
Stratified and Three-valued Logic
Programming Semantics

Melvin Fitting∗

Marion Ben-Jacob†

Abstract

The familiar fixed point semantics for Horn clause programs
gives both smallest and biggest fixed points fundamental roles.
We show how to extend this idea to the family of stratified
logic programs, producing a semantics we call weak stratified,
that is compatible with but not the same as the conventional
stratified semantics. And we show weak stratified semantics
coincides with one based on three valued logic, a semantics that
is generally applicable, and that does not require stratification
assumptions.

1 Introduction

A beautiful fixed point semantics for Horn clause logic programming
has been developed, based on classical logic ([16], [2]). But it can not
deal adequately with negations when they are allowed in clause bod-
ies. Two kinds of generalizations have been proposed to deal with this
problem. The best known is stratification [1], [17]. Here the kind of
logic programs one is allowed to write is restricted; recursions through
negations are forbidden. For such programs there is a fixed point se-
mantics generalizing pure Horn clause semantics, yielding a classical,
two valued semantics. The other kind of generalization involves a three
valued logic [4], [11], [12] and thus moves away from classical logic.
This approach has received somewhat less attention. As Kunen says
[12], “Many people will find a 3-valued logic not as natural or easy to

∗Dept. of Math. and Comp. Science, Lehman College, Bedford Park Blvd.
West, Bronx, NY 10468
†Dept. of Math. and Comp. Inf. Science, Mercy College, 555 Broadway, Dobbs

Ferry, NY 10522

1



understand as 2-valued logic. This is not a mathematical problem, but
it does indicate a failure to give programmers a clear and understand-
able explanation of the declarative meaning of their Prolog programs.”

As shown in [9], both least and greatest fixed points play a role
in assigning meanings to Horn clause logic programs. The least fixed
point gives the ‘success set’ while the greatest one gives the ‘ground
failure set’. Stratified semantics, on the other hand, finds no role for
greatest fixed points, and treats negations using the simple device of
complementation. Since the recursively enumerable sets are not closed
under complementation, this leads to obvious computability problems.

We propose an alternative fixed point semantics that is applicable
to stratified logic programs, which we call weak stratified semantics. It
uses only classical two valued models, and the TP operator from [16]
and [2], but it gives greatest fixed points a fundamental role to play in
the interpretation of negation, thus exploiting the insights of [2] and
[9]. While the machinery required is more complex, the results are
natural and flexible. Just as with the conventional version of stratified
semantics, weak stratified semantics is independent of the particular
stratification used for a given logic program. And it can be proved that
the truth values assigned by weak stratified semantics are compatible
with those assigned by the conventional version of stratified semantics.

Although weak stratified semantics uses machinery of classical two
valued logic, the way it is used leaves some formulas without a truth
value. Thus a three valued logic emerges — indeed it was implicitly
present in [2] all along, and is made explicit in [13]. In fact, a three
valued logic is very natural to use when discussing the semantics of
any programming language. Think of the three values as true (t), false
(f), and undefined (⊥). Suppose, in Pascal, we have an instruction
that starts with “if P and Q then . . . ”, where P and Q are functions
that return Boolean. What will happen if P returns f , but the function
call Q never terminates? The easiest way to explain things is to say
Pascal uses a three valued logic in which f ∧ ⊥ = ⊥ ∧ f = ⊥. In fact,
the logic Pascal uses is well-known. It is Kleene’s weak three valued
logic [10]. Pure logic programming, without Prolog’s particular control
structure, can be thought of as using Kleene’s strong three valued logic
[10] in which f ∧ ⊥ = ⊥ ∧ f = f . LISP, on the other hand, uses a
different three valued logic, an asymmetric one in which f ∧⊥ = f , but
⊥ ∧ f = ⊥. The logic used by LISP falls between the weak and strong
Kleene logics. By allowing ourselves to talk in terms of three valued
logics it becomes very simple to explain some elementary differences
between programming languages.



In [14], [13], [4], [5], [11], [12] a semantics for logic programs with
negations was developed, based on Kleene’s strong three valued logic.
This semantics, and weak stratified semantics agree completely. This is
important for several reasons. The coincidence of different approaches
argues for innate naturalness. There is a completeness result for three
valued semantics in [12], which is of major significance. The three
valued approach applies to arbitrary programs, not just to stratified
ones. And the three valued approach allows for generalizations to be
considered, based on alternate three valued logics (see, for instance,
[5] and [7]), a possibility that is difficult to explore if only classical
machinery can be employed. Indeed in Section 8 we briefly consider
a semantics based on the asymmetric logic of LISP. Use of this logic
makes the theory no more complicated, but yields a semantics that is
closer to real Prolog, with its particular search strategy.

2 Syntax

Logic programming is generally done over a Herbrand universe. But
real Prologs also allow numbers as constants, and other domains such
as words or infinite trees are possible (see [8]). For our purposes there
is no need for restrictions to a Herbrand universe, or to any particular
domain. Consequently we do things in considerable generality. Our
presentation here follows [6].

D is a non-empty domain, such as a Herbrand universe, or the
positive integers. We need names for members of D, to use in writ-
ing programs, so we use the logician’s trick of allowing members of D
in the formal language, to serve as names for themselves. With this
understanding, we define a programming language L(D).

We have an unlimited supply of relation symbols, of all arities, and
an unlimited supply of variables. These are common to all languages
L(D).

A term of L(D) is a variable or a member of D. An atomic formula
of L(D) is an expression of the form R(t1, . . . , tn) where R is an n-place
relation symbol and t1, . . . , tn are terms of L(D). A literal of L(D) is
an atomic formula of L(D) or the negation, ¬A, of an atomic formula
A of L(D).

A program clause of L(D) is an expression A ← B1, . . . , Bn where
A is an atomic formula of L(D) and B1,. . . ,Bn is a list, possibly empty,
of literals of L(D). If B1,. . . ,Bn are all atomic, A ← B1, . . . , Bn is a
Horn clause. A program of L(D) is a finite set of program clauses of



L(D). A Horn clause program of L(D) is a finite set of Horn clauses of
L(D).

3 Beginning semantics

Definition 3.1 T WO is the space of classical truth values {t, f}, with
the ordering <2 under which f <2 t. T HREE is the three-valued truth
value space, {t, f ,⊥}, with the ordering <3 under which ⊥ <3 f and
⊥ <3 t. (⊥ is read as undefined.) A two-valued (or ordinary) relation
on a set D is a mapping R from Dn to T WO. Likewise a three-valued
relation is a mapping to T HREE.

Thus <2 is an ordering based on degree of truth, while <3 is one
based on degree of information. The notion of work space for logic
programs was introduced in [6] as a pedegogical device and to simplify
the task of understanding program behavior. It is implicit in the notion
of stratification.

Definition 3.2 A two valued work space consists of: 1) a tuple, 〈D,
R1, . . . , Rn〉 where D is the domain and R1, . . . , Rn are two valued
relations on D, called given relations; 2) a pairing of a relation symbol
Ri with each given relation Ri. These relation symbols are said to be
reserved in the work space. A three valued work space is defined in the
same way, but using three valued relations.

The given relations of a three valued work space can be thought of
as partial relations, sometimes true, sometimes false, sometimes with
an unknown truth value. Every two valued work space is trivially a
three valued one. We will denote a given relation by a bold face letter,
like R, and the relation symbol paired with it by a slant roman version,
R. Then we need only specify a work space 〈D,R1, . . . ,Rn〉, leaving
the reserved relation symbols to be understood.

Example 3.1 The following are examples of two valued work spaces.

1. Domain: the set of non-negative integers. Given relation: S,
where S(x, y) iff y = x+ 1.

2. Domain: the Herbrand universe built up from a finite set of con-
stant symbols using the one place function symbol f and the two
place function symbol g. Given relations: F and G where F(x, y)
iff y = f(x) and G(x, y, z) iff z = g(x, y). This is a setting for
conventional logic programming.



Definition 3.3 A program P of L(D) is in a work space 〈D, R1, . . . ,
Rn〉 if no reserved relation symbol appears in the head of any clause of
P .

For many examples of such programs, see [6], Chapters 1 and 2. At
a minimum a semantics for a logic program must supply an assignment
of truth values to ground atomic formulas.

Definition 3.4 Suppose 〈D, R1, . . . , Rn〉 is a two valued work space.
A two valued interpretation is a mapping v from ground (variable-free)
atomic formulas of L(D) to T WO. v is in the work space if, for each
given relation Ri, v(Ri(a)) = Ri(a). Three valued interpretations are
defined similarly, using T HREE.

Interpretations are given the ‘pointwise’ ordering. That is, for two
valued interpretations we take v <2 w provided v(A) <2 w(A) for each
ground atomic formula A. Similarly for three valued interpretations.
Since T WO is a complete lattice, this makes the collection of two valued
interpretations into a complete lattice also. Then by the Knaster-Tarski
Theorem, every order preserving map has both a smallest and a biggest
fixed point. T HREE is not a complete lattice. It is, however, a com-
plete partial ordering, and more strongly a complete semi-lattice. This
structure carries over to the collection of three valued interpretations.
By a generalization of the Knaster-Tarski Theorem order preserving
maps must have smallest, though not biggest, fixed points [4].

In [16] and [2] an operator TP was associated with each Horn clause
program P , mapping two valued interpretations to two valued interpre-
tations. Loosely speaking, if v represents a state of knowledge, TP (v)
is the state that results when the clauses in P are used once, starting
from v. We make this more precise.

Definition 3.5 If P is a program of L(D), by P (D) we mean the set
of all ground clauses that are substitution instances over D of program
clauses of P . (In general, P (D) will be infinite.)

Definition 3.6 Let P be a Horn clause program in the two valued work
space 〈D, R1, . . . , Rn〉. An operator TP on two valued interpretations
is defined as follows. If v is a two valued interpretation, TP (v) = w
where, for a reserved relation symbol Ri, w(Ri(a)) = Ri(a); and for a
non-reserved relation symbol S, w(S(a)) = t iff there is a Horn clause
in P (D) whose head is S(a), such that each atomic formula in the
clause body is mapped to t by v.



TP maps two valued interpretations in a work space to two valued
interpretations that are also in the work space, and TP is order preserv-
ing. Consequently TP has both a smallest and a biggest fixed point. [2]
shows that the smallest fixed point of TP supplies us with the ‘success
set’ for program P , while [9] shows the largest fixed point gives us the
‘ground failure set’. In [4] we defined an analogous ΦP operator on
three valued interpretations.

Definition 3.7 Let P be a program (allowing negations) in the three
valued work space 〈D, R1, . . . , Rn〉. We associate with it a mapping ΦP

on the space of three valued interpretations. Let ΦP (v) = w where, for
a reserved relation symbol Ri, w(Ri(a)) = Ri(a). For a non-reserved
relation symbol S, w(S(a)) = t if there is a clause in P (D) whose head
is S(a) and whose body is mapped to t by the input interpretation v;
w(S(a)) = f if every clause in P (D) whose head is S(a) has a body that
v maps to f ; and w(S(a)) = ⊥ otherwise. The value that v assigns to
a clause body is t provided for every unnegated literal A in the clause
body, A maps to t, and for every negated literal ¬A in the clause body
A maps to f under v. Likewise v maps a clause body to f provided for
some unnegated literal A in the body A maps to f , or for some negated
literal ¬A in the body A maps to t.

The operator ΦP is based on Kleene’s strong three valued logic,
though this may not be immediately apparent because of the way we
defined things above. A logic program that has many clauses for a
particular relation symbol can be converted into one with a single clause
for it, provided a more general notion of clause is allowed. A comma is
treated as as an ∧; multiple clauses are joined using ∨; ‘extra’ variables
are thought of as existentially quantified. (These steps are familiar
from Clark’s completed data base.) In this way a program converts
into one in which each relation symbol occurs in at most one head,
but bodies can be more general formulas of logic. Now the operator
ΦP can be re-defined in the following simple way: ΦP (v) = w where,
for an unreserved relation symbol S that occurs in a head in P , say in
S(x) ← B(x), w(S(a)) has the same truth value that B(a) has, when
atomic formulas are given truth values according to v, and connectives
and quantifiers are evaluated using Kleene’s strong three-valued logic.
See [4] for more details.

ΦP is an order preserving operator on the space of three-valued
interpretations, so it has a least fixed point, though generally not a
greatest one. In [4] we argued that this least fixed point gives a mean-
ingful semantics for logic programs allowing negations. In particular



we showed there was a strong connection between the two and three
valued semantics for programs not involving negations. We re-state
that result, generalized to arbitrary (two valued) work spaces.

Proposition 3.1 Let P be a Horn clause program, in a two valued
workspace W, and let A be a ground atomic formula.

1. A is true in the least fixed point of ΦP iff A is true in the least
fixed point of TP .

2. A is false in the least fixed point of ΦP iff A is false in the greatest
fixed point of TP .

4 An elementary generalization

As a first step in extending the ideas of [2] to cover stratified programs
we make a minimal generalization to allow three valued work spaces,
and negations applied to reserved relation symbols. If we have a three
valued work space we must associate some two valued work space with
it so that the TP operator can used. Suppose we have a partial relation
R and a program P that uses it as a given relation. And suppose we
want to determine the least fixed point of TP , to establish what must
be true. This means we want to minimize truth, taking something to
be true only if we are forced to do so. Hence we should take R(a) to
be true only if R says so. But on the other hand suppose we want the
greatest fixed point of TP , to establish what must be false. Now we
want to minimize falsehood, and maximize truth. So we should take
R(a) to be true if R does not say otherwise, that is, if R(a) is not
false. This suggests we need two work spaces, a lower one in which R
is interpreted strictly, and an upper one in which R is interpreted as
liberally as possible. Similar comments apply to ¬R.

Definition 4.1 Let R be a three valued relation. We define four as-
sociated two valued relations as follows. In the first two cases we give
the condition for mapping to t, which is enough to completely specify a
two valued relation. In the second two cases the negation is classical.

1. R+(a) = t⇐⇒ R(a) = t,

2. R−(a) = t⇐⇒ R(a) = f ,

3. R+(a) = ¬R−(a),

4. R−(a) = ¬R+(a).



R+ and R− represent the positive and negative information con-
tained in R. But R+ and R− also do in a weak, default way. For
example, R+(a) is t if R does not force it to be f (it is either t or ⊥
as far as R is concerned). Trivially R+ ≤2 R+ and R− ≤2 R−. If we
think of R as partial information about a relation that is actually two
valued, R+ and R+ provide lower and upper bounds on when R holds;
similarly R− and R− provide bounds on R failing.

Definition 4.2 Let W = 〈D, R1, . . . , Rn〉 be a three valued work
space. We associate with it a lower and an upper two valued work
space as follows. W∗ = 〈D, R1+,R1−, . . . , Rn+,Rn−〉. W∗ = 〈D,
R+

1 ,R
−
1 , . . . , R+

n ,R
−
n 〉. We call W∗/W

∗ a lower/upper work space
pair, and say it is associated with the three valued work space W.

It is straightforward to reconstruct the three valued work space W
from the lower/upper pair W∗/W

∗, and we will assume if either W or
W∗/W

∗ is given then both are known.
If Ri is a reserved relation symbol, we will pair it with the given

relation Ri+ in W∗, and with R+
i in W∗. But also we will treat ¬Ri as

if it were also a reserved relation symbol. In W∗, ¬Ri will be associated
with Ri−, and in W∗ with R−i . Thus even though negation symbols are
present, they are being treated as syntactic devices producing ‘funny’
names for relations. We will think of programs involving negations as
if they were Horn programs, since negated relation symbols are being
treated positively.

Definition 4.3 A program P in a three valued work space W is ad-
missible in W if all negations in clause bodies are of reserved relation
symbols. P is admissible in a lower/upper work space pair if it is ad-
missible in the associated three valued work space.

An admissible (or indeed any) program has a meaning in the three
valued sense. But using the device mentioned above for interpreting
negations in W∗ and W∗, it also has meaning in these work spaces, in
the two valued sense. Here is a generalization of Proposition 3.1.

Proposition 4.1 Let P be admissible in W. For a ground atomic
formula A,

1. A maps to t using the least fixed point of ΦP in W ⇐⇒ A maps
to t using the least fixed point of TP in W∗,

2. A maps to f using the least fixed point of ΦP in W ⇐⇒ A maps
to f using the greatest fixed point of TP in W∗.



The smallest fixed point of a monotone operator in a complete semi-
lattice, and also the smallest and the biggest fixed points in a complete
lattice can be ‘approximated to’ via a transfinite sequence of steps. For
the two valued TP operator notation from [2] has become standard.
We give a definition for it, and a related one for the three valued ΦP

operator. This provides a tool for establishing Proposition 4.1.

Definition 4.4 Let P be a program in the three valued work space W.
For each ordinal α we define a three valued interpretation Φα

P as follows.

1. Φ0
P is the smallest three valued interpretation in W. That is, it

assigns truth values to atomic formulas involving reserved rela-
tion symbols in accordance with the given relations of W, and on
unreserved relation symbols it is identically ⊥;

2. Φα+1
P = ΦP (Φα

P ).

3. for a limit ordinal λ, Φλ
P = sup{Φα

P | α < λ}.

Definition 4.5 Let P be a Horn clause program in the two valued work
space W. For each ordinal α two valued interpretations TP ↑α and
TP ↓α are defined as follows.

1. TP ↑0 is the smallest two valued interpretation in W. It makes
reserved relation symbols and given relations agree, and otherwise
is identically f ;

2. TP ↑α+1= TP (TP ↑α);

3. for a limit ordinal λ, TP ↑λ= sup{TP ↑α| α < λ}.

1. TP ↓0 is the biggest two valued interpretation in W. It makes
reserved relation symbols and given relations agree, and otherwise
is identically t;

2. TP ↓α+1= TP (TP ↓α);

3. for a limit ordinal λ, TP ↓λ= inf{TP ↓α| α < λ}.

The sequence Φα
P increases to the least fixed point of ΦP . Similarly

for TP ↑α, while TP ↓α is decreasing, and converges to the greatest fixed
point of TP . Then Proposition 4.1 is an immediate consequence of the
following, which has a straightforward proof by transfinite induction.

Proposition 4.2 Let P be a logic program that is admissible in the
three valued workspace W. Let A be a ground atomic formula. Then,
for each ordinal α,



1. A maps to t under Φα
P in W ⇐⇒ A maps to t under TP ↑α in

W∗,

2. A maps to f under Φα
P in W ⇐⇒ A maps to f under TP ↓α in

W∗.

5 Work space extensions

For this section suppose we have a program P that is admissible in the
lower/upper work space pair W∗/W

∗, where W∗ = 〈D, R1+,R1−, . . . ,
Rn+,Rn−〉 and W∗ = 〈D, R+

1 ,R
−
1 , . . . , R+

n ,R
−
n 〉. Say the unreserved

relation symbols of P are S1, . . . , Sk. As in Section 4 we can use the
TP operator to assign meanings to these relation symbols.

Definition 5.1 For i = 1, . . . , k:

1. Si+(a) = t ⇐⇒ Si(a) maps to t using the least fixed point of TP
in W∗;

2. Si−(a) = t ⇐⇒ Si(a) maps to f using the greatest fixed point of
TP in W∗;

3. S+
i (a) = ¬Si−(a);

4. S−i (a) = ¬Si+(a).

We define a new lower/upper pair as follows:

1. V∗ = 〈D, R1+,R1−, . . . , Rn+,Rn−, S1+,S1−, . . . , Sk+,Sk−〉,
2. V∗ = 〈D, R+

1 ,R
−
1 , . . . , R+

n ,R
−
n , S+

1 ,S
−
1 , . . . , S+

k ,S
−
k 〉.

We refer to V∗/V
∗ as the P-extension of W∗/W

∗.

The lower/upper pair W∗/W
∗ corresponds to a three valued work

space W, and we can consider P as a program in W as well, using the
three valued semantics.

Definition 5.2 For i = 1, . . . , k, Si(a) is the truth value of Si(a) in
the least fixed point of ΦP in W. We define a new three valued work
space as follows. V = 〈D,R1, . . . , Rn,S1, . . . , Sk〉. We also refer to
V as the P-extension of W.

Thus we have notions of P -extension for both lower/upper work
space pairs and for three valued work spaces. (Only the first notion
makes use of admissibility; it plays no role in the three valued version.)
Proposition 4.1 immediately gives us the following.



Proposition 5.1 Suppose the lower/upper pair W∗/W
∗ and the three

valued work space W are associated, and P is a program that is ad-
missible in W. Then the P -extension of W and the P -extension of
W∗/W

∗ are also associated.

6 Weak stratified semantics

In [1] and [17], and earlier in [3], stratification was introduced into logic
programming, based on the idea that relations must be completely de-
fined before they can be used negatively. Not all programs are stratifi-
able, and for those that are the stratification need not be unique.

Associated with the syntactical notion of stratification is a fixed
point semantics, the so-called stratified semantics. It assigns a two-
valued meaning to a stratified program that is independent of its strat-
ification. In this section we present a somewhat more complex seman-
tics for stratified programs which we call weak stratified semantics that
gives both smallest and biggest fixed points roles to play. In the next
section we show it too assigns meanings to stratified programs that are
independent of the particular stratification. And we show the resulting
semantics is equivalent to the three valued semantics for stratifiable
programs.

Suppose we have a logic program P in a work space W0 = 〈D,
R1, . . . , Rn〉. W0 can be a two or a three valued work space; it adds
no complications to deal with partial relations from the start. And
suppose further that we have a stratification of P . That is, the clauses
of P can be divided into strata (in effect, subprograms) P1, . . . , Pk, so
that:

1. each clause of P occurs in exactly one Pi;

2. all defining clauses for a relation symbol S occur in the same Pi;

3. if a clause is in Pi and if the unreserved relation symbol S occurs
unnegated in the clause body, the defining clauses for S occur in
Pj for some j ≤ i;

4. if a clause is in Pi and if the unreserved relation symbol S occurs
negated in the clause body, the defining clauses for S occur in Pj
for some j < i.

Now we use the program P , and its stratification, to define a se-
quence of lower/upper pairs, W0∗/W

∗
0, W1∗/W

∗
1, . . . , Wk∗/W

∗
k as

follows.



1. W0∗ and W∗
0 are the lower and upper work spaces associated with

W0. P1 will be admissible in W0∗/W
∗
0.

2. Suppose we have defined Wi∗/W
∗
i , and Pi+1 is admissible in

Wi∗/W
∗
i . Let Wi+1∗/W

∗
i+1 be the Pi+1-extension of Wi∗/W

∗
i .

Pi+2 will be admissible in Wi+1∗/W
∗
i+1.

Thus we produce a sequence of lower/upper pairs, and we can take the
final one Wk∗/W

∗
k as supplying a “meaning” for the program P itself.

It is the meaning assigned by this last lower/upper pair that we refer
to as the weak stratified semantics.

Our use of lower/upper pairs has given both the smallest and the
biggest fixed points of the TP operator roles to play. In the standard
stratified semantics only the smallest fixed point is used. We can get the
same effect here via a simple modification. First, suppose the initial
work space W0 is two valued. Then, carry out the construction as
above, but with every occurrence of “greatest fixed point” replaced
by an occurrence of “least fixed point”. This makes lower and upper
work spaces in the sequence identical, and so the machinery can be
simplified. Now, the meaning assigned by the last term in the sequence
is (equivalent to) the conventional notion of stratified semantics.

The disadvantage of the standard notion of stratified semantics is
obvious. Negation is treated semantically via complementation. But
since the relations that can be represented using Horn clause programs
are exactly the recursively enumerable ones, complements are not gen-
erally computable. [2] gives a simple example of a program for which
the corresponding TP operator is not ‘down continuous’. This example
shows that computability problems still arise for weak stratification,
though not in such a straightforward way. In general, approximations
to greatest fixed points that ‘cut off’ after ω steps are reasonable to
consider, from a computational point of view. The advantage of weak
stratification is that the machinery is present to consider truncation is-
sues. This is not the case with the standard stratified semantics, which
reduces negations to complementations in one step, and leaves no role
at all for a process of approximation.

7 Connections

By using lower/upper pairs, and the classical TP operator, we have
assigned a three-valued meaning to a stratified program P . The as-
signment requires the construction of a sequence of work space pairs,



one for each level of stratification. On the other hand ΦP also assigns
a meaning to P , whether stratified or not, and does so in a single work
space.

Proposition 7.1 For a stratified program P the meaning assigned us-
ing the weak stratified semantics, and the meaning assigned using ΦP

are the same.

To prove this one needs Proposition 5.1 and the following, whose
(omitted) proof is by induction on i, within which is a transfinite in-
duction on the sequence of approximations to the least fixed points.

Lemma 7.2 Let P be a stratified program in work space W0, with P1,
. . . , Pk as a stratification. Let W0, W1, . . . , Wk be the sequence of
three valued work spaces such that Wi is the Pi extension of Wi−1.
Suppose S is an unreserved relation symbol whose defining clauses are
in Pi. Then the truth value of S(a) in the least fixed point of ΦPi,
calculated in Wi−1 is the same as the truth value of S(a) in the least
fixed point of ΦP , calculated in W0.

Corollary 7.3 The meaning assigned to a stratified program using a
sequence of two valued lower/upper pairs is independent of the stratifi-
cation.

8 Conclusions

We have presented a semantics based on two valued classical logic, ap-
plicable to stratified logic programs. We have argued that it is a better
candidate for a program semantics than the conventional stratified se-
mantics, because its treatment of negation makes use of greatest fixed
points rather than complements. Further it can be shown, though we
do not do so here, that whenever the weak stratified semantics assigns
a truth value of t or f , the conventional stratified semantics will assign
the same truth value. (The converse is not true since the conventional
stratified semantics does not use ⊥ and so must assign t or f to every-
thing.) Thus our version of stratified semantics is consistent with the
conventional version, but narrower in its assignment of truth values.
For instance, using the familiar program p ← p, the conventional se-
mantics assigns to p the value f , whereas ours leaves p without a truth
value, ⊥ in other words.

We have also shown that our version of stratified semantics agrees
fully with the three valued semantics based on Kleene’s logic. This



is significant for several reasons. The three valued approach is con-
siderably simpler in terms of the machinery required. And it is more
general, since it applies to all programs, not just to stratified ones. For
example, although p ← p is stratified, p ← ¬p is not. Still the three
valued semantics is applicable, and assigns p the value ⊥ as might be
expected. As another example, consider the program

even(0)← .

even(s(X))← ¬even(X).

This is not stratified. It is locally stratified though [15], and it is easy
to check that the meaning assigned via the three valued approach coin-
cides with that assigned via local stratification. It would be of interest
to establish a general relationship between these semantical approaches.
A basic point stands out: the three valued semantics is generally appli-
cable, and does not need modification or extension every time a wider
class of programs is considered.

We mentioned in Section 6 the problem of computability: weak
stratified, or three-valued semantics may lead to relations that are not
recursively enumerable. This is an issue with conventional stratified
semantics as well. But for the three-valued version an attractive alter-
native is available. The natural cut-off point for computability is after
ω steps in the approximation sequence. In other words, work with Φω

P

instead of the least fixed point of ΦP , or equivalently work with TPi ↑ω
and TPi ↓ω. [11] and [12] give a completeness result based on this idea
which makes it very attractive indeed.

Finally, the three valued approach is susceptible to further gener-
alization, because other three valued logics are around. In [5] we con-
sidered a three valued logic based on supervaluations, and showed it
coincided with a proof procedure based on semantic tableaux allowing
recursive calls. Another attractive possibility is to use the asymmetric
three valued logic that LISP uses, in which conjunctions and disjunc-
tions are evaluated from left to right. The whole three valued approach
works using this asymmetric logic too, because the essential monotonic-
ity conditions on ∧ and ∨ are still met. And the resulting semantics is
closer to real Prolog, because the truth conditions for ∧ and ∨ amount
to a left-right evaluation of clause bodies, and a first-to-last considera-
tion of clauses. We hope to investigate this asymetric semantics further
elsewhere.

Research of Fitting partly supported by NSF Grant CCR-8702307 and
PSC-CUNY Grant 667295.



References

[1] K. R. Apt, H. A. Blair, A. Walker, Towards a theory of declar-
ative knowledge, Foundations of Deductive Databases and Logic
Programming, J. Minker ed, Morgan Kaufmann, Los Altos (1987).

[2] K. R. Apt, M. H. Van Emden, Contributions to the theory of
logic programming, J. Assoc. Comput. Mach., vol 29, pp 841–863
(1982).

[3] A. K. Chandra, D. Harel, Horn clause queries and generalizations,
J. Logic Programming, vol 2, pp 1–15 (1985).

[4] M. C. Fitting, A Kripke-Kleene semantics for logic programs, J.
Logic Programming, vol 3, pp 93–114 (1986).

[5] M. C. Fitting, Partial models and logic programming, Theoretical
Computer Science, vol 48, pp 229–255 (1986).

[6] M. C. Fitting, Computability Theory, Semantics, and Logic Pro-
gramming, Oxford University Press, New York (1987).

[7] M. C. Fitting, Logic programming on a topological bilattice, forth-
coming in Fundamenta Informaticae.

[8] J. Jaffar, J.-L. Lassez, Constraint Logic Programming, POPL
(1987).

[9] J. Jaffar, J.-L. Lassez, M. J. Maher, A logic programming language
scheme, Logic Programming: Relations, Functions and Equations,
D. DeGroot and G. Lindstrom editors, Prentice-Hall (1986).

[10] S. C. Kleene, Introduction to Metamathematics, Van Nostrand,
Princeton (1952).

[11] K. Kunen, Negation in logic programming, J. Logic Programming,
vol 4, pp 289–308 (1987).

[12] K. Kunen, Signed data dependencies in logic programs, forthcom-
ing in J. Logic Programming.

[13] J.-L. Lassez, M. J. Maher, Optimal fixedpoints of logic programs,
Theoretical Computer Science, vol 39, pp 15–25 (1985), reprinted
from FST-TCS Conference, Bangalore (1983).



[14] A. Mycroft, Logic programs and many-valued logics, Proc. 1st
STACS Conf. (1983).

[15] T. Przymusinski, On the declarative semantics of deductive
databases and logic programs, Foundations of Deductive Databases
and Logic Programming, J. Minker ed, Morgan Kaufmann, Los Al-
tos (1987).

[16] M. H. Van Emden, R. A. Kowalski, The semantics of predicate
logic as a programming language, J. ACM, vol 23, pp 733–742
(1976).

[17] A. Van Gelder, Negation as failure using tight derivations for gen-
eral logic programs, Proc. 3rd IEEE Symp. on Logic Programming,
Salt Lake City, pp 127–138 (1986).


