
Stratified, Weak Stratified,
and Three-valued Semantics∗

Melvin Fitting
mlflc@cunyvm.cuny.edu

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

Depts. Computer Science, Philosophy, Mathematics
Graduate Center (CUNY), 33 West 42nd Street, NYC, NY 10036 †

Marion Ben-Jacob
Dept. of Math. and Comp. Inf. Science,

Mercy College, 555 Broadway,
Dobbs Ferry, NY 10522

Abstract

We investigate the relationship between three-valued Kripke/Kleene semantics and
stratified semantics for stratifiable logic programs. We first show these are compatible,
in the sense that if the three-valued semantics assigns a classical truth value, the strat-
ified approach will assign the same value. Next, the familiar fixed point semantics for
pure Horn clause programs gives both smallest and biggest fixed points fundamental
roles. We show how to extend this idea to the family of stratifiable logic programs,
producing a semantics we call weak stratified. Finally, we show weak stratified seman-
tics coincides exactly with the three-valued approach on stratifiable programs, though
the three-valued version is generally applicable, and does not require stratification
assumptions.

1 Introduction

Logic programming using Horn clauses has a well-understood and generally accepted se-
mantics based on classical logic ([20], [2]). But once negation is added to the machinery

∗This is an expanded version of [10]
†Research partly supported by NSF Grant CCR-8702307 and PSC-CUNY Grant 6-67295.

1

2 Melvin Fitting & Marion Ben-Jacob

things become more problematic. Two general fixed point approaches allowing negations
have been introduced. One is that of stratification. In this, classical logic is still used, but
certain restrictions are placed on allowed programs, so-called stratifiability restrictions ([1],
[21], [3]). The other approach places no such restrictions, but substitutes a three-valued
logic for the more familiar classical one ([17], [16], [4], [6], [14], [15]). Both approaches have
their problems, but also both have natural motivations. In this paper we investigate the
relationship between the two semantics, and we introduce a third version yet, which we call
weak stratification.

We begin by introducing the machinery for the classical stratified, and the three-valued
fixed point semantics, using the notion of work space, taken from [7]. This is a convenience,
not a necessity, but we believe it provides natural and convenient machinery for logic pro-
gramming investigations. We then prove that three-valued semantics is compatible with
classical stratified semantics, on stratified programs. That is, if the three-valued version
assigns a classical truth value (t or f , but not ⊥), the stratified semantics must assign the
same value.

In the classical fixed point semantics for programs without negation, [12] argues that
the success set should be given by the least fixed point of what has become known as the
T -operator, but the (ground) failure set by the greatest fixed point. This way of using the
classical T -operator is essentially three-valued: not every ground atomic formula will be
determined to succeed or to fail since there may be a gap between the least and the greatest
fixed points. But in stratified semantics, the greatest fixed point plays no role. Loosely
speaking, at each level of a stratification success is determined using the least fixed point of
a T -operator associated with that portion of the program, but failure, or negation, is dealt
with simply using complementation.

We define a modified version of stratified semantics that uses both least and greatest fixed
points at every level of the stratification. The machinery needed for this is fairly elaborate.
The T -operator uses classical logic, but when least and greatest fixed points are involved,
the result can be three-valued, as observed above. This means that if we start off with a
two-valued semantics at one level of stratification, we may have a three-valued semantics
at the next, and this must somehow be converted back into a two-valued version so that a
T -operator can be used once again. Nonetheless, there is a reasonable way of doing this, and
a natural semantics emerges which we call the weak stratified semantics.

Our final result is that, for stratified programs, weak stratified semantics and three-valued
semantics coincide.

There has been some understandable resistance to a semantics based on a three-valued
logic. As Kunen says [15], “Many people will find a 3-valued logic not as natural or easy
to understand as 2-valued logic. This is not a mathematical problem, but it does indicate
a failure to give programmers a clear and understandable explanation of the declarative
meaning of their Prolog programs.” But one can argue that a three-valued logic was implicitly
present in [2] all along, and was actually made explicit in [16]. And in fact, a three-valued
logic is very natural to use when discussing the semantics of any programming language.

Stratified, weak stratified and three-valued semantics 3

Think of the three values as true (t), false (f), and undefined (⊥). Suppose, in Pascal, we have
an instruction that starts with “if P and Q then . . . ”, where P and Q are functions that
return Boolean. What will happen if P returns f , but the function call Q never terminates?
The easiest way to explain things is to say that many implementations of Pascal implicitly
use a three-valued logic in which f ∧ ⊥ = ⊥ ∧ f = ⊥. In fact, this logic is well-known: it is
Kleene’s weak three-valued logic [13]. Pure logic programming, without Prolog’s particular
control structure, can be thought of as using Kleene’s strong three-valued logic [13] in which
f∧⊥ = ⊥∧f = f . LISP, on the other hand, uses a different three-valued logic, an asymmetric
one in which f ∧⊥ = f , but ⊥∧ f = ⊥. The logic used by LISP falls between the weak and
strong Kleene logics. By allowing ourselves to talk in terms of three-valued logics it becomes
very simple to explain some elementary differences between programming languages.

We take the coincidence of weak stratified semantics and three-valued semantics, for
stratified logic programs, as an argument for the innate naturalness of the three-valued
approach. Also the three-valued approach applies to arbitrary programs, not just to stratified
ones. And finally, the three-valued approach allows for generalizations to be considered,
based on alternate three-valued logics (see, for instance, [6], [8] and [9]), a possibility that
is difficult to explore if only classical machinery can be employed. Indeed in Section 7 we
briefly consider a semantics based on the asymmetric logic of LISP. Use of this logic makes
the theory no more complicated, but yields a semantics that is closer to real Prolog, with its
particular search strategy.

2 Syntax

Logic programming is generally done over the Herbrand universe. But real Prologs also allow
numbers as constants, and other domains such as words or infinite trees are possible (see
[11]). For our purposes there is no need for restrictions to a Herbrand universe, or to any
particular domain. Consequently we do things in considerable generality. Our presentation
here follows [7].

D is a non-empty domain, such as a Herbrand universe, or the positive integers. We
need names for members of D, to use in writing programs, so we use the logician’s trick of
allowing members of D in the formal language, to serve as names for themselves. With this
understanding, we define a programming language L(D).

We have an unlimited supply of relation symbols, of all arities, and an unlimited supply
of variables. These are common to all languages L(D).

A term of L(D) is a variable or a member of D. An atomic formula of L(D) is an
expression of the form R(t1, . . . , tn) where R is an n-place relation symbol and t1, . . . , tn are
terms of L(D). A literal of L(D) is an atomic formula of L(D) or the negation, ¬A, of an
atomic formula A of L(D).

A program clause of L(D) is an expression A← B1, . . . , Bn where A is an atomic formula
of L(D), called the head and B1,. . . ,Bn is a list, possibly empty, of literals of L(D), called

f

t f t

⊥

4 Melvin Fitting & Marion Ben-Jacob

Figure 1: The partial orderings T WO and T HREE

the body. If B1,. . . ,Bn are all atomic, A← B1, . . . , Bn is a Horn clause. A program of L(D)
is a finite set of program clauses of L(D). A Horn clause program of L(D) is a finite set
of Horn clauses of L(D). Finally, a literal or a program clause is ground if it contains no
variables.

3 Beginning semantics

Definition 3.1 T WO is the space of classical truth values {t, f}, with the ordering <2

under which f <2 t. T HREE is the three-valued truth value space, {t, f ,⊥}, with the
ordering <3 under which ⊥ <3 f and ⊥ <3 t. (⊥ is read as undefined.) A two-valued (or
ordinary) relation on a set D is a mapping R from Dn to T WO. Likewise a three-valued
relation is a mapping to T HREE .

Thus <2 is an ordering based on degree of truth, while <3 is one based on degree of
information. These orderings are given schematically in Figure 1. This contrast between
truth and information content receives a fuller treatment in [9].

The notion of work space for logic programs was introduced in [7] as a pedegogical device
and to simplify the task of understanding program behavior. It is implicit in the notion of
stratification.

Definition 3.2 A two-valued work space consists of:

1. a tuple, 〈D, R1, . . . , Rn〉 where D is the domain and R1, . . . , Rn are two-valued
relations on D, called given relations;

2. a pairing of a distinct relation symbol Ri with each given relation Ri. These relation
symbols are said to be reserved in the work space.

A three-valued work space is defined in the same way, but using three-valued relations.

The given relations of a three-valued work space can be thought of as partial relations,
sometimes true, sometimes false, sometimes with an unknown truth value. Every two-valued

Stratified, weak stratified and three-valued semantics 5

work space is trivially a three-valued one. We will denote a given relation by a bold face
letter, like R, and the relation symbol paired with it by a slant roman version, R. Then we
need only specify a work space 〈D,R1, . . . ,Rn〉, leaving the reserved relation symbols to be
understood.

Example 3.3 The following are examples of two-valued work spaces.

1. Domain: the set of non-negative integers. Given relation: S, where S(x, y) iff y = x+1.

2. Domain: the Herbrand universe built up from a finite set of constant symbols using
the one place function symbol f and the two-place function symbol g. Given relations:
F and G where F(x, y) iff y = f(x) and G(x, y, z) iff z = g(x, y). This is a typical
setting for conventional logic programming.

For interesting examples of three-valued work spaces, see [5]. In a work space we are
given certain relations; we do not compute them. The following definition reflects this idea.
In fact, the restriction has considerable technical import, which we can not go into here; see
[7].

Definition 3.4 A program P of L(D) is in a work space 〈D, R1, . . . , Rn〉 if no reserved
relation symbol appears in the head of any clause of P .

For many examples of such programs, see [7], Chapters 1 and 2. At a minimum a
semantics for a logic program must supply an assignment of truth values to ground atomic
formulas.

Definition 3.5 Suppose 〈D, R1, . . . , Rn〉 is a two-valued work space. A two-valued in-
terpretation is a mapping v from ground atomic formulas of L(D) to T WO. v is in the
work space if, for each given relation Ri, v(Ri(a)) = Ri(a). Three-valued interpretations are
defined similarly, using T HREE .

Interpretations are given the ‘pointwise’ ordering. That is, for two-valued interpretations
we take v <2 w provided v(A) <2 w(A) for each ground atomic formula A. Similarly for
three-valued interpretations. Since T WO is a complete lattice, this makes the collection of
two-valued interpretations into a complete lattice also. Then by the Knaster-Tarski Theorem
[19], every order preserving map has both a smallest and a biggest fixed point. T HREE is not
a complete lattice. It is, however, a complete partial ordering, and more strongly a complete
semi-lattice. This structure carries over to the collection of three-valued interpretations. By
a generalization of the Knaster-Tarski Theorem, order preserving maps must have smallest,
though not biggest, fixed points [4].

Definition 3.6 We use the notation µf to denote the least fixed point of f (if it exists) and
νf to denote the greatest fixed point of f (again, provided it exists).

6 Melvin Fitting & Marion Ben-Jacob

We want to introduce the standard two-valued fixpoint semantics, and also the three-
valued version. We first need a few auxiliary definitions.

Definition 3.7 If P is a program of L(D), by P (D) we mean the set of all ground clauses
that are substitution instances over D of program clauses of P . (In general, P (D) will be
infinite.)

Next, we say how to calculate the value of the body of a ground clause, under an inter-
pretation. (The body of a ground clause is a list of literals.) We give the definition only for
three-valued interpretations; this includes the two-valued version as a special case; the value
⊥ is never taken on.

Definition 3.8 Suppose v is a three-valued interpretation in the work space 〈D, R1, . . . ,
Rn〉.

Literal If ¬A is a literal,

v(¬A) =

t if v(A) = f
f if v(A) = t
⊥ otherwise

Empty List
v([]) = t

Non-Empty List

v([A1, . . . , An]) =

t if for every i, v(Ai) = t
f if for some i, v(Ai) = f
⊥ otherwise

In [20] and [2] an operator TP was associated with each Horn clause program P , mapping
two-valued interpretations to two-valued interpretations. Loosely speaking, if v represents
a state of knowledge, TP (v) is the state that results when the clauses in P are used once,
starting from v. We make this more precise.

Definition 3.9 Let P be a Horn clause program in the two-valued work space 〈D, R1, . . . ,
Rn〉. An operator TP mapping two-valued interpretations to two-valued interpretations is
defined as follows. If v is a two-valued interpretation:

Reserved Case
TP (v)(Ri(a)) = Ri(a)

Stratified, weak stratified and three-valued semantics 7

Non-Reserved Case

TP (v)(A) =

{
t if there is a clause A← B in P (D), such that v(B) = t
f if for every clause A← B in P (D), v(B) = f

TP maps two-valued interpretations in a work space to two-valued interpretations that
are also in the work space, and TP is order preserving using the ordering ≤2, given that P
is a Horn clause program. (The absence of negation is essential here.) Consequently TP
has both a smallest and a biggest fixed point. [2] shows that the smallest fixed point, µTP ,
supplies us with the ‘success set’ for program P , while [12] shows the largest fixed point, νTP ,
gives us the ‘ground failure set’. In [4] we defined an analogous ΦP operator on three-valued
interpretations.

Definition 3.10 Let P be a program (allowing negations) in the three-valued work space
〈D, R1, . . . , Rn〉. We associate with it a function ΦP mapping three-valued interpretations
to three-valued interpretations as follows. If v is a three-valued interpretation:

Reserved Case

ΦP (v)(Ri(a)) = Ri(a)

Non-Reserved Case

ΦP (v)(A) =

t if there is a clause A← B in P (D), such that v(B) = t
f if for every clause A← B in P (D), v(B) = f
⊥ otherwise

The operator TP is classical and behaves as if atomic formulas in clause bodies were
joined using the classical ∧ operation, while multiple clauses having the same head act like
their bodies were joined using the classical ∨. Similarly the operator ΦP is based on Kleene’s
strong three-valued logic [13]. The negation operation used is Kleene’s, and clause bodies,
and multiple clauses are joined using Kleene’s ∧ and ∨ operations. See [4] for more details.

ΦP is an order preserving operator on the space of three-valued interpretations, under
the ordering ≤3, so it has a least fixed point, µΦP , though generally not a greatest one.
In [4] we argued that this least fixed point gives a meaningful semantics for logic programs
allowing negations. In particular we showed there was a strong connection between the two
and three-valued semantics for programs not involving negations. We re-state that result,
generalized to arbitrary (two-valued) work spaces.

Proposition 3.11 Let P be a Horn clause program, in a two-valued workspace W, and let
A be a ground atomic formula.

1. (µΦP)(A) = t iff (µTP)(A) = t.

8 Melvin Fitting & Marion Ben-Jacob

2. (µΦP)(A) = f iff (νTP)(A) = f .

The smallest fixed point of a monotone operator in a complete semi-lattice, and also the
smallest and the biggest fixed points in a complete lattice can be ‘approximated to’ via a
transfinite sequence of steps. For the two-valued TP operator, notation from [2] has become
standard. We give a definition for it, and a related one for the three-valued ΦP operator.
This provides a tool for establishing Proposition 3.11, though in fact, Proposition 3.11 is
generalized in Proposition 5.3, and we say more about its proof at that point.

Definition 3.12 Let P be a program in the three-valued work space W. For each ordinal
α we define a three-valued interpretation Φα

P as follows.

1. Φ0
P is the smallest three-valued interpretation in W. That is, it assigns truth values

to ground atomic formulas involving reserved relation symbols in accordance with the
given relations of W, and on unreserved relation symbols it is identically ⊥;

2. Φα+1
P = ΦP (Φα

P).

3. for a limit ordinal λ, Φλ
P = sup{Φα

P | α < λ}.

Definition 3.13 Let P be a Horn clause program in the two-valued work space W. For
each ordinal α two-valued interpretations TP ↑α and TP ↓α are defined as follows.

1. TP ↑0 is the smallest two-valued interpretation in W. It makes reserved relation
symbols and given relations agree, and otherwise is identically f ;

2. TP ↑α+1= TP (TP ↑α);

3. for a limit ordinal λ, TP ↑λ= sup{TP ↑α| α < λ}.

1. TP ↓0 is the biggest two-valued interpretation in W. It makes reserved relation symbols
and given relations agree, and otherwise is identically t;

2. TP ↓α+1= TP (TP ↓α);

3. for a limit ordinal λ, TP ↓λ= inf{TP ↓α| α < λ}.

The sequence Φα
P increases in the ordering ≤3, to the least fixed point of ΦP . Similarly

TP ↑α increases in the ordering ≤2 to the least fixed point of TP , while TP ↓α decreases, and
converges to the greatest fixed point of TP .

Stratified, weak stratified and three-valued semantics 9

4 Stratification

In [1] and [21], and earlier in [3], stratification was introduced into logic programming, based
on the idea that relations must be completely defined before they can be used negatively. Not
all programs are stratifiable, and for those that are the stratification need not be unique.
Associated with the syntactical notion of stratification is a fixed point semantics, the so-
called stratified semantics. It assigns a two-valued meaning to a stratified program that is
independent of its stratification. In this section we state the syntactic stratification condition,
and give a characterization of the classical stratified semantics in terms of work spaces. We
also say a little about the effect of stratification on three-valued semantics.

Definition 4.1 A logic program P (allowing negations) has a stratification if the clauses of
P can be divided into strata (in effect, subprograms) P1, . . . , Pk, so that:

1. each clause of P occurs in exactly one Pi;

2. all defining clauses for a relation symbol S occur in the same Pi;

3. if a clause is in Pi and if the unreserved relation symbol S occurs unnegated in the
clause body, the defining clauses for S occur in Pj for some j ≤ i;

4. if a clause is in Pi and if the unreserved relation symbol S occurs negated in the clause
body, the defining clauses for S occur in Pj for some j < i.

A logic program is stratifiable if it has a stratification.

Stratifiability is a syntactic condition. We now present the corresponding classical se-
mantics.

Definition 4.2 A program P in a work space W is admissible in W if all negations in clause
bodies are applied to reserved relation symbols.

Admissibility is the simplest case of stratifiability, since negation is only used on given
relations, never on those defined by the program, and so only one strata is needed. Now, if
W = 〈D, R1, . . . , Rn〉 is a two-valued work space, we can expand it to represent negative
information by adding the complement of each given relation as a new given relation. If
W = 〈D, R1, . . . , Rn〉, we will denote by W∗ the work space 〈D, R1,¬R1, . . . , Rn,¬Rn〉,
where ¬Ri is the complement of Ri. Then, if the program P is admissible in W, we can
interpret it as an ordinary Horn clause program in W∗ by thinking of ¬Ri as if it were a
new relation symbol, and associating it with the relation ¬Ri.

Definition 4.3 Suppose program P is admissible in the two-valued work space W. Say
the unreserved relation symbols of P are S1,. . . ,Sk. By the two-valued P-extension of W we
mean the two-valued work space that is like W, but with additional given relations S1,. . . ,Sk,
where Si(a) = (µTP)(Si(a)), where in turn the least fixed point of TP is evaluated in W∗.

10 Melvin Fitting & Marion Ben-Jacob

Now, suppose P is a stratified program, in the two-valued work space W, with stratifi-
cation P1, . . . , Pk. We define a sequence of work spaces, W0, W1,. . . ,Wk where: W0 = W,
and otherwise Wi is the two-valued Pi-extension of Wi−1. (This makes sense since, it is easy
to see, Pi will be admissible in Wi−1.) The classical stratified semantics for the program P is
that given by the final work space, Wk. It should be noted that the definition we gave makes
essential use of the particular stratification for P , but [1] proves the resulting semantics is
independent of stratification.

The notion of stratification is syntactic, so we can talk about a stratified program, but
consider a three-valued semantics. In such a case stratification is not necessary for supplying
a semantical meaning; in three-valued semantics all logic programs can be handled without
restriction. Still, the existence of a stratification does give us additional information.

Definition 4.4 Suppose program P is admissible in the three-valued work space W. Say
the unreserved relation symbols of P are S1,. . . ,Sk. By the three-valued P-extension of W
we mean the three-valued work space that is like W, but with additional given three-valued
relations S1,. . . ,Sk, where Si(a) = (µΦP)(Si(a)), and where the least fixed point of ΦP is
evaluated in W.

Definition 4.5 If v is a three-valued interpretation and P is a set of relation symbols, by
v\P (read v restricted to P) we mean the interpretation that agrees with v on members of
P , and is ⊥ otherwise.

What stratification tells us in the three-valued setting is that in computing meanings of
relation symbols we won’t need to consider anything from a higher strata. We make this
more precise.

Proposition 4.6 Let P be a stratified program in the three-valued work space W0, with
P1,. . . , Pk as a stratification. Let W0, W1,. . . , Wk be the sequence of three-valued work
spaces such that Wi is the three-valued Pi-extension of Wi−1. Let Pi be the set of reserved
relation symbols together with those whose defining clauses are at level i or less in the strat-
ification. Then, for all i, µΦPi = µΦP\Pi, where µΦPi is calculated in Wi−1 but µΦP is
calculated in W0.

Proof The argument is by induction on i. We assume µΦPi = µΦP\Pi for i < n, and we
show µΦPn = µΦP\Pn. We do this in two halves by showing each side is ≤3 the other. We
sketch one half and leave the other to the reader. We show µΦPn ≤3 µΦP\Pn. And this can
be done by a transfinite induction, showing for each ordinal α, Φα

Pn ≤3 µΦP\Pn.
If α = 0, we have the following argument. Φ0

Pn = µΦPn−1 because Φ0
Pn agrees with

the given relations of Wn−1 and is otherwise ⊥, and these given relations are the ones
determined by µΦPn−1 . Next, µΦPn−1 ≤3 µΦP\Pn−1 by the induction hypothesis, and this in
turn is trivially ≤3 µΦP\Pn since Pn−1 ⊆ Pn. (We have omitted the straightforward n = 1
case.)

Stratified, weak stratified and three-valued semantics 11

Suppose the result is known for α; we show it for α+ 1. To do this we show that for each
ground clause A, Φα+1

Pn (A) ≤3 (µΦP\Pn)(A). If the left hand side is ⊥, or if A involves a
reserved relation symbol in Wn−1 the result is trivial. Now suppose this is not the case, and
say Φα+1

Pn (A) = t. (The case of it being f is similar.) Then there is an instance of a clause in
Pn, A← C with Φα

Pn(C) = t. Using the transfinite induction hypothesis, (µΦP\Pn)(C) = t,
and hence A is true under ΦP (µΦP\Pn). But ΦP (µΦP\Pn) ≤3 ΦP (µΦP) = µΦP , and so
µΦP (A) = t. It then follows that (µΦP\Pn)(A) = t.

Finally, the limit ordinal case is straightforward, and is omitted.

We now show that the three-valued semantics is compatible with the classical stratified
semantics, for stratified programs. That is, for a stratified program P , if the three-valued
semantics assigns a classical truth value, the classical stratified semantics must assign the
same value. The converse is not the case though, since the classical stratified semantics
must always assign either t or f , while the three-valued version can take on the value ⊥.
The following gives a precise statement of the result.

Proposition 4.7 Suppose P is a stratified program in the two-valued work space W. Let
v be the meaning assigned to P by the classical stratified semantics. (v is a two-valued
interpretation.) Then µΦP ≤3 v.

Proof We begin with the following notation. For three-valued work spaces A and B, we
will write A ≤3 B provided: 1) A = 〈D, R1, . . . , Rn〉 and B = 〈D,S1, . . . ,Sn〉 (thus they
have the same domains), 2) for each i, Ri and Si have the same arity (thus the two work
spaces have the same signatures), 3) for each i and a, Ri(a) ≤3 Si(a).

Now, suppose P1,. . .Pk is a stratification of P . For the classical stratified semantics we
construct a sequence of two-valued work spaces W0, W1,. . . , Wk, where W0 = W and Wi

is the two-valued Pi extension of Wi−1. We also can produce a sequence of three-valued
work spaces V0, V1,. . . Vk where V0 = W and Vi is the three-valued Pi extension of Vi−1.
We will show by induction on i that Vi ≤3 Wi, and hence that Vk ≤3 Wk. The classical
stratified semantics for P is supplied by Wk, while the three-valued model Vk gives us the
three-valued semantics for P , via an application of Proposition 4.6.

We need a few results, of some interest in their own rights, that will make the proof quite
simple.

Suppose A and B are three-valued work spaces, A ≤3 B, and Q is any program. Then
µΦQ evaluated in A ≤3 µΦQ evaluated in B. This can be shown by a straightforward
transfinite induction, using the approximation sequences to µΦQ.

If A is a two-valued work space, and Q is any program admissible in A, then µΦQ

evaluated in A ≤3 µTQ evaluated in A∗. This also can be proved using transfinite induction.
Now, the proof of the theorem is easy. W0 = V0 since both are W. For the induction

step, suppose Vi−1 ≤3 Wi−1. Vi is determined by the values assigned by µΦPi evaluated in
Vi−1, and Wi is determined similarly by µTPi evaluated in Wi−1∗. But, µΦPi evaluated in
Vi−1 ≤3 µΦPi evaluated in Wi−1, using the induction hypothesis and a result above, and
this in turn is ≤3 µTPi evaluated in Wi−1∗.

12 Melvin Fitting & Marion Ben-Jacob

5 Lower and upper work spaces

Three-valued semantics is compatible with the classical stratified semantics, but does not
coincide with it. On the other hand, as we observed earlier, classical stratified semantics
makes no use of the greatest fixed point of the operator TP , and thus has no role for the
ground failure set of [2]. We intend to find a place for this, and finally to exactly equate a
semantics based on the classical TP operator with the one provided by the three-valued ΦP

operator, for stratified programs. There is one problem we face at the very start, however.
Generally there is a gap between the least and the greatest fixed points of TP , which will
have the effect of leaving certain formulas without truth values. This means that, even if we
start with a two-valued work space, and use the classical TP operator, at the next stage in
the process of determining stratified semantics we may be faced with a three-valued work
space. What we need is a method of associating two-valued work spaces with three-valued
ones, so that we can restore a classical setting for the next stage of the process.

Suppose we have a partial relation R and we want to associate with it some classical
relation, in order to get a classical work space. Suppose also that we have a program P that
uses R as a given relation. If we want to determine the least fixed point of TP , to establish
what must be true, we want to minimize truth, taking something to be true only if we are
forced to do so. In such a case we should take R(a) to be true only if R says so. But on
the other hand suppose we want the greatest fixed point of TP , to establish what must be
false. Now we want to minimize falsehood, and maximize truth. So we should take R(a) to
be true if R does not say otherwise, that is, if R(a) is not false. This suggests we need two
work spaces, a lower one in which R is interpreted strictly, and an upper one in which R is
interpreted as liberally as possible. Similar comments apply to ¬R.

Definition 5.1 Let R be a three-valued relation. We define four associated two-valued
relations as follows. In the first two cases we give the condition for mapping to t, which is
enough to completely specify a two-valued relation. In the second two cases the negation is
classical.

1. R+(a) = t⇐⇒ R(a) = t,

2. R−(a) = t⇐⇒ R(a) = f ,

3. R+(a) = ¬R−(a),

4. R−(a) = ¬R+(a).

R+ and R− represent the positive and negative information contained in R. But R+ and
R− also do in a weak, default way. For example, R+(a) is t exactly when R says it is, but
R+(a) is t just when R does not force it to be f (it is either t or ⊥ as far as R is concerned).
Similarly for R−, R− and ¬R. It is easy to check that R+ ≤2 R+ and R− ≤2 R−. If we
think of R as partial information about a relation that is actually two-valued, R+ and R+

provide lower and upper bounds on when R holds; similarly R− and R− provide bounds on

Stratified, weak stratified and three-valued semantics 13

R failing. Finally, using the consensus operation ⊗ for the bilattice FOUR, as defined in
[9], we have R = R+ ⊗ R+ and ¬R = R− ⊗ R−, where this negation is that of Kleene’s
three-valued logic. (We will make no use of this observation about bilattices here.)

Definition 5.2 Let W = 〈D, R1, . . . , Rn〉 be a three-valued work space. We associate
with it a lower and an upper two-valued work space as follows. W∗ = 〈D, (R1)+, (R1)−, . . . ,
(Rn)+, (Rn)−〉. W∗ = 〈D, (R1)+, (R1)−, . . . , (Rn)+, (Rn)−〉. We call W∗/W

∗ a lower/upper
work space pair, and say it is associated with the three-valued work space W.

It is straightforward to reconstruct the three-valued work space W from the lower/upper
pair W∗/W

∗, and we will assume if either W or W∗/W
∗ is given then both are known.

If Ri is a reserved relation symbol, in earlier sections we interpreted both it and its
negation in W∗. We continue the same ideas here. We will pair Ri with the given relation
(Ri)+ in W∗, and with (Ri)

+ in W∗. But also we will treat ¬Ri as if it were also a reserved
relation symbol: in W∗, ¬Ri will be associated with (Ri)−, and in W∗ with (Ri)

−. Thus even
though negation symbols are present, they are being treated as syntactic devices producing
‘funny’ names for relations. We will think of admissible programs involving negations as if
they were Horn programs, since negated relation symbols are being treated positively.

An admissible (or indeed any) program has a meaning in the three-valued sense. But us-
ing the device mentioned above for interpreting negations in W∗ and W∗, it also has meaning
in these work spaces, in the two-valued sense. Here is a generalization of Proposition 3.11.

Proposition 5.3 Let P be admissible in W. For a ground atomic formula A,

1. (µΦP)(A) = t iff (µTP)(A) = t, where µΦP is calculated in W and µTP is calculated
in W∗,

2. (µΦP)(A) = f iff (νTP)(A) = f where µΦP is calculated in W and νTP is calculated
in W∗.

Proof Transfinite induction is, once again, the appropriate tool. To show 1), for instance,
one shows that, for each ordinal α, Φα

P (A) = TP ↑α (A). This is straightforward, and the
details are omitted. Part 2) is similar, but using TP ↓α instead.

6 Weak stratified semantics

Classical stratified semantics uses least fixed points, and interprets negation using comple-
mentation. But the semantics of [2], which does not deal with negation directly, makes use
of the greatest fixed point of TP to determine the ground failure set. We combine these
notions to produce a new semantics, which we call weak stratified semantics, that only uses
the two-valued operator TP , as does the classical approach, but that makes use of both least
and greatest fixed points.

14 Melvin Fitting & Marion Ben-Jacob

Definition 6.1 We will call a program P admissible in a lower/upper pair W∗/W
∗ if it is

admissible in the associated three-valued work space W.

Definition 6.2 Suppose program P is admissible in the lower/upper pair W∗/W
∗. Say the

unreserved relation symbols of P are S1,. . . , Sk. By the lower/upper P -extension of W∗/W
∗

we mean the lower/upper pair V∗/V
∗, where V∗ is like W∗ but with the additional given

relations (S1)+, (S1)−,. . . , (Sk)+, (Sk)−, and V∗ is like W∗ but with the additional given
relations (S1)+, (S1)−,. . . , (Sk)

+, (Sk)
−, where in turn:

1. (Si)+(a) = t⇐⇒ µTP (Si(a)) = t in W∗;

2. (Si)−(a) = t⇐⇒ νTP (Si(a)) = f in W∗;

3. (Si)
+(a) = ¬(Si)−(a);

4. (Si)
−(a) = ¬(Si)+(a).

The lower/upper pair W∗/W
∗ corresponds to a three-valued work space W, and we can

consider P as a program in W as well, using the three-valued semantics. We have notions of
P -extension for both lower/upper work space pairs and for three-valued work spaces. (Only
the first notion makes use of admissibility; it plays no role in the three-valued version.)
Proposition 5.3 directly gives us the following.

Proposition 6.3 Suppose the lower/upper pair W∗/W
∗ and the three-valued work space

W are associated, and P is a program that is admissible in W. Then the three-valued
P -extension of W and the lower/upper P -extension of W∗/W

∗ are also associated.

Now, suppose we have a logic program P in a work space W0 = 〈D, R1, . . . , Rn〉. W0

can be a two or a three-valued work space; it adds no complications to deal with partial
relations from the start. And suppose further that we have a stratification P1, . . . , Pk of
P . We use the program P , and its stratification, to define a sequence of lower/upper pairs,
(W0)∗/(W0)∗, (W1)∗/(W1)∗, . . . , (Wk)∗/(Wk)

∗ as follows.

1. (W0)∗ and (W0)∗ are the lower and upper work spaces associated with W0. P1 will
be admissible in (W0)∗/(W0)∗.

2. Suppose we have defined (Wi−1)∗/(Wi−1)∗, and Pi is admissible in (Wi−1)∗/(Wi−1)∗.
Then we take (Wi)∗/(Wi)

∗ to be the lower/upper Pi-extension of (Wi−1)∗/(Wi−1)∗.
Pi+1 will be admissible in (Wi)∗/(Wi)

∗.

Thus we produce a sequence of lower/upper pairs, and we can take the final one (Wk)∗/(Wk)
∗

as supplying a “meaning” for the program P itself. It is the meaning assigned by this last
lower/upper pair that we refer to as the weak stratified semantics.

One disadvantage of the standard notion of stratified semantics is obvious. Negation is
treated via complementation, but since the relations that can be represented using Horn

Stratified, weak stratified and three-valued semantics 15

clause programs are exactly the recursively enumerable ones, complements are not gener-
ally computable. [2] gives a simple example of a program for which the corresponding TP
operator is not ‘down continuous’. This example can be used to show that computability
problems still arise for weak stratification, though not in such a straightforward way. In
general, approximations to greatest fixed points that ‘cut off’ after ω steps are reasonable to
consider, from a computational point of view. One advantage of weak stratification is that
the machinery is present to consider such truncation issues. This is not the case with the
standard stratified semantics, which reduces negations to complementations in one step, and
leaves no role at all for a process of approximation.

By using lower/upper pairs, and the classical TP operator, we have assigned a three-
valued meaning to a stratified program P . The assignment requires the construction of a
sequence of work space pairs, one for each level of stratification. On the other hand ΦP also
assigns a meaning to P , whether stratified or not, and does so in a single work space.

Proposition 6.4 For a stratified program P in work space W, the meaning assigned using
the weak stratified semantics, and the meaning assigned using the three-valued semantics are
the same.

Proof Suppose P1, P2,. . . , Pk is a stratification of P . To determine the weak stratified
semantics for P we construct a sequence of lower/upper work space pairs, (W0)∗/(W0)∗,
(W1)∗/(W1)∗, . . . , (Wk)∗/(Wk)

∗, where (W0)∗/(W0)∗ is associated with W, and otherwise
(Wi)∗/(Wi)

∗ is the lower/upper Pi-extension of (Wi−1)∗/(Wi−1)∗. We can also construct
a sequence of three-valued work spaces, W0, W1,. . . , Wk, where W0 = W, and otherwise
Wi is the three-valued Pi-extension of Wi−1. Using Proposition 6.3, corresponding members
of these two sequences will be associated, hence (Wk)∗/(Wk)

∗ and Wk will be associated.
But (Wk)∗/(Wk)

∗ supplies the weak stratified meaning, and Wk supplies the three-valued
meaning, via an application of Proposition 4.6.

Corollary 6.5 The meaning assigned to a stratified program using two valued lower/upper
pairs is independent of the stratification.

7 Conclusions

We have presented a weak stratified semantics, based on two-valued classical logic, applicable
to stratified logic programs. We have argued that it is a better candidate for a program
semantics than the conventional stratified semantics, because its treatment of negation makes
use of greatest fixed points rather than complements. We have also shown that our version
of stratified semantics agrees fully with the three-valued semantics based on Kleene’s logic.
This is significant for several reasons. The three-valued approach is considerably simpler in
terms of the machinery required. And it is more general, since it applies to all programs,
not just to stratified ones. For example, although p ← p is stratified, p ← ¬p is not. Still

16 REFERENCES

the three-valued semantics is applicable, and assigns p the value ⊥ as might be expected.
As another example, consider the program

even(0)← .

even(s(X))← ¬even(X).

This is not stratified. It is locally stratified though [18], and it is easy to check that the
meaning assigned via the three-valued approach coincides with that assigned via local strat-
ification. It would be of interest to establish a general relationship between these semantical
approaches. A basic point stands out: the three-valued semantics is generally applicable, and
does not need modification or extension every time a wider class of programs is considered.

There are computability problems associated with several of the semantics. Three-valued
semantics may lead to relations that are not recursively enumerable, and hence so may weak
stratified semantics. This is an issue with conventional stratified semantics as well, essentially
because the recursively enumerable relations are not closed under complementation. But for
the three-valued version an attractive alternative is available. The natural cut-off point for
computability is after ω steps in the approximation sequence. In other words, work with
Φω
P instead of the least fixed point of ΦP , or equivalently work with TPi ↑ω and TPi ↓ω. [14]

and [15] give a completeness result based on a variation of this idea which makes it very
attractive indeed.

Finally, the three-valued approach is susceptible to further generalization, because other
three-valued logics are around. In [6] we considered a three-valued logic based on supervalu-
ations, and showed it coincided with a proof procedure based on semantic tableaux allowing
recursive calls. In [9] a large family of logic programming languages is investigated, using
multiple-valued logics. Finally, another attractive possibility is to use the asymmetric three-
valued logic that LISP uses, in which conjunctions and disjunctions are evaluated from left
to right. The whole three-valued approach works using this asymmetric logic too, because
the essential monotonicity conditions on ∧ and ∨ are still met. And the resulting semantics
is closer to real Prolog, because the truth conditions for ∧ and ∨ amount to a left-right eval-
uation of clause bodies, and a first-to-last consideration of clauses. We hope to investigate
this asymetric semantics further elsewhere.

References

[1] K. R. Apt, H. A. Blair, A. Walker, Towards a theory of declarative knowledge, Founda-
tions of Deductive Databases and Logic Programming, J. Minker ed, Morgan Kaufmann,
pp 89–148, Los Altos (1987).

[2] K. R. Apt, M. H. Van Emden, Contributions to the theory of logic programming, J.
Assoc. Comput. Mach., vol 29, pp 841–863 (1982).

REFERENCES 17

[3] A. K. Chandra, D. Harel, Horn clause queries and generalizations, J. Logic Program-
ming, vol 2, pp 1–15 (1985).

[4] M. C. Fitting, A Kripke-Kleene semantics for logic programs, J. Logic Programming,
vol 3, pp 93–114 (1986).

[5] M. C. Fitting, Logic programming semantics using a compact data structure, Proceed-
ings of the ACM SIGART International Symposium on Methodologies for Intelligent
Systems, Z. W. Ras and M. Zemankova, pp 247–255 (1986).

[6] M. C. Fitting, Partial models and logic programming, Theoretical Computer Science,
vol 48, pp 229–255 (1986).

[7] M. C. Fitting, Computability Theory, Semantics, and Logic Programming, Oxford Uni-
versity Press, New York (1987).

[8] M. C. Fitting, Logic programming on a topological bilattice, Fundamenta Informatica.
vol 11, pp 209–218 (1988).

[9] M. C. Fitting, Bilattices and the semantics of logic programming, to appear in Journal
of Logic Programming.

[10] M. C. Fitting, M. Ben-Jacob, Stratified and Three-valued Logic Programming Seman-
tics, Logic Programming, Proc. of the Fifth Intl. Conf. and Symp., editors R. A. Kowalski
and K. A. Bowen, pp 1054–1069, The MIT Press (1988).

[11] J. Jaffar, J.-L. Lassez, Constraint Logic Programming, POPL (1987).

[12] J. Jaffar, J.-L. Lassez, M. J. Maher, A logic programming language scheme, Logic Pro-
gramming: Relations, Functions and Equations, D. DeGroot and G. Lindstrom editors,
Prentice-Hall (1986).

[13] S. C. Kleene, Introduction to Metamathematics, Van Nostrand, Princeton (1952).

[14] K. Kunen, Negation in logic programming, J. Logic Programming, vol 4, pp 289–308
(1987).

[15] K. Kunen, Signed data dependencies in logic programs, forthcoming in J. Logic Pro-
gramming.

[16] J.-L. Lassez, M. J. Maher, Optimal fixedpoints of logic programs, Theoretical Com-
puter Science, vol 39, pp 15–25 (1985), reprinted from FST-TCS Conference, Bangalore
(1983).

[17] A. Mycroft, Logic programs and many-valued logics, Proc. 1st STACS Conf. (1983).

18 REFERENCES

[18] T. Przymusinski, On the declarative semantics of deductive databases and logic pro-
grams, Foundations of Deductive Databases and Logic Programming, J. Minker ed, Mor-
gan Kaufmann, pp 193–216, Los Altos (1987).

[19] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of
Mathematics, vol 5, pp 285–309 (1955).

[20] M. H. Van Emden, R. A. Kowalski, The semantics of predicate logic as a programming
language, J. ACM, vol 23, pp 733–742 (1976).

[21] A. Van Gelder, Negation as failure using tight derivations for general logic programs,
Proc. 3rd IEEE Symp. on Logic Programming, Salt Lake City, pp 127–138 (1986).

