of exact values, consistent values, and anticonsistent
values each contain f and t, and are closed under ∧, ∨, and ¬, while ⊥ is consistent
and > is anticonsistent.

Proof Suppose a, b are both consistent. Then a ≤k −a and b ≤k −b. Using (Int-3)
and (CDeM-1), a ∧ b ≤k −a ∧ −b = −(a ∧ b). Hence a ∧ b is consistent. All the other
claims have similar proofs.

The following says that every consistent value is below an exact value, and every
anticonsistent value is above an exact value.

Proposition 5.3 For a ∈ B:

1. if a is consistent then a ≤k b for some exact b,

2. if a is anticonsistent then b ≤k a for some exact b.

Proof We show part 2; part 1 is similar. Suppose a is anticonsistent, so that −a ≤k a.
Using interlacing, a ∧ −a ≤k a ∧ a = a. Let b = a ∧ −a. Then b ≤k a, and b is exact
because −b = −(a ∧ −a) = −a ∧ −− a = −a ∧ a = a ∧ −a = b.

Proposition 5.4 For a, b ∈ B, if a ≤k b and both a and b are exact, then a = b.

Proof If a ≤k b then −b ≤k −a, and if also a and b are both exact, b ≤k a.

It is not the case that exact, consistent, anticonsistent is always an exhaustive
classification. Figure 6, discussed in Section 9, shows a bilattice that is distributive,
hence is interlaced, and has a conflation. But in it neither 〈⊥,⊥〉 nor 〈>,>〉 is exact,
consistent, or anticonsistent.
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6 Logical Bilattices

For this section, as in the previous one, B is an interlaced bilattice with negation and
conflation.

Definition 6.1 The set of logical formulas is built up from a set of propositional
letters, typically P , Q, . . . , using the binary symbols ∧, ∨ and ¬.

Note that there is no implication. A discussion of implication in the bilattice context
can be found in [2], also see [28].

Definition 6.2 A valuation in bilattice B = 〈B,≤t,≤k〉 is a mapping v from the set
of propositional letters to members of B. Valuations extend uniquely to the set of all
logical formulas in the familiar way

v(X ∧ Y ) = v(X) ∧ v(Y )

v(X ∨ Y ) = v(X) ∨ v(Y )

v(¬X) = ¬v(X)

and we will use the same symbol v for this extension too.

Proposition 6.3 If a valuation v in a bilattice maps every propositional letter to a
consistent truth value, it maps every formula to a consistent truth value. Similarly for
the exact truth values, and for the anticonsistent truth values.

Proof Immediate, by Proposition 5.2

Valuations have an important monotonicity property that is fundamental to Kripke-
style theories of truth, [9, 12, 13]. Though formal work on self-reference and truth does
not concern us here, monotonicity retains its importance.

Proposition 6.4 Let v and w be valuations in bilattice B. If v(P ) ≤k w(P ) for every
propositional letter P then v(X) ≤k w(X) for every logical formula X.

Proof This is an immediate consequence of (Neg-2) for negation and the interlacing
conditions (Int-3) and (Int-4).

As noted earlier, in FOUR a particular set of designated truth values is standard,
{t,>}. Its properties were nicely generalized in [2].

Definition 6.5 A prime bifilter on B is a non-empty subset F of B that is not the
entire of B and that meets the following conditions.

(PBif-1) (a ∧ b) ∈ F if and only if a ∈ F and b ∈ F

(PBif-2) (a⊗ b) ∈ F if and only if a ∈ F and b ∈ F

(PBif-3) (a ∨ b) ∈ F if and only if a ∈ F or b ∈ F

(PBif-4) (a⊕ b) ∈ F if and only if a ∈ F or b ∈ F

A logical bilattice is a pair 〈B,F〉 where F is a prime bifilter on B.
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FOUR has exactly one prime bifilter, {t,>}. NINE has two prime bifilters,
{t, ot,>} and {t, ot,>, dt, d>, of}.

Proposition 6.6 A prime bifilter is upward closed in both bilattice orderings.

Proof Suppose F is a prime bifilter, a ∈ F , and a ≤k b. Then b = a⊕ b so b ∈ F by
(PBif-4) of Definition 6.5. The case of the t ordering is similar.

In Section 2 a definition of validity for a sequent in a many valued logic was given.
That definition includes the case of a logical bilattice 〈B,F〉 once we specify that the
prime bifilter F is the set of designated values.

In [1, 2] a very nice result is shown: the valid sequents of any logical bilattice are
the same as they are for FOUR using the prime bifilter {t,>}.

7 A Family of Strict/Tolerant Logics

In Section 3 we reformulated ST so that it was incorporated into the structure of
FOUR. The role of the three-member space of truth values common to LP and to
K3 was played by the “upper” part of FOUR, which amounts to the anticonsistent
part. The set of what we called the tolerantly designated truth values was {t,>}, the
only prime bifilter for FOUR. The set of strictly designated truth values was {t}, the
subset of the prime bifilter consisting of the exact values. This now is the paradigm for
our generalization. We begin by setting up the machinery we need, and then prove our
general theorems on the existence of a family of ST-like logics. Given all the work that
has gone into the development of bilattices over the years, this theorem is quite easy
to establish. It is the family of logics, and the bilattice setting in which they appear
that is significant.

Definition 7.1 Let B be an interlaced bilattice with negation and conflation, and
let F be a prime bifilter on B, so that 〈B,F〉 is a logical bilattice. Throughout this
definition we write A for the set of anticonsistent members of B, and E for the set of
exact members.

(1) Dt〈B,F〉 = F ∩ A, the subset of F consisting of anticonsistent members of B.
This is our tolerant set of designated values.

(2) Ds〈B,F〉 = F ∩ E , the subset of F consisting of exact members of B. This is our
strict set of designated values.

(3) ST〈B,F〉 is the analog of strict/tolerant logic associated with the logical bilattice
〈B,F〉. Its set of truth values is A. A sequent Γ ⇒ ∆ is valid in this logic
provided, for every valuation v mapping propositional letters to A, if v maps
every formula in Γ to Ds〈B,F〉 then v maps some formula in ∆ to Dt〈B,F〉.

(4) C〈B,F〉 is the analog of classical logic associated with the logical bilattice 〈B,F〉.
Its set of truth values is E , with Ds〈B,F〉 as the set of designated truth values.
A sequent Γ ⇒ ∆ is valid in this logic provided, for every valuation v mapping
propositional letters to E , if v maps every formula in Γ to Ds〈B,F〉 then v maps
some formula in ∆ to Ds〈B,F〉.
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A few remarks before moving to a central result. Since our logical formulas only
contain ∧, ∨, and ¬, in evaluating formulas in the various structures above only the
≤t ordering comes into play. As we noted in Proposition 5.2, both A and E are closed
under ∧, ∨, and ¬.

In C〈B,F〉, the set Ds〈B,F〉 = F∩E is a prime filter. For instance, suppose a, b ∈ E ,
the set of truth values of C〈B,F〉, and a ∨ b ∈ F ∩ E . Then a ∨ b ∈ F and so one of a
or b is in F since it is a prime bifilter in B. So one of of a or b is in F ∩ E . Similarly
for the other prime filter conditions.

Similar remarks apply partially to ST〈B,F〉. Here the set Dt〈B,F〉 = F ∩ A
of tolerant truth values will constitute a prime filter within the set of anticonsistent
truth values, which is the domain used for ST〈B,F〉. This does not extend to the
set Ds〈B,F〉 = F ∩ E of strict truth values. For instance, in the strict/tolerant FDE
example shown much later in Figure7, 〈t,⊥〉 ∨ 〈t,>〉 = 〈t, f〉, which is in the set
Ds〈B,F〉, but neither 〈t,⊥〉 nor 〈t,>〉 is in this set.

Proposition 7.2 Let 〈B,F〉 be a logical bilattice, where B is an interlaced bilattice with
negation and conflation. The logics ST〈B,F〉 and C〈B,F〉 validate the same sequents.

Proof

Left to Right : Assume Γ⇒ ∆ is valid in ST〈B,F〉; we show Γ⇒ ∆ is valid in C〈B,F〉.
Let v be a valuation mapping propositional letters to E , and suppose v maps
every formula in Γ to Ds〈B,F〉; we show v maps some formula in ∆ to Ds〈B,F〉.
Since Γ⇒ ∆ is valid in ST〈B,F〉 and v maps all of Γ to Ds〈B,F〉, then for some
Y ∈ ∆, v(Y ) ∈ Dt〈B,F〉. But by Proposition 6.3, v(Y ) must be exact, and so in
Ds〈B,F〉.

Right to Left : Assume Γ ⇒ ∆ is not valid in ST〈B,F〉. We show Γ ⇒ ∆ is not valid
in C〈B,F〉.
By our assumption there is a valuation v mapping propositional letters to A, the
anticonsistent members of B, mapping every formula in Γ to Ds〈B,F〉, but for
some Y ∈ ∆, v(Y ) is not in Dt〈B,F〉.
Define a new valuation v′ as follows. For each propositional letter P , if v(P )
is exact, let v′(P ) = v(P ). If v(P ) is anticonsistent but not exact, by Proposi-
tion 5.3, there is some exact a ≤k v(P ); choose one such a and set v′(P ) = a. By
its definition v′ maps all propositional letters to exact members of B, and hence
by Proposition 6.3, v′ maps every logical formula to an exact member of B. We
show v′ 6|= Γ⇒ ∆ in C〈B,F〉.
Since v′(P ) ≤k v(P ) for each propositional letter then for every logical formula
X, v′(X) ≤k v(X) by Proposition 6.4. Since both v and v′ map all members of
Γ to exact members of B then, by Proposition 5.4. v and v′ agree on members of
Γ. So v′ maps every member of Γ to Ds〈B,F〉.
We have a logical formula Y ∈ ∆ such that v(Y ) 6∈ Dt〈B,F〉. We show v′(Y ) 6∈
Ds〈B,F〉, which will finish the proof. Well, otherwise v′(Y ) would be exact
(which it is) and in the prime bifilter F . But v′(Y ) ≤k v(Y ) and prime bifilters
are upward closed in both bilattice orderings, Proposition 6.6, so v(Y ) would be
in F (which it is not).
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It has been vehemently argued whether or not, despite validating the same sequents,
classical logic and strict/tolerant logic are the same logic. See [5] for a good summary
of this, as well as further references to the issue. Their difference is that they do not
agree at the metaconsequence level, something that has been generalized upward as we
noted at the beginning of this paper. A similar phenomenon applies to the bilattice
based generalizations considered in this paper, and with the same examples.

A metaconsequence is represented by the following general form.

Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n

Γ0 ⇒ ∆0

Here the members of Γi and ∆i are taken to be schemata. Validity is understood to
mean each instance of such a scheme is valid. Validity for an instance, with respect
to a logic, actually has two versions, local and global. The global version is: if each
sequent above the line is valid in the logic, so is the sequent below. The local version
is: for each valuation, if that valuation validates each sequent above the line then
that valuation validates the sequent below. Local is easily seen to imply global. It is
the local version that is appropriate here. The particular metaconsequence scheme of
interest is the familiar one of cut.

Proposition 7.3 Let 〈B,F〉 be a logical bilattice, where B is an interlaced bilattice
with negation and conflation. The metaconsequence scheme

Γ, A⇒ ∆ Γ⇒ ∆, A

Γ⇒ ∆

is locally valid in C〈B,F〉 but not in ST〈B,F〉.

Proof

Local Validity in C〈B,F〉: Assume we have a specific instance of the Cut scheme, and
let v be a mapping from propositional letters to exact members of B. Reasoning in
C〈B,F〉 we show that if v 6|= Γ⇒ ∆ then either v 6|= Γ, A⇒ ∆ or v 6|= Γ⇒ ∆, A.

Assume v 6|= Γ ⇒ ∆. Then v(X) ∈ F for every X ∈ Γ and v(Y ) 6∈ F for every
Y ∈ ∆. Either v(A) ∈ F or v(A) 6∈ F . If we have the first, then v(X) ∈ F for
every X in Γ, A, so v 6|= Γ, A ⇒ ∆. If we have the second, then v(Y ) 6∈ F for
every Y ∈ ∆, A, so v 6|= Γ⇒ ∆, A.

Local Non-Validity in ST〈B,F〉: Let Γ ⇒ ∆ be any specific sequent that is not valid
in ST〈B,F〉, and let P be a propositional letter that does not occur in Γ or in ∆.
Let us say v is a valuation such that v 6|= Γ ⇒ ∆ in ST〈B,F〉. That is, v maps
propositional letters to anticonsistent members of B, maps every member of Γ to
Ds〈B,F〉, and maps no member of ∆ to Dt〈B,F〉.
Since P does not occur in Γ or ∆ we are free to reassign a value to P without
affecting the behavior of v on Γ or ∆. The bilattice value > must be in F
because F is non-empty and we have Proposition 6.6. Set v(P ) = >. Then
v |= Γ, P ⇒ ∆ because v does not map every member of Γ, P to Ds〈B,F〉, since
> is anticonsistent but not exact. But also v |= Γ ⇒ ∆, P because v maps
some member of ∆, P to Dt〈B,F〉 since v(P ) = > is anticonsistent and is in F .
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Thus v is a counterexample to the local validity, in ST〈B,F〉, of the following
metainference

Γ, P ⇒ ∆ Γ⇒ ∆, P

Γ⇒ ∆
.

We conclude this section with a few examples. Starting in Section 10 we discuss
where such examples ‘really’ come from.

Example 7.4 In Figure 2 we gave the ur-bilattice, FOUR. For it the exact values are
just f and t, the classical ones, and the anticonsistent ones are these together with >.
The only prime bifilter is {t,>} which, if taken as designated in the set of anticonsistent
values, gives us LP. Then ST〈FOUR, {t,>}〉 is the usual strict/tolerant logic ST while
C〈FOUR, {t,>}〉 is just classical logic, and the two theorems above specialize to what
are, in effect, the beginnings of the subject.

Example 7.5 Figure 4 shows a bilattice, NINE , having two prime bifilters. We,
quite arbitrarily, choose to work with the smaller one, {t, ot,>}. The exact members
of NINE are {f , d>, t} and the overlap with the prime bilfilter contains just t. Thus
the analog of classical logic from the original ST example turns out to be K3. There are
six anticonsistent values, and these, displayed a bit differently, are shown in Figure 1.

8 Bilattice Representation Theorems

Where do bilattices come from? There is an intuitively appealing way of constructing
them that is completely representative, in the sense that every bilattice with ‘reason-
able’ properties is isomorphic to a bilattice constructed in this way. In bilattice history
this construction dates from [17], with subsequent extensions by others. In fact, many
of the ideas predate bilattices as such, though that was not generally known until later.
See [16] for an interesting prehistory. In this section we sketch the ideas, without the
proofs, and then add an extension that will be applied to the present investigation in
Section 9.

A central intuition for truth values in a bilattice is that they encode evidence for and
evidence against an assertion, treating positive and negative evidence independently.
An interesting family of examples is based on groups of experts. Suppose we have one
group whose members announce their opinions for something, or don’t, and another
group similarly announcing opinions against, or keeping silent. The two groups could
be distinct, overlap, or be identical. We can identify the opinions in favor with the
set of experts declaring for, and similarly for the set of experts against. In this way a
generalized truth value becomes a pair of sets of experts, the set of those for, and the
set of those against. We have an increase in knowledge, or more properly information,
if additional experts declare their opinions. We have an increase in degree of truth
(understood loosely) if additional experts declare in favor while some withdraw from
declaring against. This is a good model to have in mind while reading the following,
but it is not fully general. The collection of all sets of experts, drawn from some fixed
group, is a lattice under the subset ordering, but not all lattices are of this kind, hence
the move to general lattice structures, L1 intuitively representing evidence for, and L2

intuitively representing evidence against.
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Definition 8.1 (Bilattice Product) Let L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉 be bounded
lattices. Their bilattice product is defined as follows.

L1 � L2 = 〈L1 × L2,≤t,≤k〉
〈a, b〉 ≤k 〈c, d〉 iff a ≤1 c and b ≤2 d

〈a, b〉 ≤t 〈c, d〉 iff a ≤1 c and d ≤2 b

Note the reversal of the ≤2 ordering in the definition of ≤t. The following items
are now rather straightforward to check. In stating the results we assume that 01 and
02 are the least members of L1 and L2, and 11 and 12 are the greatest. We write
t1 and t2 for the respective joins, and u1 and u2 for the meets. If the two lattices
are identical, we omit subscripts. Also recall that a De Morgan algebra is a bounded
distributive lattice with a De Morgan involution, written here as an overbar, such that
a u b = a t b and a = a. (The other De Morgan law follows.) It is often the case in
what follows that the distributivity laws of De Morgan algebras are not needed. By a
non-distributive De Morgan algebra we mean something meeting the conditions for a
De Morgan algebra except, possibly, satisfaction of the distributive laws.

(BP-1) L1 � L2 is always a pre-bilattice that is interlaced. In L1 � L2 the extreme
elements are ⊥ = 〈01, 02〉, > = 〈11, 12〉, f = 〈01, 12〉, and t = 〈11, 02〉. The
bilattice operations evaluate to the following.

〈a, b〉 ∧ 〈c, d〉 = 〈a u1 c, b t2 d〉
〈a, b〉 ∨ 〈c, d〉 = 〈a t1 c, b u2 d〉
〈a, b〉 ⊗ 〈c, d〉 = 〈a u1 c, b u2 d〉
〈a, b〉 ⊕ 〈c, d〉 = 〈a t1 c, b t2 d〉

(BP-2) If L1 and L2 are distributive lattices then L1 � L2 is a distributive bilattice.

(BP-3) If L1 = L2 = L then L�L is an bilattice with negation, where ¬〈a, b〉 = 〈b, a〉.
(BP-4) If L1 = L2 = L is a non-distributive De Morgan algebra then L�L is a bilattice

with a conflation that commutes with negation, where −〈a, b〉 = 〈b, a〉.

Combining several of the items above, if L is a De Morgan algebra (which assumes
distributivity), then L � L is a distributive bilattice with a negation and a conflation
that commute.

What is more difficult to establish is that these conditions reverse. For instance,
if we have an interlaced bilattice, it is isomorphic to L1 � L2, where L1 and L2 are
bounded lattices, and L1 and L2 are unique up to isomorphism. And so on. Thus we
have very general representation theorems. These results were proved over time, and
various parts can be found in [17, 10, 11, 4].

We will not need a detailed proof of these representation theorems but a few basic
items from the proof will be of importance to us, since we will be adding one more
piece. For an interlaced bilattice B, L1 can be taken to be {x ∨ ⊥ | x ∈ B} and L2 to
be {x ∧ ⊥ | x ∈ B}, each with the ordering resulting when ≤t is restricted to L1 or L2

respectively. If we have a bilattice with negation the lattices L1 and L2 just described
are isomorphic and we can simply use L consisting of {x∨⊥ | x ∈ B} with the ordering
induced by ≤t. In Proposition 8.3 we make use of these pieces of the proof to add one
new part to the representation theorem collection.
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Suppose B is a bilattice with negation, L = {x ∨ ⊥ | x ∈ B}, and f : B → L is
defined by f(x) = x∨⊥. This mapping is always many-one. For instance if B = NINE
from Figure 4, f(>) = f(ot) = f(t) = t. Even in the paradigm case of FOUR from
Figure 2, f(>) = f(t) = t. Thus each member of the lattice L, generated by the proof
of the representation theorem, always has multiple pre-images in the bilattice B that
we are representing. We will show that there are special and unique pre-images, of
particular significance in our current strict/tolerant investigation. These are simply
the exact members (provided we have the conflation machinery to define them).

The following Lemma provides everything we need for our proof of the central role
of exact bilattice members. Using the bilattice representation results above, much of
it could be left as an exercise in computation. Instead we give direct proofs, which
provide some insights of their own.

Lemma 8.2 Assume B is an interlaced bilattice with a negation and a conflation. For
every x, y ∈ B:

(1) (x ∨ ⊥) ∧ −(x ∨ ⊥) is exact;

(2) x = (x ∨ ⊥) ∧ (x ∨ >);

(3) (x ∧ y) ∨ ⊥ = (x ∨ ⊥) ∧ (y ∨ ⊥);

(4) [(x ∨ ⊥) ∧ −(x ∨ ⊥)] ∨ ⊥ = x ∨ ⊥;

(5) if x and y are exact then x ∨ ⊥ ≤t y ∨ ⊥ if and only if x ≤t y;

(6) if x and y are exact and x ∨ ⊥ = y ∨ ⊥ then x = y.

Proof

(1) Exactness is simple.

−[(x ∨ ⊥) ∧ −(x ∨ ⊥)] = [−(x ∨ ⊥) ∧ −− (x ∨ ⊥)]

= [−(x ∨ ⊥) ∧ (x ∨ ⊥)].

(2) (This is Corollary 2.8 part 4 in [4].) Since ⊥ ≤k x ≤k >, using interlacing,
x ∨⊥ ≤k x ∨ x ≤k x ∨>, and so x ∨⊥ ≤k x ≤k x ∨>. Then by Proposition 4.1,
(x∨⊥)∧ (x∨>) ≤t x ≤t (x∨⊥)∨ (x∨>) so in particular, (x∨⊥)∧ (x∨>) ≤t x.
Also x ≤t x ∨ ⊥ and x ≤t x ∨ >, so x ≤t (x ∨ ⊥) ∧ (x ∨ >).

(3) From ⊥ ≤k x by interlacing, x ∨ ⊥ ≤k x ∨ x = x. Similarly y ∨ ⊥ ≤k y. Then
⊥ ≤k (x ∨ ⊥) ∧ (y ∨ ⊥) ≤k x ∧ y. Then by Proposition 4.1, (x ∧ y) ∧ ⊥ ≤t

(x∨⊥)∧ (y ∨⊥) ≤t (x∧ y)∨⊥, so in particular (x∨⊥)∧ (y ∨⊥) ≤t (x∧ y)∨⊥.
Also x ∧ y ≤t x so (x ∧ y) ∨ ⊥ ≤t (x ∨ ⊥), and similarly (x ∧ y) ∨ ⊥ ≤t (y ∨ ⊥).
Then (x ∧ y) ∨ ⊥ ≤t (x ∨ ⊥) ∧ (y ∨ ⊥).

(4) Using item (3),

[(x ∨ ⊥) ∧ −(x ∨ ⊥)] ∨ ⊥ = [(x ∨ ⊥ ∨ ⊥) ∧ (−(x ∨ ⊥) ∨ ⊥)]

= [(x ∨ ⊥) ∧ (−x ∨ > ∨ ⊥)]

= [(x ∨ ⊥) ∧ (−x ∨ t)]

= [(x ∨ ⊥) ∧ t]

= x ∨ ⊥
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(5) If x ≤t y then x ∨ ⊥ ≤t y ∨ ⊥, using the interlacing conditions. In the other
direction, suppose x ∨ ⊥ ≤t y ∨ ⊥ and both x and y are exact. Then

x = (x ∨ ⊥) ∧ (x ∨ >) part (2)

= (x ∨ ⊥) ∧ (−x ∨ >) exactness

= (x ∨ ⊥) ∧ −(x ∨ ⊥)

≤t (y ∨ ⊥) ∧ −(y ∨ ⊥) interlacing

= (y ∨ ⊥) ∧ (−y ∨ >)

= (y ∨ ⊥) ∧ (y ∨ >) exactness

= y part (2)

(6) This follows from part (5).

Proposition 8.3 Suppose L is a non-distributive De Morgan algebra, and B = L�L.
The set of exact members of B, under the ordering ≤t, is isomorphic to L.

Proof The proofs of the usual bilattice representation theorems discussed earlier say
that B is isomorphic to L′�L′ where L′ = {x∨⊥ | x ∈ B} with ordering ≤t restricted
to L′. They also say this is unique up to isomorphism, so L and L′ are isomorphic.
It is enough, then, to show that L′ and E are isomorphic, where E is the set of exact
members of B.

Let f : E → L′ be defined by f(x) = x ∨ ⊥. We show that f is 1− 1, onto, and an
order isomorphism. We begin with onto. An arbitrary member of L′ must be x ∨ ⊥
for some x ∈ B. Let y be (x ∨ ⊥) ∧ −(x ∨ ⊥). By Lemma 8.2 part (1), y is exact and
by part (4), f(y) = x∨⊥. Hence f is onto. It is 1− 1 by Lemma 8.2 part (6). Finally,
we have an order isomorphism by Lemma 8.2 part (5).

9 Logical De Morgan Algebras

Quite a few common many valued logics validate De Morgan’s laws. An extensive
investigation of these can be found in [21], where applications to the theory of truth were
examined. In that paper, being a prime filter was one of the conditions considered for
the set of designated truth values. We will take it as central here, and we investigate the
resulting family with respect to its relation to bilattices. Actually, since the distributive
laws assumed in De Morgan algebras play little role here, we use the more general family
of non-distributive De Morgan algebras. Everything we say applies, of course, if we
also have distributivity.

Definition 9.1 (Non-Distributive Logical De Morgan Algebras) Let L be a non-
distributive De Morgan algebra (writing u and t for meet and join, and overbar for De
Morgan complement). A subset D of L is a prime filter in L if it meets the following
two conditions:

1. a u b ∈ D if and only if a ∈ D and b ∈ D

2. a t b ∈ D if and only if a ∈ D or b ∈ D.



The Strict/Tolerant Idea and Bilattices 17

We call the pair 〈L,D〉 a non-distributive logical De Morgan algebra, thinking of it as
a many valued logic with D as the set of designated truth values.

We will show that each member of the family of logics determined by non-distributive
logical De Morgan algebras has a strict/tolerant version. Classical logic is deter-
mined by the best known De Morgan example, and so is part of a large family with
strict/tolerant logics.

Using the bilattice construction sketched in Section 8, if L is a non-distributive De
Morgan algebra then L�L is an interlaced bilattice with negation and conflation. This
can be extended from algebras to logics, as we will now show.

Lemma 9.2 Let 〈L,D〉 be a non-distributive De Morgan logic. Then 〈L� L,D × L〉
is a logical bilattice (interlaced, with negation and conflation).

Proof Given earlier items, all that needs to be shown is that D×L is a prime bifilter
in L � L, Definition 6.5. In the following, 〈x, y〉 and 〈z, w〉 are any two members of
L � L. Since we are working with L throughout, membership in L is automatic and
can be mentioned or dropped whenever useful. We show one prime bifilter case as
sufficiently representative:

〈x, y〉 ∨ 〈z, w〉 ∈ D × L iff 〈x t z, y u w〉 ∈ D × L

iff x t z ∈ D

iff x ∈ D or z ∈ D

iff (x ∈ D and y ∈ L) or (z ∈ D and w ∈ L)

iff 〈x, y〉 ∈ D × L or 〈z, w〉 ∈ D × L.

Proposition 9.3 Let 〈L,D〉 be a non-distributive logical De Morgan algebra. 〈L,D〉
is isomorphic to the bilattice based logic structure C(〈L�L,D×L〉) from Definition 7.1.
To state this more precisely, first recall that C(〈L�L,D×L〉) is the many valued logic
〈E , (D × L) ∩ E〉, where E is the set of exact members of L � L. Then, there is an
isomorphism between E and L that pairs the members of (D× L) ∩ E with those of D.

Proof Begin with a non-distributive logical De Morgan algebra 〈L,D〉, and construct
the interlaced bilattice L� L. Proposition 8.3 says the set of exact members of L� L
is isomorphic to L. We can extract more information from the proof of that proposi-
tion. We know the mapping f(x) = x ∨ ⊥ maps the exact members of the bilattice
isomorphicallly to a non-distributive De Morgan algebra L′ = {x ∨ ⊥ | x ∈ L � L} =
{x ∨ ⊥ | x ∈ L � L and x exact}. And further, L′ must be isomorphic to L. We now
examine the details of the mapping f .

Let 〈a, b〉 be an arbitrary member of L � L. Then f(〈a, b〉) = 〈a, b〉 ∨ ⊥ = 〈a, b〉 ∨
〈0, 0〉 = 〈at0, bu0〉 = 〈a, 0〉. Now the isomorphism from L′ to L is obvious: 〈a, 0〉 7→ a.
Then further, the mapping from L�L to L is in fact just 〈a, b〉 7→ a, and so it was this
that was shown in the proof of Proposition 8.3 to be an order preserving isomorphism
when restricted to the exact members of L�L. So to finish the present proof, we must
show this mapping is 1− 1 and onto between (D × L) ∩ E and D.
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We first show the mapping 〈a, b〉 7→ a, restricted to (D×L)∩E , is onto D. Suppose
a ∈ D. Of course 〈a, a〉 ∈ D × L and −〈a, a〉 = 〈a, a〉 = 〈a, a〉, so 〈a, a〉 is exact. Thus
〈a, a〉 ∈ (D × L) ∩ E , and of course 〈a, a〉 7→ a.

Finally we show the mapping 〈a, b〉 7→ a, restricted to the exact members of L�L,
is 1− 1. To show this it is enough to show that if 〈a, b〉 and 〈a, c〉 are both exact, then
〈a, b〉 = 〈a, c〉. If 〈a, b〉 is exact, 〈a, b〉 = −〈a, b〉 = 〈b, a〉, so a = b. Similarly a = c, and
it follows that b = c and hence b = c.

10 Generating Strict/Tolerant Examples

We now have everything we need for the central result of this paper.

Proposition 10.1 For each non-distributive logical De Morgan algebra there is a
strict/tolerant logic having the same consequence relation but differing from it at the
metaconsequence level. There is an algorithm for constructing the strict/tolerant logic
from the logical De Morgan algebra.

Proof We present the algorithm and cite the various earlier results proven earlier that
establish what we need.

Gen-1 Start with a (non-distributive) logical De Morgan algebra, 〈L,D〉.

Gen-2 〈L� L,D × L〉 is an interlaced logical bilattice with negation and conflation.

Gen-3 Using notation from Definition 7.1, ST〈L � L,D × L〉 is a strict/tolerant logic
analog and C〈L� L,D × L〉 is a classical logic analog.

Gen-4 By Proposition 7.2, ST〈L � L,D × L〉 and C〈L � L,D × L〉 validate the same
sequents.

Gen-5 By Proposition 7.3, ST〈L� L,D × L〉 and C〈L� L,D × L〉 differ at the meta-
consequence level.

Gen-6 Finally, the structure C〈L � L,D × L〉 is isomorphic to the logical De Morgan
algebra 〈L,D〉 with which we began, by Proposition 9.3.

Example 10.2 Continuing Example 7.4. Let L be the lattice {0, 1} with the ordering
0 ≤ 1, and let D be {1}. 〈L,D〉 is not just some logical De Morgan algebra but is
that of classical logic, the most basic of all. The bilattice product L�L is isomorphic
to FOUR from Figure 2, with ⊥ corresponding to 〈0, 0〉, f to 〈0, 1〉, t to 〈1, 0〉, and
> to 〈1, 1〉. The logical bilattice 〈L � L,D × L〉 is then isomorphic to FOUR with
{t,>} as designated values. It follows that C(〈L � L,D × L〉) is classical logic and
ST(〈L� L,D × L〉) is the usual version of strict/tolerant logic, ST.

Example 10.3 Continuing Example 7.5. We start with the Kleene strong three valued
logic, {0, 12 , 1}, with {1} as designated truth value. These give us a (distributive) logical
De Morgan algebra, K3 = 〈{0, 12 , 1}, {1}〉, Kleene’s strong three-valued logic. We use
this to create the logical bilatice, 〈K3 � K3, {1} × K3〉, which is isomorphic to NINE ,
from Figure 4. Then, as discussed in Example 7.5, this generates the strict/tolerant
logic pair from Figure 1.
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(a) Strict/Tolerant LP (b) Standard LP

Figure 5: A Strict/Tolerant Counterpart of LP

Example 10.4 This time we do something like Example 10.3 but modify the work so
that we produce a strict/tolerant counterpart of LP, the logic of paradox, instead of K3.
Formally, the only difference between LP and K3 is the choice of designated truth values.
For LP, from {0, 12 , 1} we take {12 , 1} as designated, so we have the (again distributive)
logical De Morgan algebra 〈{0, 12 , 1}, {

1
2 , 1}〉. The bilattice NINE , from Figure 4 is

still the bilattice we must work with (isomorphically). The prime bifilter we now want
from NINE is {dt, t, d>, ot, of ,>} (though note that dt is not anticonsistent) and the
intersection of this with the exact members is {d>, t}. The details are much like those
of Example 10.3 and we wind up with the diagrams shown in Figure 5, which can be
compared with the earlier ones. The strictly designated values are {d>, t} and the
tolerantly designated values are {t, d>, ot, of ,>}.

As a simple instance, it is well-known that P,¬P ⇒ Q is not valid in LP, as the
valuation v(P ) = d>, v(Q) = f shows. The same valuation, in the strict/tolerant
version also works as a counterexample.

Example 10.5 We start with the bilattice FOUR, shown in Figure 2. As is standard,
we take {t,>} as designated truth values. Using the ≤t ordering, the resulting logic
is the well-known first degree entailment, FDE. Thus we have a logical De Morgan
algebra, 〈〈FOUR,≤t〉, {t,>}〉, completing Gen-1 of the construction outlined earlier.

For Gen-2 of the construction we form the bilattice product 〈〈FOUR,≤t〉�〈FOUR,≤t

〉, which is shown in Figure 6 and given the name SIXT EEN . It may be best to think
of the construction simply as formal, without trying to attach intuitive significance to
possible meanings for node labels. SIXT EEN becomes a logical bilattice when we
take as designated values {t,>} × {t,>, f ,⊥}. That is,

Designated Values: 〈t, t〉, 〈t,>〉, 〈t, f〉, 〈t,⊥〉, 〈>, t〉, 〈>,>〉, 〈>, f〉, 〈>,⊥〉.
We began with FOUR, using the ordering ≤t, and so our De Morgan operation

is the negation of FOUR. Then conflation in SIXT EEN is: −〈a, b〉 = 〈¬b,¬a〉. It
is now easy to check that the truth values of SIXT EEN divide up as shown below.
What might be a bit surprising, after the previous examples, is that not everything
falls into the exact, consistent, anticonsistent categories.

Exact Values: 〈f , t〉, 〈⊥,⊥〉, 〈>,>〉, 〈t, f〉.
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Figure 6: The Bilattice SIXT EEN

Consistent Values: Exact together with 〈f , f〉, 〈f ,⊥〉, 〈f ,>〉, 〈⊥, f〉, 〈>, f〉.

AntiConsistent Values: Exact together with 〈⊥, t〉, 〈>, t〉, 〈t,⊥〉, 〈t,>〉, 〈t, t〉.

None of the above: 〈⊥,>〉, 〈>,⊥〉.

We now move on to Gen-3 of the construction. By Proposition 9.3 the classi-
cal logic analog, C〈SIXT EEN , {t,>} × {t,>, f ,⊥}〉, is isomorphic to the bilattice
FOUR under the ≤t ordering, with {t,>} designated. As to ST〈SIXT EEN , {t,>}×
{t,>, f ,⊥}〉, it has as members the anticonsistent values from SIXT EEN , with the
ordering induced by ≤t. The set of strictly designated values is the intersection of
the set of Designated Values for SIXT EEN with the set of Exact Values, and this
is {〈>,>〉, 〈t, f〉}. Finally, the set of tolerantly designated values is the intersection
of the set of Designated Values with the set of Anticonsistent values, and this is
{〈>,>〉, 〈t, f〉, 〈>, t〉, 〈t,⊥〉, 〈t,>〉, 〈t, t〉}. All this is shown schematically in Figure 7a.
The standard formulation of FDE is shown as part 7b. Our general results show that
these validate the same consequence relation, but differ on the metaconsequence level.

11 And More?

The family of what we called logical De Morgan algebras (distrubutive or not) is
mostly made up of examples of purely technical interest. But the fact that K3, LP,
and FDE have strict/tolerant counterparts may have useful consequences, or at least
consequences that someone might argue are useful. I leave this to others. But there
are some more technical items that I plan to develop further in subsequent work.

Here we looked at K3, strong Kleene logic. There is also weak Kleene logic. This was
generalized to the bilattice context, in [13], using what I called “cut down operations.”
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(a) Strict/Tolerant FDE (b) Standard FDE

Figure 7: A Strict/Tolerant Counterpart of FDE

Such operations have been further investigated in [8], and dualized in [29]. It is likely
that strict/tolerant analogs based on cut down (or track down) operations can be
developed, similar to what has been done here.

Analogous to strict/tolerant logic, but with things reversed, there is also toler-
ant/strict logic; see [14, 15] for background. This is a more complicated family than
that of strict/tolerant logic, and will be investigated in a separate paper.

In a private communication Eduardo Alejandro Barrio raised the question of what
is the minimum size of a strict/tolerant counterpart. It may be the case that the
algorithm given as proof of Proposition 10.1 produces minimal sized counterparts, but
perhaps not. This is open.

Finally, [5] generalizes the original strict/tolerant phenomenon in an ‘upward’ direc-
tion, as we discussed in Section 1. Their work examines the structure of consequence,
metaconsequence, metametaconsequence, and so on. It is likely that this work also
generalizes to the present setting, but it is deferred to a later paper.
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