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Abstract

Consider those many-valued logic models in which the truth values are a lattice that supplies
interpretations for the logical connectives of conjunction and disjunction, and which has a De
Morgan involution supplying an interpretation for negation. Assume the set of designated truth
values is a prime filter in the lattice. Each of these structures determines a simple many-valued
logic. We show there is a single Smullyan style signed tableau system appropriate for all of the
logics these structures determine. Differences between the logics are confined entirely to tableau
branch closure rules. Completeness, soundness, and interpolation can be proved in a uniform
way for all cases. Since branch closure rules have a limited number of variations, in fact all the
semantic structures determine just four different logics, all well-known ones. Asymmetric logics
such as strict/tolerant, ST, also share all the same tableau rules, but differ in what constitutes
an initial tableau. It is also possible to capture the notion of anti-validity using the same set of
tableau rules. Thus a simple set of tableau rules serves as a unifying and classifying device for
a natural and simple family of many-valued logics.

1 Introduction

The standard presentation for a many-valued logic involves a specification of what the truth values
are, of how the logical connectives are to be interpreted on them, and of a subset of truth values
called designated. A valuation v in such a structure is a mapping from propositional letters to truth
values, and extends uniquely to all formulas using the specified interpretation of the connectives.
The extension of v to all formulas is commonly called v too, and we tacitly assume this throughout.
A set Γ of formulas as premises has a set ∆ of formulas as consequences if every valuation v
mapping all members of Γ to designated values maps some member of ∆ to a designated value. In
this way we have a Scott style consequence relation, which we write as Γ −→ ∆. As noted, all this
is standard material.

In this paper we work with a simple family of truth value structures of the sort just described.
We take truth values to be members of a De Morgan lattice (actually, we do not need distributivity,
and will not be assuming it). We take the interpretations of the connectives to be given by the
lattice operations, and the De Morgan involution. And finally, we assume that a designated set has
the structure of a prime filter. For convenience all these terms will be properly defined later on,
though they are standard items.

We create a Smullyan style tableau system that is appropriate for the structures just described.
Tableau rules are the same throughout. The only differences from one lattice/filter structure to
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another comes in the tableau closure rules. Soundness and completeness can be proved uniformly,
once and for all. Similarly for interpolation theorems. But it turns out that ultimately the results
are parsimonious rather than generous. Since the only tableau differences from structure to struc-
ture come in the closure rules, and since there are only a limited number of possibilities for these
rules, the logics we can get are exactly: CL (classical logic), K3 (Kleene’s strong three valued logic),
LP (Priest’s logic of paradox), and FDE (first degree entailment). To some extent this accounts for
the ubiquity of these logics in the literature. But we now have simple uniform tableau systems for
all four of these logics.

We go on to show that there are simple modifications to what we just briefly described that
provide tableau systems for the logics ST (strict/tolerant logic), TS (tolerant/strict logic), and S3
(symmetric three valued). The branch extension rules remain the same as before, but the starting
and closing rules are where differences appear. We also consider tableau setups for establishing
antivalidity, an important notion in this area.

2 The General Setting

To repeat a bit of what was said in the Introduction, many valued logics are commonly specified by
giving some space of truth values, some interpretation of the connectives in that space, and some
subset of it whose values are called designated. We narrow this generality considerably, to a very
well behaved family of structures. And for this we use familiar lattice machinery. All our spaces of
truth values will be De Morgan lattices, where distributivity conditions may or may not hold. We
will be a bit informal. Strictly speaking, an algebra is specified by saying what its operations are,
and a lattice is specified by conditions on its ordering. Thus there are De Morgan algebras and De
Morgan lattices. Since each fully determines the other, we are quite casual about the lattice/algebra
distinction.

2.1 Logical Morgan Lattices

The notion of a logical Morgan lattice, discussed in this section, comes from earlier work of mine,
[13], but the general form derives from the logical bilattices of [2].

Definition 2.1 (De Morgan and Morgan Lattices) A De Morgan lattice is a bounded dis-
tributive lattice with a De Morgan involution. We call a structure that is like a De Morgan lattice
but without requiring distributivity a Morgan lattice. Trivially every De Morgan lattice is a Morgan
lattice.

We generally write ≤ for a Morgan lattice ordering, f and t for the lower and upper bounds
of the lattice, and ¬ for the De Morgan involution. Being a lattice, binary meets and joins exist,
and we write ∧ and ∨ for these. We are overloading notation since we will also use these symbols
syntactically as part of our formal logical language, but no confusion is likely to result. A De
Morgan involution reverses the ordering, and thus meets the conditions that a ≤ b if and only if
¬b ≤ ¬a, and ¬¬a = a. It follows, using greatest lower and least upper bound properties, that
¬(a∧ b) = ¬a∨¬b and ¬(a∨ b) = ¬a∧¬b. “Morgan lattice” is not standard terminology—indeed
there does not seem to be a standard terminology here. Dropping the De is to suggest dropping
d istributivity.

Morgan lattices provide us with natural many valued truth value spaces, and accompanying
interpretations for logical connectives ∧, ∨, and ¬ as meet, join, and Morgan involution, and we
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assume this is how formulas are evaluated from now on. We will also have implication, ⊃, but it
will be defined from other connectives in the familiar way.

We will be working with subsets consisting of designated truth values, and with subsets that
are not these but that have direct relationships with them. Of course we want all of them to have
some natural structural properties. The following is absolutely standard.

Definition 2.2 (Filter) A non-empty subset F of a lattice is a filter if:

1. F is upward closed: x ∈ F and x ≤ y imply y ∈ F ;

2. F is closed under finite meets; x, y ∈ F imply x ∧ y ∈ F .

F is a prime filter if also:

3. x ∨ y ∈ F implies x ∈ F or y ∈ F .

In addition to filters, the standard dual notion will also be useful.

Definition 2.3 (Ideal) A non-empty subset I of a lattice is an ideal if:

1. I is downward closed: y ∈ I and x ≤ y imply x ∈ I,

2. I is closed under finite joins; x, y ∈ I imply x ∨ y ∈ I.

I is a prime ideal if also:

3. x ∧ y ∈ I implies x ∈ I or y ∈ I.

Filters and ideals are called proper if they are not empty and not the entire space. All filters
and ideals here will be proper, and we will not say this each time. Also the following alternative
characterizations are useful.

Proposition 2.4 Let S be an arbitrary subset of a lattice.

1. S is a filter if and only if: x ∈ S and y ∈ S ⇐⇒ x ∧ y ∈ S.

2. S is a prime filter if and only if both:

(a) x ∈ S and y ∈ S ⇐⇒ x ∧ y ∈ S,

(b) x ∈ S or y ∈ S ⇐⇒ x ∨ y ∈ S.

3. S is an ideal if and only if: x ∈ S and y ∈ S ⇐⇒ x ∨ y ∈ S.

4. S is a prime ideal if and only if both:

(a) x ∈ S and y ∈ S ⇐⇒ x ∨ y ∈ S,

(b) x ∈ S or y ∈ S ⇐⇒ x ∧ y ∈ S.

We need some simple operations, mapping subsets of a Morgan lattice to other subsets.

Definition 2.5 Let M = 〈M,≤,¬〉 be a Morgan lattice where ≤ is the lattice ordering and ¬ is the
involution, and let S ⊆M . Then S = {x ∈M | x 6∈ S}, and ¬S = {¬x ∈M | x ∈ S}.
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A simple but useful fact: ¬y ∈ S if and only if y ∈ ¬S. Here is the verification. First, by
definition, x ∈ S if and only if ¬x ∈ ¬S. Taking x to be ¬y, ¬y ∈ S if and only if ¬¬y ∈ ¬S. Since
¬ is an involution, ¬¬y = y. We thus have ¬y ∈ S if and only if y ∈ ¬S.

There are some well-known connections between filters and ideals in lattices. There are also a
few more that are perhaps less well-known, for Morgan lattices.

Proposition 2.6 Met M = 〈M,≤,¬〉 be a Morgan lattice, and let S ⊆ M . Then we have the
following.

1. S is a filter if and only if S is an ideal.

2. S is a prime filter if and only if S is a prime ideal.

3. S is a filter if and only if ¬S is an ideal.

4. S is a prime filter if and only if ¬S is a prime ideal.

5. ¬S = ¬S.

Proof Items 1 and 2 are standard for lattices in general. The proofs make use of the actual De
Morgan laws for sets. For 3 and 4, the arguments are similar but with the Morgan conditions of
the lattice taking over from the actual De Morgan laws. We leave these to you.

Finally, for item 5.

x ∈ ¬S ⇐⇒ x 6∈ ¬S
⇐⇒ ¬x 6∈ S
⇐⇒ ¬x ∈ S
⇐⇒ x ∈ ¬S

And now, our central construct. It is at this level that we will introduce tableau systems, and prove
completeness, soundness, and interpolation. Think of M as a space of truth values and of D as the
designated ones.

Definition 2.7 (Logical Morgan Lattice) Let M = 〈M,≤,¬〉 be a Morgan lattice and D be a
subset of M that is a filter. We call the pair 〈M, D〉 a logical Morgan lattice. It is a prime logical
Morgan lattice if, in addition, D is a prime filter.

2.2 Formal Language and Valuations

We use a standard propositional language. We have a set of propositional letters, also called
propositional atoms, or just atoms. Formulas are then built up in the usual way with connectives
∧, ∨, ¬, and ⊃. This notation plays a familiar double role, with the first three connectives being
both formal symbols of the language and also representing Morgan lattice meet, join, and involution.
Context will sort things out. We generally useX, Y , Z with or without subscripts when we represent
arbitrary formulas. We use A, B, P , and the like when atomic formulas are meant. This is simply
a convenient informal convention and has no deep significance.



Simple Tableaus 5

Definition 2.8 (Valuation) A valuation in a Morgan lattice M = 〈M,≤,¬〉 is a mapping from
propositional letters to M . Every valuation in M extends uniquely to a mapping from all formulas
to M using the following conditions, where on the left appears logical syntax and on the right the
Morgan operations.

v(¬X) = ¬v(X)

v(X ∧ Y ) = v(X) ∧ v(Y )

v(X ∨ Y ) = v(X) ∨ v(Y )

v(X ⊃ Y ) = ¬v(X) ∨ v(Y )

Note that the first three above are direct; the last essentially takes implication as a defined
connective. Since we are working in a Morgan lattice, it would be equivalent if we were to use
¬(v(X) ∧ ¬v(Y )).

Next we turn to validation, and here some things have changed in recent years. For one thing,
instead of just validity for single formulas being the main interest, one now commonly sees con-
sequence relations, and the notion of a consequent is taken as basic. We understand consequence
in the Scott sense. That is, for sets of formulas, Γ and ∆, a consequent Γ −→ ∆ is informally
understood to say that if we somehow have all the members of Γ, then we must have at least one
of the members of ∆. Derivatively, validity for a formula X is defined as validity of the consequent
−→ X.

The second change, another recent one, is to sometimes allow premises (left of a consequent
arrow) and conclusions (right of a consequent arrow) to be judged by different standards. We will
see the logics ST and TS later on; these are logics of this asymmetric sort, and are growing in
familiarity. There seems to be no standard name for such logics; we call them asymmetric logics
and, by contrast we will call standard logics, such as K3 or LP symmetric logics.

When working with many valued logics it is common to set aside a subset of truth values and
call them designated. We will do that for each prime logical Morgan lattice 〈M,D〉, specifically
we will take D to be the designated set, giving us a many-valued logic semantics of the symmetric
sort. Later on we will also set aside a second set, ¬D (notation from Definition 2.5), and consider
the asymmetric logic where D is the notion of designation to be used left of the sequent arrow
and ¬D is the notion of designation to be used right of the arrow. (It will become clear where
this somewhat odd definition comes from.) By definition, D is a prime filter, and it follows from
Proposition 2.6 that ¬D is also a prime filter.

Definition 2.9 (Validation) Let 〈M, D〉 be a prime logical Morgan lattice. A valuation v vali-
dates the sequent (or consequent) Γ −→ ∆ in 〈M, D〉 provided: v(X) ∈ D for every X ∈ Γ implies
v(Y ) ∈ D for some Y ∈ ∆. We symbolize this by 〈M, D〉 |=v Γ −→ ∆. A sequent is simply valid
in 〈M, D〉 if every valuation validates it in 〈M, D〉, and we will write this as 〈M, D〉 |= Γ −→ ∆.

A valuation v asymmetrically validates Γ −→ ∆ in 〈M, D〉 provided: v(X) ∈ D for every X ∈ Γ
implies v(Y ) ∈ ¬D for some Y ∈ ∆. We symbolize this by 〈M, D,¬D〉 |=v Γ −→ ∆. A sequent
is asymmetrically valid in 〈M, D〉 if every valuation asymmetrically validates it in 〈M, D〉, and we
will write this as 〈M, D,¬D〉 |= Γ −→ ∆.

We conclude the section with some remarks on the connective ⊃. We have allowed it, and
defined its semantic behavior so that P ⊃ Q is like ¬P ∨Q, the familiar material conditional. This
is not always a good choice for an implication connective. For instance the sequent P, P ⊃ Q −→ Q,
formalizing modus ponens, is not valid in LP, though it is in K3, while P ⊃ Q,Q ⊃ R −→ P ⊃ R,
formalizing transitivity or cut, is not valid in K3, though it is in LP. Neither is valid in FDE. A good
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choice of an implication connective for these logics is a complicated issue that we do not address
here.

2.3 Signed Formulas and Logical Morgan Lattices

We have the algebraic background and a general semantics in place. We now start on tableau proof
systems in a general setting, moving to specific examples in Section 3. A tableau proof system is,
essentially, a refutation system in which a proof is a tree constructed along the following lines. To
show that a formula is a validity, one begins by supposing it is not. One starts the construction
of a tree by placing at the root something that embodies that non-validity supposition. One then
‘grows’ the tree using branch extension rules. Each branch is understood conjunctively, and the
tree itself as the disjunction of its branches. A branch is called closed if in some sense it represents
an impossible situation. If all branches are closed, the tree itself is closed. A closed tree establishes
that the initial assumption cannot be the case. Since the assumption was that some formula is not
valid, the conclusion is that validity of the formula has been established. This is a very general and
very loose description, but formal details will appear shortly.

In the well-known Smullyan book, [28], two versions of tableaus for classical logic were presented,
unsigned and signed. With unsigned tableaus it is simply formulas that appear at tableau nodes,
and a proof of X is a closed tableau beginning with ¬X. This is fine if one is dealing with classical
logic or a classically based logic. It is what is used in [19] for instance, where the logics are modal.
But Smullyan also introduced a second version using signed formulas, T X and F X. This signed
version can be generalized in ways that the unsigned one cannot.

Smullyan showed the equivalence of tableau and sequent presentations. Indeed, he showed that
from a suitably abstract point of view they are the same thing. But this equivalence is more
complicated if unsigned formulas are used in tableaus. His idea was that a Gentzen sequent, say
X1, . . . , Xn −→ Y1, . . . , Yk, corresponds to a set of signed formulas, in this case {T X1, . . . , T Xn,
F Y1, . . . , F Yk}, in a very natural way. Loosely, T corresponds to being left of arrow and F
corresponds to being right of arrow. But without signs available, should {X,¬Y } correspond to
X −→ Y or to X,¬Y −→? Or for that matter, what about ¬Y −→ ¬X The ambiguity vanishes
if a distinction is made between ¬X and F X.

Smullyan only treated classical logic, but as far back as [16] a Smullyan style tableau system
for intuitionistic logic was given. In it there was a critical distinction made between ¬X, involving
intuitionistic negation, and F X, informally representing that X has not been proved. This meant
that, unlike with classical logic, the use of signs could not be avoided. We now have another non-
classical reason for using signs. We want to vary the interpretation of them from time to time,
while keeping the formulas to which they are applied unchanged. Consequently only signed formula
versions of tableaus will appear in what follows.

In addition to the connections with sequents, Smullyan’s use of T and F as tableau signs can
be seen to have a direct semantic role. Classically, where the set of truth values is just {t, f}, the
signed formula T X informally represents that X has the value t, and F X represents that X has
the value f (with respect to some valuation that remains in the background). It is hard to see in
the very simple classical setting, but each sign actually has two quite different semantic roles to
play. First, each of T and F represents the (classical) negation of the other. Second, in the space of
classical truth values each sign represents the complement of what the other sign represents. When
the space of truth values is bigger than just two, these roles split apart, and two signs are no longer
sufficient. Following [7], we will use four signs: T , F , T , and F . Loosely, F and T will be related
through negation, and F and F will be related through complementation, as will T and T . To put
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it simply, we have machinery to distinguish syntactically between true (T ) and not false (F ), and
likewise between false (F ) and not true (T ).

Definition 2.10 (Signed Formulas) If X is a formula, then T X,F X, T X, and F X are signed
formulas.

Above we read the sign T classically as a representation of having truth value t, and analogously
for F . In the more general setting of an arbitrary Morgan lattice, we will take T as representing
the set of designated truth values, and F as representing the set of their negations. Then T and F
will represent the compliments of what T and F represent. The following gives this official status.
We remind you of Definition 2.5.

Definition 2.11 (Sign Interpretation) Let D be a filter in the Morgan lattice M = 〈M,≤,¬〉.
The truth value sets that each sign represents are given by the following.

JT K = D

JF K = ¬D
JT K = D

JF K = ¬D

Making use of Proposition 2.6, since D is a filter (prime filter), then JT K and JF K are filters
(prime filters) and JF K and JT K are ideals (prime ideals).

Definition 2.12 (Signed Formula Validation) Let 〈M, D〉 be a logical Morgan lattice, and let
S X be a signed formula, where S is one of T , F , T , or F . We say a valuation v in M validates
the signed formula S X if v(X) ∈ JSK.

Note that validation for signed formulas does not depend on the designated set (or on the
designated sets in the asymmetric case.)

2.4 Tableaus In Logical Morgan Lattices

To characterize a tableau system there are three things we must do: say how a tableau starts, say
how a tableau grows, and say how a tableau finishes. We begin with how a tableau starts, then
move directly to the finish, and finally discuss the branch extension rules. This presentation of the
branch extension rules is the longest part.

How Tableaus Start

We begin with symmetric many-valued logics, that is, we have a single designated set D of truth
values used for both sides of a sequent. As we noted above, tableaus actually work backwards.
To prove a sequent Γ −→ ∆, we begin with something that, intuitively at least, represents the
possibility that there might be a valuation failing to validate the sequent. In other words, all
members of Γ could have truth values in D, while all members of ∆ could have truth values outside
D, that is, in D. Using the sign interpretations from Definition 2.11, being in D corresponds to a
sign of T , while being in D corresponds to a sign of T . This gives us the following.

Definition 2.13 (Initial Tableau for Sequents In Symmetric Logics) An initial tableau for
an attempted proof of Γ −→ ∆ in 〈M, D〉 contains signed formulas T X1, . . . , T Xn, T Y1, . . . , T Yk,
where each Xi ∈ Γ and each Yj ∈ ∆.
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Next we turn to asymmetric systems. Here a failure of Γ −→ ∆ to be valid means that members
of Γ might have truth values in the left designated set D, while members of ∆ fail to have members
in the right designated set, ¬D, and thus have truth values in its complement, ¬D. As before, D
corresponds to a sign of T , but now we have ¬D, which corresponds to a sign of F .

Definition 2.14 (Initial Tableau for Sequents In Asymmetric Logics) An initial tableau for
an attempted proof of Γ −→ ∆ in 〈M, D,¬D〉 contains signed formulas T X1, . . . , T Xn, F Y1, . . . ,
F Yk, where each Xi ∈ Γ and each Yj ∈ ∆.

How Tableaus End

Closure of a tableau is meant to represent a contradiction, an impossible situation. This depends
to some extent on the details of the algebraic structure of truth values, but the general idea is, an
impossible situation on a branch is one in which the same formula appears with two signs that cannot
be mutually held. Thus, for instance, T and T cannot both apply to the same formula because by
Definition 2.11, T X represents a situation where the truth value of X is in the designated set D,
while T X says X has a value outside of D. Here are the formalities.

A tableau might end without closing because we have run out of new things to do. We will see
that such tableau constructions provide us with counter-models. Though it is possible for tableaus
to run forever in some logics, it can be shown that this is not the case with the logics we look at
here.

Definition 2.15 (Tableau Closure) The following is for a tableau in 〈M, D〉. A tableau branch
is closed if, for some formula X, the branch contains two signed formulas, S1X and S2X, where
JS1K ∩ JS2K = ∅. The branch is atomically closed if X is atomic. A tableau is (atomically) closed
if every branch is (atomically) closed. A tableau proof of a sequent in 〈M, D〉 is a closed tableau in
〈M, D〉 that begins according to Definitions 2.13 and 2.14.

It is always the case that a branch is closed if it contains a formula having both the signs T and
T , or both F and F . These may not be the only cases; it depends on the details of the designated
set, and thus of the logical Morgan lattice.

Every closed tableau can be continued to one that is atomically closed. In fact it is rather easy
to prove that a branch that is closed using a formula of degree n > 0 can be extended to one or
more closed branches for which the degrees of formulas involved in closure are of lower degree than
n. The reader might give this a try once the branch extension rules have been given. Equivalently
one can handle this issue non-constructively. In fact we will show that we have tableau soundness
allowing non-atomic closure, and tableau completeness requiring atomic closure. It follows that if
a formula X has a proof allowing non-atomic closure, it is valid, and hence has a proof in which
closure is atomic.

How Tableaus Grow

Tableau rules are the same for all logics based on prime logical Morgan lattices, and this is also
independent of whether we have one designated set or two. In [28] uniform notation was used
as a way of grouping similar cases of signed formulas together. This becomes even more helpful
when four signs are available, not just two. Smullyan grouped the usual binary connectives into the
conjunctives, his α case, and disjunctives, his β case. (There were also γ and δ cases for universal
and existential quantifiers, but they aren’t needed here.) Smullyan chose to include signed formulas
whose main connective was negation in both the α and β groups, but we prefer to omit it from
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both. Instead we introduce a new unary case for them, ρ, which is meant to suggest “reverse”.
This is not a deep difference.

Definition 2.16 (Uniform Notation) We have four signs, T , F , T , and F , and four corre-
sponding signed formula types, T X, F X, T X, and F X, where X is a formula. Each unary
signed formula is in the ρ category, and each signed formula involving a binary connective is in the
α, or conjunctive, category or it is in the β, or disjunctive, category. For each ρ signed formula a
component, ρ0 is defined, and for each binary case two components are defined: α1 and α2 for the
α case, and β1 and β2 for the β case. All this is specified in the following table.

ρ ρ0

T ¬X F X

F ¬X T X

T ¬X F X

F ¬X T X

α α1 α2 β β1 β2

T X ∧ Y T X T Y F X ∧ Y F X F Y

F X ∨ Y F X F Y T X ∨ Y T X T Y

F X ⊃ Y T X F Y T X ⊃ Y F X T Y

F X ∧ Y F X F Y T X ∧ Y T X T Y

T X ∨ Y T X T Y F X ∨ Y F X F Y

T X ⊃ Y F X T Y F X ⊃ Y T X F Y

Now we show that uniform notation really does identify similarly behaving cases.

Proposition 2.17 Let 〈M, D〉 be a prime logical Morgan lattice, where M = 〈M,≤,¬〉, and let v
be a valuation in M .

v validates ρ⇐⇒ v validates ρ0

v validates α⇐⇒ v validates α1 and v validates α2

v validates β ⇐⇒ v validates β1 or v validates β2

Proof Uniform notation condenses a large number of cases. We look at some representatives of
them; the rest are similar.

Case F ¬X This is a ρ signed formula.

v validates F ¬X ⇐⇒ v(¬X) ∈ JF K
⇐⇒ ¬v(X) ∈ JF K Definition 2.8

⇐⇒ ¬v(X) ∈ ¬D Definition 2.11

⇐⇒ v(X) ∈ D
⇐⇒ v(X) ∈ JT K Definition 2.11

⇐⇒ v validates T X

Case F ¬X This is also a ρ signed formula.

v validates F ¬X ⇐⇒ v(¬X) ∈ JF K

⇐⇒ ¬v(X) ∈ JF K Definition 2.8

⇐⇒ ¬v(X) ∈ ¬D Definition 2.11

⇐⇒ ¬v(X) ∈ ¬D Proposition 2.6

⇐⇒ v(X) ∈ D
⇐⇒ v(X) ∈ JT K Definition 2.11

⇐⇒ v validates T X
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Case T X ∧ Y This is an α signed formula, where α1 = T X and α2 = T Y .

v validates T X ∧ Y ⇐⇒ v(X ∧ Y ) ∈ JT K
⇐⇒ v(X) ∧ v(Y ) ∈ JT K Definition 2.8

⇐⇒ v(X) ∈ JT K and v(Y ) ∈ JT K JT K is a filter

⇐⇒ v validates T X and v validates T Y

Case F X ∧ Y This is a β signed formula, where β1 = F X and β2 = F Y :

v validates F X ∧ Y ⇐⇒ v(X ∧ Y ) ∈ JF K
⇐⇒ v(X) ∧ v(Y ) ∈ JF K Definition 2.8

⇐⇒ v(X) ∈ JF K or v(Y ) ∈ JF K JF K is an ideal

⇐⇒ v validates F X or v validates F Y

Case T X ∨ Y This is an α signed formula, where α1 = T X and α2 = T Y :

v validates T X ∨ Y ⇐⇒ v(X ∨ Y ) ∈ JT K

⇐⇒ v(X) ∨ v(Y ) ∈ JT K Definition 2.8

⇐⇒ v(X) ∈ JT K and v(Y ) ∈ JT K JT K is a prime ideal

⇐⇒ v validates T X and v validates T Y

Case F X ∨ Y This is a β signed formula, where β1 = F X and β2 = F Y :

v validates F X ∨ Y ⇐⇒ v(X ∨ Y ) ∈ JF K

⇐⇒ v(X) ∨ v(Y ) ∈ JF K Definition 2.8

⇐⇒ v(X) ∈ JF K or v(Y ) ∈ JF K JF K is a prime filter

⇐⇒ v validates F X or v validates F Y

As we noted earlier, the Smullyan book [28] gives a now-standard set of tableau rules for classical
logic, using T and F as signs, and Smullyan grouped these rules into convenient α and β cases.
We have extended Smullyan’s system with T and F and a unary case, and we apply the rules in
the general context of prime logical Morgan lattices. It turns out that Smullyan’s uniform version
of tableau rules is still exactly what is needed. What all this gets us is a kind of schematic proof
system, relative to a prime logical Morgan lattice semantics. Subsequently we go on to prove
soundness and completeness results in this general setting. Now, here are the branch extension
rules, using the uniform notation of Definition 2.16.

Definition 2.18 (Tableau Rules, Using Uniform Notation)

ρ

ρ0

α

α1

α2

β

β1 | β2
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Unwound from the notation we have the following. If a ρ formula occurs on a tableau branch,
the branch can be extended by adding ρ0 to the end. If an α is present, the branch can be extended
by adding α1 and then α2 to the end. If a β is present, the branch end can be forked, with β1
added to one fork and β2 to the other. Note: as tableau rules, these are non-deterministic. They
only say what may be done, not what must be done.

We now state and prove a key fact about the rules: they preserve satisfiability. Indeed, we will
prove something stronger: they preserve satisfiability in both directions.

Definition 2.19 (Strongly Sound) We say a tableau rule from Definition 2.18 is strongly sound,
relative to a given logical Morgan lattice 〈M, D〉 provided that for each valuation v in 〈M, D〉:

1. if the tableau rule is non-branching, v validates the signed formula above the line if and only
if v validates the signed formula or formulas below the line;

2. if the tableau rule is branching, v validates the signed formula above the line if and only if v
validates one of the signed formulas below the line.

Proposition 2.20 Every tableau rule in Definition 2.18 is strongly sound, relative to any prime
logical Morgan lattice.

Proof This is what Proposition 2.17 directly gives us.

To sum up, for any prime logical Morgan lattice we have specified tableau systems, symmetric
and asymmetric. A tableau for a sequent Γ −→ ∆ begins according to Definition 2.13 or Defini-
tion 2.14 and it is here that the difference between symmetric and asymmetric logics appears. The
tableau grows using the rules in Definition 2.18, which are completely independent of the choice
of prime Morgan lattice. If a tableau is produced that is closed according to Definition 2.15, we
have given a tableau proof for the sequent. It is only at this point that differences in the lattice
structure play a role.

For Reference: The Full Rule Set

For the convenience of the reader, in Figure 2.1 we give the full and unabbreviated set of tableau
rules, expanding the uniform notation used in Definition 2.18. The rules for T and F are exactly
the Smullyan rules from [28].

2.5 Soundness and Completeness

We now give a uniform proof of tableau soundness and of tableau completeness, relative to any
arbitrary prime logical Morgan lattice.

Soundness

Assume 〈M, D〉 is a prime logical Morgan lattice. We will show that a sequent that is not valid
in it can not have a tableau proof in the tableau system for it, and this is the case whether we
consider things symmetrically or asymmetrically. Then contrapositively, a sequent with a tableau
proof must be a valid sequent.

The main tool is the notion of satisfiability, so to begin we must say what this means. A tableau
is satisfiable if one of its branches is satisfiable. A branch is satisfiable if there is a valuation that
validates every formula on the branch. The heart of the matter is to show that satisfiability is an
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T ¬X
F X

F ¬X
T X

F ¬X
T X

T ¬X
F X

T X ∧ Y
T X

T Y

F X ∨ Y
F X

F Y

F X ⊃ Y
T X

F Y

F X ∧ Y
F X

F Y

T X ∨ Y
T X

T Y

T X ⊃ Y
F X

T Y

T X ∨ Y
T X | T Y

F X ∧ Y
F X | F Y

T X ⊃ Y
F X | T Y

F X ∨ Y
F X | F Y

T X ∧ Y
T X | T Y

F X ⊃ Y
T X | F Y

Figure 2.1: Full Tableau Rule Set, Expanded

invariant of tableau construction, that is, satisfiability is preserved by every tableau rule. And, in
fact, this is something that Proposition 2.20 specifically tells us is so. Note that this preservation
of satisfiability is the case whether we are considering a symmetric or an asymmetric consequence
relation using 〈M, D〉, since they agree on branch extension rules.

Next we look at how the tableau construction starts, and here things are different if we are
working symmetrically or asymmetrically. We consider these one at a time.

First the symmetric case. Let Γ −→ ∆ be a sequent, and assume it is not valid in 〈M, D〉. Then
there is some valuation v that maps all Xi ∈ Γ to D = JT K, but no Yj ∈ ∆ to D, and thus every Yj
to D = JT K. An attempted tableau proof for this sequent begins with a single branch, containing
T X1, . . . , T Xn, T Y1, . . . , T Yk, where Xi ∈ Γ and Yj ∈ ∆. Clearly v satisfies each of these signed
formulas, Definition 2.12, so our initial tableau is satisfiable.

Next the asymmetric case. As before, assume Γ −→ ∆ is a sequent that is not valid in 〈M, D〉,
but now in the asymmetric sense. Then there is a valuation v mapping every member of Γ to D =
JT K, but no member of ∆ to ¬D, and hence every member of ∆ to ¬D = JF K. By Definition 2.14, an
attempted tableau proof of the sequent begins with T X1, . . . , T Xn, F Y1, . . . , F Yk, where Xi ∈ Γ
and Yj ∈ ∆. But v satisfies each of these signed formulas, and so again we are starting with a
satisfiable tableau.

Whether we work symmetrically or asymmetrically, an attempted tableau proof for a non-valid
sequent begins with a satisfiable initial tableau. Then by the invariance of satisfiability, every
subsequent tableau is satisfiable. But it is obvious that a satisfiable tableau cannot be closed. Thus
there can be no tableau proof for a non-valid sequent.
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Completeness

There are several ways of proving tableau completeness (requiring that closure always be atomic).
We present perhaps the most common version, simply extended to apply to logical Morgan lattices
instead of, say, to classical logic only. One constructs a tableau systematically and fairly, eventually
applying every applicable rule. Then assuming we have an unprovable sequent, the tableau attempt
must fail. From any open branch of the failed tableau, a counter-model to each signed formula on
the branch can be constructed, thus establishing completeness (and incidentally, that a systematic
construction must succeed if anything does.)

But first, a small but important point. We will establish strong completeness, for a sequent
involving possibly countably infinite sets of formulas. Of course if a sequent Γ −→ ∆ has count-
ably many formulas, we can’t simply start with a tableau containing signed versions of them all.
Fortunately a solution taken from [28] is available and is quite simple. Begin stage 1 of the tableau
construction by putting down the first signed formula drawn from Γ and the first drawn from ∆
(if one is empty, just put a single signed formula down instead of two). Next, carry out one step of
whatever your systematic tableau construction procedure might be, then add appropriately signed
versions of the second formulas from Γ and ∆ to the end of each open branch. Carry out one
more step of a systematic procedure, then add signed versions of the third formulas in Γ and ∆ to
the ends of each open branch, and so on. The general idea should be clear. We interleave adding
formulas to branch ends and steps of a systematic construction procedure.

A systematic procedure that eventually does everything possible is really quite easy. Pick the
uppermost signed formula on each branch that has had no rule applied to it on that branch, apply
the appropriate rule for each branch the occurrence is on, then check the occurrence off on those
branches and never use it again. (A signed formula may occur on more than one branch. Each
branch is a separate application.) Since every rule application reduces formula degree, we must
completely process any given instance of a signed formula on a branch after a finite number of
stages of the construction. A more elaborate description of the construction could be given, but
this should suffice.

Now with the background out of the way, let us first look at symmetric logics. Suppose we are
seeking a tableau proof for Γ −→ ∆. This might involve infinite sets, so we proceed according to
the systematic fair approach outlined above. The procedure may terminate with a proof. If not,
it may terminate without closure, or it may run forever if infinite sets are involved. Either way, if
we don’t have closure we wind up with a tableau with at least one open branch, a branch that will
be infinite if infinite sets are involved (König’s lemma comes in here). We can use such an open
branch to construct an appropriate counter-model.

In what follows, B is an atomically unclosed branch of our tableau (possibly infinite), where the
tableau was constructed using a fair algorithm, so everything that could be done has been done.

We note the following simple property of B: for any atomic formula A, at most two of T A,
T A, F A, and F A can appear on B. Because only one of T A, T A can occur, or else the branch
would be closed; likewise only one of F A, F A can occur, for the same reason.

Now as promised, we use the information on B to construct a model. We define a valuation
v by specifying it on atomic formulas, then extend it to all formulas as usual. Suppose atomic
formula A occurs on B with two different signs. By Definition 2.11, each sign has an associated
set of truth values and, since B is not closed, those sets must overlap. Let v(A) be any member of
that overlap. Next, suppose A occurs on B with only one sign. Then let v(A) be any truth value
in the set associated with that sign. Finally, suppose A does not occur on B with any sign. Then
let v(A) be arbitrary. Thus valuation v has been specified, and it extends uniquely to all formulas.

Next one shows that every signed formula on branch B is satisfied by the valuation v just
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constructed. This is done by induction on degree, and makes use of Proposition 2.20. It is quite
straightforward, and we omit the details. Since T X is on the branch for every X in Γ, and T Y is
present for every Y in ∆, these signed formulas are satisfied by v, and thus v maps each member
of Γ to D and each member of ∆ to a value outside D. Then v is a counter-model to Γ −→ ∆.

This covers symmetric logics. Asymmetric logics are very similar, and we leave checking the
details to the reader.

2.6 Anti-Validity and Tableaus

A sequent is valid if every valuation validates it. The dual notion, anti-validity, also plays a
significant role, as can be seen in [27] and in [8]. We remind the reader of Definition 2.9 for
validation. And, for reasons that will become obvious, we only work with finite sequents.

Definition 2.21 (Anti-Validity) Let 〈M, D〉 be a prime logical Morgan lattice. A sequent Γ −→
∆ is symmetrically anti-valid in 〈M, D〉 if no valuation validates the sequent. That is, for every
valuation v, 〈M, D〉 6|=v Γ −→ ∆. Likewise the sequent is asymmetrically anti-valid in 〈M, D〉 if
no valuation asymmetrically validates the sequent. That is, for every valuation v, 〈M, D,¬D〉 6|=v

Γ −→ ∆.

For instance, in classical logic the sequent −→ P ∨ ¬P is valid, −→ P ∧ ¬P is anti-valid, and
−→ P ⊃ (P ∧ Q) is neither valid nor anti-valid. We connect anti-validity with tableaus in this
section. Some particular examples that have been important in the literature will be given later.

We start with the symmetric setting. Tableau systems all work backwards in a sense. For
instance, speaking informally, to establish validity of a sequent we begin a tableau with signed
formulas representing what the situation would be if the sequent were not valid. We then show
this leads to a contradiction by extending the initial tableau to one that is closed, and we conclude
that validity of the sequent has been established.

We now apply this backward idea to anti-validity. Let 〈M, D〉 be a prime Morgan lattice. A
finite sequent X1, . . . , Xn −→ Y1, . . . , Yk is symmetrically anti-valid in 〈M, D〉 if no valuation in
〈M, D〉 validates it. Suppose we hypothesize the sequent is not anti-valid. Then some valuation
would validate it. That is, there would be some valuation that either maps one of the Xi to a
non-designated value (thus inside D), or maps one of the Yj to a designated value (thus inside D).
We want to show each of these possibilities must fail, thus contradicting our hypothesis. Using the
sign interpretations from Definition 2.11, we should show closure of n + k tableaus, each starting
with one of T Xi, . . . , T Xn, or T Y1, . . .T Yk. Formally stated, this is the following.

Proposition 2.22 (Symmetric Anti-Validity) A sequent X1, . . . , Xn −→ Y1 . . . , Yk is symmet-
rically anti-valid in 〈M, D〉 if and only if there are n+ k closed tableaus, one for T X1, . . . , one for
T Xn, one for T Y1, . . . , and one for T Yk.

Next we look at the asymmetric setting, following the same methodology. Again, let 〈M, D〉
be a prime Morgan lattice, but now we work with 〈M, D,¬D〉. Following the ideas above, to
establish the anti-validity of X1, . . . , Xn −→ Y1, . . . , Yk we should begin by hypothesizing it is not
anti-valid in 〈M, D,¬D〉, and show this leads to an imposibility. That is, we hypothesize there is
some valuation that validates the sequent, and so maps one of the Xi to D, or maps one of the Yj
to ¬D. We want each of these to fail. Then using the sign interpretations from Definition 2.11, we
must show closure for tableaus starting with each of T X1, . . . , T Xn, and F Y1, . . .F Yk.
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Proposition 2.23 (Asymmetric Anti-Validity) A sequent X1, . . . , Xn −→ Y1, . . . , Yk is asym-
metrically anti-valid in 〈M, D〉 if and only if there are n+k closed tableaus, one for T X1, . . . , one
for T Xn, one for F Y1, . . . , and one for F Yk.

We have given informal arguments why Propositions 2.22 and 2.23 should hold. These can
easily be turned into formal arguments along the lines of the soundness and completeness proofs
found in Sections 2.5. We leave this to the reader.

3 Logical Morgan Lattice Examples

In this section we look at examples of structures to which the general approach just presented
applies. It should be recalled that the tableau branch extension rules are independent of the choice
of prime logical Morgan lattice 〈M, D〉 and the initial tableau setup only depends on whether we
want a symmetric logic or an asymmetric one. It is the closure rules that depend on details of the
prime filter D. Our examples are: CL, the standard structure for classical logic, a three element
lattice used for both of the familiar three-valued logics K3 and LP, a four-valued logical Morgan
lattice that is standard for FDE, first degree entailment. We also look at a less familiar six-valued
logical Morgan lattice that happens to be non-distributive, and we look at S3, an intersection logic.

3.1 Classical Logic, CL

Classical logic is, of course, the most familiar logic. It is included here to complete the set, so to
speak. The discussion also serves to provide a lead-in to our presentation of various topics in less
familiar settings. Tableaus for classical logic were thoroughly explored in [28]; what we add to that
is simply to check that classical logic, CL, fits into our general treatment.

Classical logic is, famously, two valued. To construct an appropriate prime logical Morgan
lattice, we take the set of truth values to be {t, f}, with the upward ordering shown in Subfigure 3.1a:
f ≤ t, f ≤ f , t ≤ t, but not t ≤ f . The Morgan lattice here is M = 〈M,≤,¬〉, where M is the
set {f, t}, ≤ is the order we just gave, and ¬ is the mapping that switches around t and f , a De
Morgan involution. The prime filter D of designated truth values is {t}. This structure 〈M, D〉 is
the simplest example of a prime logical Morgan lattice, in fact, a prime logical De Morgan lattice.
We call the structure CL, and we also use CL for the logic it determines, namely classical logic.

(a) Two Truth Values

∧ f t

f f f

t f t

∨ f t

f f t

t t t

⊃ f t

f t t

t f t

¬
f t

t f

(b) Two-Valued Truth Tables

Figure 3.1: Classical Logic, CL

For this classical case, where D = {t}, we have that D = ¬D = {f}, and ¬D = D. Using the
notation from Definition 2.11, JT K = JF K = D and JF K = JT K = D. Thus there is redundancy in
our four signs, but let us ignore that and proceed formally for the time being. Definition 2.13 tells
us how a tableau starts. Closure conditions are supplied by Definition 2.15, and specialize to those
in Definition 3.1.
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Definition 3.1 (CL Closure Conditions) A CL tableau branch is closed if it contains the same
formula with any of the following pairs of signs:

T and T

T and F

F and T

F and F

We display a simple example of a closed classical, CL, tableau, in Figure 3.2. It is a proof of the
sequent ¬(X ∧ Y ) −→ (¬X ∨ ¬Y ).

Figure 3.2: Closed Classical Tableau Example

Our general completeness proof in Section 2.5 shows how to construct a countermodel from a
failed tableau, provided everything allowed has been done. Figure 3.3 shows how this works in
practice. We attempt to construct a tableau proof for (X ∧ ¬Y ) −→ ((X ⊃ Y ) ∧ (Y ⊃ X)), where
we assume X and Y are atomic. The right branch is closed because of 3 and 11, or equally because
of 5 and 10. But the left branch is not closed. Based on 3 and 8, let v be a valuation such that
v(X) = t. Similarly v(Y ) = f by 5 and 9. It is easy to check that v validates every signed formula
on the branch. Then, in particular, v(X ∧ ¬Y ) = t and v((X ⊃ Y ) ∧ (Y ⊃ X)) = f , so v does not
validate (X ∧ ¬Y ) −→ ((X ⊃ Y ) ∧ (Y ⊃ X)).

Figure 3.3: Unclosed Classical Tableau Example

We say a few words about anti-validation, which was discussed earlier in Section 2.6. There
we gave, as a simple example, the sequent −→ P ∧ ¬P , which no valuation can validate. We also
gave Proposition 2.22, which related anti-validity to tableaus. Applying that Proposition to our
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T P ∧ ¬P
T P

T ¬P
F P

Figure 3.4: Anti-Validity Example

example, the sequent −→ P ∧¬P is anti-valid just in case there is a closed tableau beginning with
T P ∧ ¬P . Figure 3.4 shows that simple tableau.

In Smullyan’s original signed tableau system for classical logic there were only two signs, T and
F , and only the rules for these signs in Figure 2.1 were present. Since for CL we have that JT K and
JF K are the same, as are JF K and JT K, it looks like Smullyan’s version and ours ought to determine
the same logic. Of course they do, because Smullyan established the completeness of his system,
and completeness of our version follows from the general argument in Section 2.5. But showing
equivalence of the two tableau systems this way involves a detour through semantics. One can
quite easily be more direct.

Proposition 3.2 Let T be a tableau constructed using the branch extension rules of our four-
sign system for CL. Let R(T ) be the result of replacing in T all occurrences of T with F and all
occurrences of F with T . Then R(T ) is also a correctly constructed tableau in CL, and R(T ) is
closed if and only if T is closed.

Proof A look at the tableau rules in Figure 2.1 shows that the replacement of F with T and T with
F in any tableau rule yields another tableau rule. Similarly in the converse direction. Likewise a
look at Definition 3.1 shows that such a replacement turns every CL closure condition into another
CL closure condition, and again in the converse direction too.

Now, suppose we have a proof of a sequent Γ −→ ∆ in CL, so there is a closed CL tableau T
starting with members of Γ with a sign of T and members of ∆ with a sign of T . Then R(T ) will
be a closed tableau using only the signs T and F , but starting with members of Γ with a sign of T
and members of ∆ with a sign of F . That is, it is a proof in Smullyan’s system.

In the other direction, suppose T is a tableau proof of a sequent Γ −→ ∆ in Smullyan’s
system. Then T will also be a correctly constructed tableau in our T system, except that the
initial tableau does not correspond to its being a proof of the sequent since members of ∆ don’t
have the appropriate sign. Throughout T replace all occurrences of F with occurrences of T ; call
the resulting tableau T ∗. The result is a correctly constructed tableau where the initial setup is
appropriate for Γ −→ ∆ in our CL system. Further, R(T ∗) = T , so using the Proposition, T ∗ must
be a CL tableau proof of Γ −→ ∆.

One final remark concerning CL. Looking at Definition 2.14 and taking the remarks above
into account, we see that for CL the asymmetric logic and the symmetric one coincide. Thus, not
surprisingly, CL is all we can get from two truth values.

3.2 Three-Valued Logics

There is only one three-valued Morgan lattice, consisting of a bottom, a top, and a value in
between. We use the classical f and t for the bottom and top. The third value is sometimes
denoted ⊥ (generally for K3), or > (appropriate for LP), or 1

2 . We will use m (for middle). Then
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throughout the three-valued discussion, M = {f,m, t}, and ≤ is as given in Figure 3.5a. The De
Morgan involution amounts to turning this figure upside down. The corresponding truth tables
appear in Figure 3.5b.

(a) Three Truth Values

∧ f m t

f f f f

m f m m

t f m t

∨ f m t

f f m t

m m m t

t t t t

⊃ f m t

f t t t

m m m t

t f m t

¬
f t

m m

t f

(b) Three-Valued Truth Tables

Figure 3.5: Three-Valued Semantics Basics

A three-valued valuation is now is a mapping from formulas to {f,m, t} that makes the syntac-
tical connectives and the operations from Subfigure 3.5b correspond, that is, it meets the conditions
of Definition 2.8. We remind the reader that a valuation is completely determined by its behavior
on propositional letters.

Symmetric Three-Valued Logics

In the two-valued setting there is just one proper prime filter. In the three-valued Morgan lattice
there are two. These give rise to the familiar logics K3, Kleene’s strong three valued logic (from
[21]), and LP, Priest’s logic of paradox (originating in [3]). We use K3 and LP for these particular
three valued logics, and also for the algebraic structures given here that determine them. These
structures are not unique in the sense that many structures determine the same logics, but when
referring to algebraic structures we use the notation only for those discussed here.

Definition 3.3 (Designated Values) The prime filters, and thus the sets of designated values
are:

1. for K3 the set {t};

2. for LP the set {m, t}.

Validity for formulas and for sequents is as in Definition 2.9.

For tableaus now, all four signs are essential; no reduction such as for CL is possible. How
tableau signs are interpreted is specified generally in Definition 2.11, and for the current logics this
gives us the following table.
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Definition 3.4 (Sign Interpretation) The truth value sets assigned for K3 and LP are as fol-
lows.

Sign K3 LP

JT K {t} {m, t}
JT K {f,m} {f}
JF K {f} {f,m}
JF K {m, t} {t}

We have the full set of tableau rules from Definition 2.18 (in uniform notation), or from Fig-
ure 2.1 (unabbreviated). Starting a tableau proof is covered by Definition 2.13. What it means to
be a closed tableau is given in Definition 2.15, and this yields the following for our present cases.

Definition 3.5 (Three-Valued Closure) For both K3 and LP, a tableau branch is closed if the
branch contains one of the following pairs of formulas:

1. T X and T X,

2. F X and F X.

In addition, a branch is closed if:

3. the logic is K3, and the branch contains T X and F X,

4. the logic is LP, and the branch contains T X and F X.

Figure 3.6 shows a tableau for the sequent X ⊃ Y −→ (X ⊃ ¬Y ) ⊃ ¬X. It is, in fact,
simultaneously a closed LP tableau and a K3 tableau that is not closed. Here are the details.

Figure 3.6: LP and K3 Tableau

The tableau begins with the initial conditions from Definition 2.13. This gets us items 1 and
2. Then the branch extension rules from Definition 2.18 are followed. Item 2 produces items 3 and
4; 4 produces 5; 3 produces 6 and 7; 7 produces 8; 1 produces 9 and 10. Items 11 and 12 have
not yet been added—ignore them for the moment. At this point the tableau is closed using the LP
conditions in Definition 3.5. Closure happens because of: 5 and 6; 5 and 9; 8 and 10.

If, instead, we use the K3 closure conditions from Definition 3.5, the two right-most branches
are closed as before, because of 5 and 9, and 8 and 10, but at this point the branch currently ending
with 6 is not closed. It is also the case that not all applicable rules have been applied on the branch
ending with 6. Specifically, no rule has been applied to 1 on this branch. Applying a rule yields 11
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and 12. The branch ending with 11 is closed because of 5 and 11, but the branch ending with 12
remains unclosed. At this point every applicable rule has been applied, and we do not have a K3

proof.

The K3 branch ending with 12, in fact, gives us a K3 counter-model. The branch contains T Y
and for K3, JT K = {t}, so we want a valuation v such that v(Y ) = t. The branch contains both T X
(6) and F X (5). For K3 we have JT K = {f,m} and JF K = {m, t}, and these overlap on m. So, we
want a valuation v such that v(X) = m. It is easy to check that our valuation v is a countermodel,
in K3, to X ⊃ Y −→ (X ⊃ ¬Y ) ⊃ ¬X.

Asymmetric Three-Valued Logics

In recent years there has been much interest in what we are calling asymmetric three-valued logics.
These use not one but two designated sets, a strict one and a weaker tolerant one. In terms of
sequents, the two sides of the arrow are not held to the same standards in an asymmetric logic.
Two such logics are common. One is ST, strict-tolerant logic, which uses the designated set of K3

for the left of the arrow and the designated set of LP for the right (note that the first is a subset of
the second, hence stricter). The second asymmetric logic is TS, tolerant-strict logic, which reverses
the designated set roles.

It is easy to represent the two different designated sets of ST and TS using the kind of machinery
we have. According to Proposition 2.6, if D is a prime filter in a Morgen lattice, then ¬D, or
equivalently ¬D, is another. Using the three-valued lattice from Figure 3.5a, if we take D to be
the prime filter {t}, the designated set for K3, then ¬D is {m, t}, the designated set for LP, and
similarly if D is {m, t}, the designated set for LP, then ¬D is {t}, the designated set for K3. Either
way, we have the strict and tolerant designated sets of ST and TS. Then we could easily build both
asymmetric logics starting with either K3 or with LP.

Rather than choose just one of LP or K3 as the basis for both ST and TS, we simply make use of
both by working with asymmetric validation, Definition 2.9. If we choose a base of K3 we have that
JT K = {t} and JF K = {m, t} and we have ST. If we choose a base of LP we have that JT K = {m, t}
and JF K = {t} and we have TS.

Now we start the formal tableau development for ST. Following the discussion above, the truth
value sets associated with the tableau signs are in the K3 column of Definition 3.4; the strictly
designated set for ST is JT K = {t}, and the weakly designated set is JF K = {m, t}, both prime
filters. Then Definition 2.14 specifies how asymmetric tableaus for ST should start. An ST tableau
proof of the sequent Γ −→ ∆ should start with signed formulas T X1, . . . , T Xn, F Y1, . . . , F Yk
where each Xi ∈ Γ and each Yj ∈ ∆. The tableau branch extension rules are, as usual, those in
Definition 2.18. Since we are building on the tableau system for K3, the closure conditions are
items 1, 2, and 3 from Definition 3.5.

The logic TS is like ST but with roles switched around, so we use the tableau signs from the LP
column of Definition 3.4. Then JT K = {m, t} and JF K = {t}. Pretty much everything concerning
tableaus is the same as it was for ST. The conditions for an initial tableau are exactly as before.
The branch extension rules are the same as before. Where things differ is in the rules for branch
closure; they are now the rules for LP. That is, the closure rules for TS are items 1, 2, and 4 from
Definition 3.5.

In short, as we formulate them ST and TS have the same tableau starting conditions, and the
same construction rules. They differ only in their closure conditions. Rather than specific tableau
examples, we discuss some general observations. The contents are well-known, but are particularly
easy to see in a tableau context.
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First, note that an ST or TS tableau for a sequent must begin using only the signs T and F .
The tableau rules all turn T and F signed formulas into other T and F signed formulas. But then
only T and F signed formulas can be present in an ST or TS tableau—no occurrences of T or F .
So closure conditions 1 and 2 from Definition 3.5 can never be applicable in an ST or TS tableau.

For ST tableaus, only closure condition 3 is significant. But then the proof system is really
the same as the standard Smullyan one for classical logic, or equivalently the classical four sign
version for classical logic, reduced to two signs as described in Section 3.1. Briefly, ST has the same
provable sequents that classical logic does, and thus has the same validities.

For TS we only have closure condition 4 left. But this requires that a signed formula with an
overbar, T or F , be involved, and such signed formulas cannot appear in a TS tableau. Our tableau
system for TS cannot prove anything! As a matter of fact, it is well known that TS has no valid
sequents. Thus the failure of our tableau system to prove anything is exactly what should have
happened.

So, ST and CL agree on their valid/provable sequents, while TS has no valid/provable sequents
at all. This is far from saying ST and TS have no interest; indeed, the literature concerning them
is large. Most of it is not relevant to our present concerns, but there is one item that we can easily
address. In [27] attention was fruitfully drawn to a notion dual to validity, anti-validity, and in
[8] anti-validity was examined in depth. We connected anti-validity with tableaus in Section 2.6,
specifically in Propositions 2.22 and 2.23. We now apply this to the logics ST and TS. From
Proposition 2.23, anti-validity in ST and in TS is shown for a sequent X1, . . . , Xn −→ Y1, . . . , Yk
by producing separate closed tableaus for each T Xi and for each F Yj . Once again the difference
between ST and TS comes in the closure rules. These were given in Definition 3.5 and are restated
in Figure 3.7 for convenience.

There are some easy to spot issues. A tableau beginning with a formula signed by T or F can
only contain signed formulas whose sign is T or F . (see Figure 2.1). Then for both systems ST
and TS the closure condition involving T and T , and the closure condition involving F and F can
never be applied, and can be dropped. Likewise the third closure condition for ST can be dropped
since it involves only T and F . In short, ST has no anti-validities.

K3 and ST LP and TS

T X and T X T X and T X

F X and F X F X and F X

T X and F X T X and F X

Figure 3.7: Tableau Branch Closure Conditions

For TS, closure involving T and F is possible. But then, in brief, a TS tableau verifying
anti-validity, starts with, continues with, and closes with only T and F signs. Now, at the end of
Section 3.1 we discussed the replacement of T with F and F with T , and saw that it mapped closed
tableaus into closed tableaus, but they are tableaus in Smullyan’s two-sign system. Applying that
mapping here, we see that the anti-validities of TS are the same as the antivalidities of CL.

3.3 Four-Valued Logic

We have discussed tableau systems for four different three valued logics, two symmetric and two
asymmetric. With four truth values arranged in the familiar diamond configuration the possibilities
are even more limited. Essentially there is only one logic, but it is a famous one: first degree
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entailment, or FDE. In a sense the truth value structure for FDE combines the ones for K3 and LP.
The two are different because of the intended behavior of the middle value m, designated or not.
The FDE structure simply incorporates both versions. We use n and b for the two middle values,
standing for neither true nor false and both true and false respectively. Figure 3.8a displays the
standard structure for FDE. The ordering is upward, b ≤ t and so on. As usual here, conjunction
is interpreted as meet, disjunction as join, De Morgan involution, negation, is vertical symmetry,
switching t and f , leaving b and n alone, and implication is defined from the other connectives.
The set of designated truth values is taken to be {t, b}. Truth tables for the operations are shown
in Figure 3.8b.

(a) Four Truth Values

∧ f b n t

f f f f f

b f b f b

n f f n n

t f b n t

∨ f b n t

f f b n t

b b b t t

n n t n t

t t t t t

⊃ f b n t

f t t t t

b b b t t

n n t n t

t f b n t

¬
f t

b b

n n

t f

(b) Four-Valued Truth Tables

Figure 3.8: Four-Valued Semantics Basics

Valuations now map to the FDE structure, and meet the conditions of Definition 2.8. Since our
designated set is now {t, b}, Definition 2.11 gives us the following interpretation of tableau signs.

JT K = {t, b}
JF K = {f, b}
JT K = {f, n}
JF K = {t, n}

Since the value b is commonly understood as both true and false, the sign T can be read as at least
true: either just true, or true and also false. Likewise F is at least false. Then T and F can be
read as at most false and at most true.

Initial tableaus are from Definitions 2.13 and 2.14. Branch extension rules are from Defini-
tion 2.18 or as expanded, from Figure 2.1. The tableau closure conditions are determined by
Definition 2.15. They work out to the following.

Definition 3.6 (Four-Valued Closure) For the four-valued structure, a tableau branch is (atom-
ically) closed if, for some (atomic) formula X, the branch contains one of the following pairs of
formulas:

1. T X and T X,

2. F X and F X,
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The tableau system that results from all this first appeared in [7]. Figure 3.9 shows an example
of an FDE proof. This example is taken from [26], where it is proved using the rules for FDE
tableaus as given in that book. Thus the two proof systems can be compared. The proof is for the
sequent ¬(B ∧ ¬C) ∧A −→ (¬B ∨C) ∨D. We note that the sequent involved in Figure 3.6 is not
provable in FDE, though it was in LP. It is a good exercise to verify this.

Figure 3.9: FDE Proof Example

There is really no asymmetric version of FDE. An asymmetric initial tableau, Definition 2.14,
has only T and F as signs. A look at the branch extension rules from Figure 2.1 shows that T and
F can never turn up in a subsequent tableau, and hence the closure conditions from Definition 3.6
can never be applied.

3.4 Six-Valued Logic

We have been using the terminology “Morgan lattice”, and not the more common “De Morgan
lattice”. The latter requires distributivity, but we have not needed it. We now give a specific
example of a non-distributive Morgan lattice, along with a prime filter, and see what logic it
determines. The lattice is displayed in Figure 3.101. As usual here, the lattice ordering is upward,
and the Morgan involution simply inverts the structure.

Figure 3.10: A Non-Distributive Lattice

It is easy to check that this is a Morgan lattice, but it is not distributive. For instance,
a ∧ (b ∨ c) = a ∧ t = a, but (a ∧ b) ∨ (a ∧ c) = f ∨ c = c. Thus it is not a De Morgan lattice.

1I thank Hanamantagouda Sankappanavar for suggesting this example.
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The subset {c, a, t} is a proper prime filter. (So is {d, b, t}, but it is a symmetric counterpart
of the first, and has similar behavior. We do not discuss it further.) Using this prime filter as our
designated set we have the following.

JT K = {c, a, t}
JF K = {c, a, f}
JT K = {b, d, f}
JF K = {b, d, t}

The only pairs that do not have a non-empty overlap are: T , T and F , F . Thus the closure rules
we get are actually those of FDE, and hence that is the logic being determined.

3.5 One More Thing, S3

There is a less conventional logic, S3, that can be handled by our tableau machinery with a little
tweaking. Its name was introduced in [12] to stand for “symmetric 3-valued”, but the logic itself is
older. It is not a standard many-valued logic directly, but lives in the general vicinity. A sequent
is considered valid in S3 if it is valid in both K3 and LP, thus it is an intersection logic. We sketch
how our tableau systems can handle S3, but leave most of the details to the reader.

Tableaus for all the semantically defined symmetric logics we considered start the same way.
A tableau to establish that X1, . . . , Xn −→ Y1, . . . , Yk is a validity begins construction with the
signed formulas T X1, . . . , T Xn, T Y1, . . . , T Yk. They all continue using the same branch extension
rules, given in Figure 2.1. Systems differ in their branch closure conditions, and the ones for K3

and LP are summarized in Figure 3.7. Then for S3, we simply require that each tableau branch be
closed using both the K3 and the LP conditions.

For example, the tableau for X ⊃ Y −→ (X ⊃ ¬Y ) ⊃ ¬Y shown in Figure 3.6, is closed in the
LP sense but not in the K3 sense. Indeed, a K3 counter-model was extracted from the tableau. So
the sequent has been established to not be an S3 validity. On the other hand, consider the sequent
A ∧ ¬A −→ B ∨ ¬B, which is characteristic for S3. Figure 3.11 displays a tableau for it, with all
applicable rules actually applied. The only branch is closed using the K3 rules because of 3 and 5.
It is also closed using the LP rules because of 6 and 8. This establishes that the sequent is S3 valid.

T A ∧ ¬A 1.

T B ∨ ¬B 2.

T A 3.

T ¬A 4.

F A 5.

T B 6.

T ¬B 7.

F B 8.

Figure 3.11: S3 Tableau Proof

One final remark about S3 and tableaus. The closure rules for FDE from Definition 3.6 are
closure conditions for both K3 and LP. It follows that the validities of FDE are among those of S3.
This is, of course, well known. The present point is simply that this is an easy consequence of the
tableau formulations.
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4 There Isn’t Much To Go Around

Each prime logical Morgan lattice 〈M, D〉 semantically determines a many-valued logic, using its
prime filter D as the set of designated truth values. For each such logic there is a corresponding
tableau system. All these tableau systems have the same initial conditions, Definition 2.13, and the
same branch extension rules, Definition 2.18 and Figure 2.1. Closure conditions are determined by
Definition 2.15, so any differences between two such logics must arise because of different closure
rules. Figure 4.1 collects together the ones we have seen. For every logic arising from a prime logical
Morgan lattice we must always have T, T , and F, F among the closure conditions, since these cases
involve complementation and so there can be no overlap. This leaves only a small number of other
potential closure conditions, four in fact: T , F or T , F or T , F or T , F . In fact, two of these are
not possible: T , F and T , F .

Here is the argument for why the case T , F cannot be a closure condition. For it to be one, JT K
and JF K must not overlap. By Definition 2.11 this says that D and ¬D cannot overlap, from which
it follows that D ⊆ ¬D. Now D, being a non-empty filter, is upward closed and hence contains t,
the top member of the lattice. Then t ∈ ¬D, so ¬t ∈ D, that is, f ∈ D. Since D is upward closed,
everything is in D, so it is not a proper filter. A similar argument works for the case T , F .

It follows that the combinations of closure conditions shown in Figure 4.1 are the only ones
possible, and so while there are infinitely many prime logical Morgan lattices, there are only four
symmetric logics that any of them can determine. And those four are already represented among
the Morgan lattices with at most four members. Adding asymmetric logics changes the game, but
it only adds a few more cases to the symmetric ones.

Logic Closure Conditions

CL T, T or F, F or T, F or T , F

K3 T, T or F, F or T, F

LP T, T or F, F or T , F

FDE T, T or F, F

Figure 4.1: Possible Symmetric Branch Closure Conditions

We conclude this section with one more De Morgan lattice example, displayed in Figure 4.2.
It illustrates the use of tableaus to determine what logic an example presents. Figure 4.2a shows
a rather standard six element lattice. It has four proper prime filters: D1 = {t}, D2 = {t, a, c},
D3 = {t, a, b}, and D4 = {t, a, b, c, d}. Since D2 and D3 are symmetric versions of each other,
we omit D3 from further discussion. For the rest, in Figure 4.2b we show the results of applying
Definition 2.11, and say what the closure conditions are, as determined by Definition 2.15. The
logics we get are K3, FDE, and LP.

5 Interpolation

This section is devoted to showing that interpolation can be proved rather easily using the tableau
rules of this paper, and done so uniformly for all symmetric logics in the family determined by
prime logical Morgan lattices (which really comes down to four logics). Interpolation for first
degree entailment was proved in [1]. Interpolation for K3 can be found in [6, 22]. A uniform proof
related to ours can be found in [29]. Our proof ultimately traces back to an elegant constructive
one of Smullyan using tableaus for classical logic, found in [28]. Later this method was used in [17]
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(a) De Morgan Lattice

D1 D2 D4

JT K {t} {t, a, c} {t, a, b, c, d}
JT K {a, b, c, d, f} {b, d, f} {f}
JF K {f} {c, d, f} {f, a, b, c, d}
JF K {t, a, b, c, d} {t, a, b} {t}

T, T T, T T, T

Conditions F, F F, F F, F

T, F T , F

Logics K3 FDE LP

(b) Tableau Closure Conditions

Figure 4.2: A Six-Valued Example

to prove interpolation for several standard modal logics such as K4 and S4, with an extension to
Gödel-Löb logic in [14]. Smullyan’s formal machinery involved a special two-sided sequent calculus.
In [15] different notational machinery was introduced, involving what we called biased formulas. It
turns out that the present structure of four signs provides us with a direct equivalent of biasing,
and so Smullyan’s methodology applies with no additional formal machinery needed.

The original interpolation theorem was for classical logic, [9], and says that ifX ⊃ Y is classically
valid then there is an interpolant, Z, in the common language for X and Y , such that both X ⊃ Z
and Z ⊃ Y are classically valid. Propositionally, “common language” means that all propositional
letters of Z are common to X and Y . Of course there is the issue of what to do if X and Y have no
propositional letters in common. Classically, if this happens then either ¬X is valid or Y is valid.
However things can be stated more simply if we add propositional constants to the language, ⊥
and >, interpreted as classical falsity and truth respectively. If this is done, then the new symbols
are always part of the common language, and there are no special cases that need to be considered.
We follow this route.

Special Assumption For this section only, our propositional language is expanded with ⊥ and
>, and Definition 2.8 is extended with the following. In each Morgan lattice, where f denotes the
bottom element and t denotes the top, we require the following of valuations:

v(⊥) = f

v(>) = t.

Of course with new propositional constants in the language, tableau systems need extending
too. The idea behind Definition 2.15 was that a branch should close if it represented an impos-
sible situation, and this required certain pairs of signed formulas to be present. With the new
propositional constants, closure can also be because of a single signed formula.

Definition 5.1 (New Closure Conditions) For this section with > and ⊥ present, a tableau
branch is closed if it meets the appropriate closure conditions from earlier, or if it contains any one
of the following signed formulas:

T ⊥, F ⊥, F >, T >.
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All four cases above represent impossible situations. We check two of them. First, suppose we
have T ⊥ on a tableau branch. According to Definition 2.12, if a valuation v were to validate this
then v(⊥) ∈ JT K, and so f ∈ D. But since D is upward closed, it would contain everything and
thus not be a proper filter. Likewise if v validates F ⊥ we would have v(⊥) ∈ JF K, and so f ∈ ¬D.
But then f 6∈ ¬D, and so t 6∈ D. But again D is upward closed, and it would follow that D is
empty, again not a proper filter.

Our soundness and completeness results for tableaus, with respect to prime logical Morgan
lattices, extend very easily to admit ⊥ and > into the language. In this section we assume such
soundness and completeness, and omit the verification.

Proposition 5.2 (Interpolation) Let 〈M, D〉 be a prime Morgan lattice, and assume that
〈M, D〉 |= Γ −→ ∆. Then there is a formula Z, with all its propositional letters common to Γ
and ∆, such that 〈M, D〉 |= Γ −→ Z and 〈M, D〉 |= Z −→ ∆.

The rest of the section is devoted to a proof of the Proposition. We assume throughout that
〈M, D〉 is a prime Morgan lattice. Throughout, the word “tableau” is often used as short for
“〈M, D〉 tableau”. All the work is really done in a Lemma that refers directly to tableaus, and
yields Proposition 5.2 as a special case. We begin with some special terminology and notation.
This machinery makes an important distinction between unbarred tableau signs, T and F , and
barred tableau signs, T and F—this is the counterpart here of biasing in [15].

Definition 5.3 We introduce functions that separate sets of signed formulas into two categories.
For a set S of signed formulas:

unbar(S) = {T W | T W ∈ S} ∪ {F W | F W ∈ S}
bar(S) = {T W | T W ∈ S} ∪ {F W | F W ∈ S}.

We say a formula Z is an interpolant in 〈M, D〉 for a set S of signed formulas if we have the
following:

1. All propositional letters in Z occur in formulas of both bar(S) and unbar(S),

2. There are closed 〈M, D〉 tableaus for both unbar(S) ∪ {T Z} and bar(S) ∪ {T Z}.

Lemma 5.4 If there is a closed 〈M, D〉 tableau for a finite set S of signed formulas, then S has
an interpolant.

Proof The proof is by induction on the number of tableau rule applications it takes to close a
tableau for S. For all of the following, assume we have a closed tableau T for the finite set S, and
the induction hypothesis is that every set of signed formulas having a closed tableau with fewer
steps than T has an interpolant. In presenting the proof it simplifies things to make some use of
uniform notation from Definition 2.16.

Base Cases Suppose the tableau T for S closes using 0 rule applications, that is, a tableau contain-
ing just the members of S must already be closed. We show that, under these circumstances,
S has an interpolant. The only way a zero step tableau for S can be closed is if S meets one
of the appropriate closure conditions from Figure 4.1, or if S contains one of the single signed
formula conditions from Definition 5.1. How to handle the various cases is summarized in the
following table. Note that of the two-formula conditions, the first two apply for all 〈M, D〉
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while the second two apply for some choices of 〈M, D〉 but not for others. We only discuss
three of the cases, and leave the rest to the reader.

S Cases interpolant

T ⊥ ⊥
F ⊥ >
F > ⊥
T > >

T P, T P P

F P, F P ¬P
T P, F P ⊥
T P, F P >

For the following suppose we have an atomically closed tableau with a single branch, S is the
set of signed formulas on it, and S contains the formula(s) shown in one of the cases above.

Case F ⊥: Assume F ⊥ ∈ S. We show > is an interpolant. Trivially all propositional
letters in > are common to unbar(S) and bar(S). Also trivially there is a closed tableau for
unbar(S)∪{T >} because it contains T > and we have Definition 5.1. Finally bar(S)∪{T >}
is closed because F ⊥ is in bar(S), and again one of the New Closure Conditions applies.

Case F P, F P : This is a closure condition that applies for all choices of M. Suppose S
includes F P and F P . We show ¬P is an interpolant.

The only propositional letter in ¬P is P , and it occurs in unbar(S) since S includes F P , and
it occurs in bar(S) since S includes F P .

Next we show we have the needed closed tableaus. For one, we want closure for a tableau
starting with unbar(S) and T ¬P . But unbar(S) contains F P , and from T ¬P we can get
F P , and so we have closure. For the other, we want closure for a tableau starting with T ¬P
and the members of bar(S). From T ¬P we can get F P and bar(S) contains F P , so again
we have closure.

Case T P, F P : This is a closure condition that is not universal. Assume 〈M, D〉 is a prime
logical Morgan lattice for which the condition is appropriate, and S contains T P and F P ;
we show ⊥ is an interpolant.

Since ⊥ contains no propositional letters, vacuously all occur in both bar(S) and in unbar(S).

We need tableau proofs for unbar(S) ∪ {T ⊥} and for bar(S) ∪ {T ⊥}. A tableau proof for
unbar(S) ∪ {T ⊥} is immediate since both T P and F P are in unbar(S), and this is subject
to our closure condition. A proof for bar(S)∪{T ⊥} is equally immediate, since this contains
T ⊥, and that is one of our New Closure Conditions.

Negation Induction Cases, ρ Suppose ρ ∈ S and in the closed tableau T for S the first rule
applied in T is to it, adding ρ0. The ρ rule from Definition 2.18 summarizes four negation
cases. We discuss one of them in detail, conclude F X from T ¬X. The other three are similar
and are left to the reader.

Suppose T ¬X ∈ S and in the closed tableau T for S the first rule applied adds F X to the
initial branch containing the members of S. Instead of considering the tableau T as one for
S with its first rule application being to T ¬X, we could also understand T as a tableau for
the set S ∪ {F X}, and whose first rule application is whatever originally followed the initial
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Negation rule application. This is also a closed tableau but with one fewer rule application,
so the induction hypothesis applies. The set S ∪{F X} must have an interpolant, say Z. We
show Z is also an interpolant for the original set S.

Trivially bar(S ∪ {F X}) = bar(S) so, since the propositional letters occurring in Z are in
bar(S ∪{F X}), they are in bar(S). Also trivially, X and ¬X contain the same propositional
letters. And, since T ¬X ∈ S, the propositional letters appearing in unbar(S∪{F X}) and in
unbar(S) are the same. Since the propositional letters occurring in Z are in unbar(S∪{F X}),
they are in unbar(S).

Since Z is an interpolant for S∪{F X}, there is a closed tableau T1 beginning with unbar(S∪
{F X}) ∪ {T Z}. Equivalently, T1 is a closed tableau beginning with unbar(S) ∪ {F X, T Z}.
Then there is a closed tableau beginning with unbar(S) ∪ {T Z} because, since T ¬X ∈
unbar(S), we can start by applying the T ¬ rule to add F X, and then copy the steps of T1.
There is also a closed tableau T2 beginning with bar(S ∪ {F X}) ∪ {T Z}. But T2 is directly
a closed tableau for bar(S) ∪ {T Z}.

Non-Branching Induction Cases, α Suppose α ∈ S and in the closed tableau T for S the first
rule applied is to α, adding α1 and α2 to the initial branch containing the members of S.
Instead of considering the tableau T as one for S with its first rule application being to the
α formula, we could also understood T as a tableau for the set S ∪ {α1, α2}, and whose first
rule application is whatever originally followed the initial α rule application. This is also
a closed tableau but with fewer rule applications, so the induction hypothesis applies. The
set S ∪ {α1, α2} must have an interpolant, say Z. We show Z is also an interpolant for the
original set S.

There are two possibilities we need to consider, since α might have a sign with an overbar or
a sign without an overbar. We only discuss the overbar case; the other is similar and we omit
the details for it. Thus we now assume that S ∪ {α1, α2} has interpolant Z, and α has one
of T or F as its sign. Note that α1 and α2 must also have signs with overbars, so all of α, α1

and α2 are in bar(S ∪ {α1, α2}). Since Z is an interpolant for S ∪ {α1, α2}, all propositional
letters in Z occur in formulas of bar(S ∪ {α1, α2}) and in unbar(S ∪ {α1, α2}), and both
unbar(S ∪ {α1, α2}) ∪ {T Z} and bar(S ∪ {α1, α2}) ∪ {T Z} have closed 〈M, D〉 tableaus.

Now, a propositional letter occurrs in α exactly if the propositional letter occurrs in at least
one of α1 or α2. Consequently since α ∈ S, all the propositional letters occurring in Z
occur in formulas of bar(S) and in formulas of unbar(S). Also, there is a closed tableau
for unbar(S ∪ {α1, α2}) ∪ {T Z}, and from this we can easily construct a closed tableau for
unbar(S)∪{T Z}. Simply begin with an application of the α rule, allowing us to add α1 and
α2, then proceed as in the closed tableau for unbar(S ∪ {α1, α2}) ∪ {T Z}. In a similar way
there is a closed tableau for bar(S) ∪ {T Z}.

Branching Induction Cases, β This time suppose β ∈ S, T is a closed tableau for S, the
induction hypothesis holds for sets with closed tableaus having fewer steps than T , and the
first tableau rule applied in T is to β, causing the tableau to branch, with a left branch
starting with β1 and a right branch starting with β2. If we cut off the right branch from T
what remains is a properly constructed and closed tableau, call it T1, but beginning with the
set S ∪ {β1}. Similarly if we cut off the left branch from T we have a closed tableau, T2,
beginning with S∪{β2}. Both T1 and T2 have fewer steps than T so the induction hypothesis
applies. Thus there is an interpolant, Z1 for the set S ∪ {β1} and an interpolant Z2 for the
set S ∪ {β2}. To sumarize, we have the following.
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1. All propositional letters of Z1 occur in formulas of bar(S∪{β1}) and of unbar(S∪{β1}).

2. There are closed tableaus for both unbar(S∪{β1})∪{T Z1} and bar(S∪{β1})∪{T Z1}.

3. All propositional letters of Z2 occur in formulas of bar(S∪{β2}) and of unbar(S∪{β2}).

4. There are closed tableaus for both unbar(S∪{β2})∪{T Z2} and bar(S∪{β2})∪{T Z2}.

We will use Z1 and Z2 to construct an interpolant for S, but there are two subcases depending
on whether β has a sign with an overbar or a sign without an overbar. We only discuss the
case with no overbar, that is, we assume β has either T or F as its sign. The case with
an overbar proceeds dually to the present one, and is left to the reader. We will show that
Z1 ∨Z2 is an interpolant for S. In the dual case, which we have left to the reader, Z1 ∧Z2 is
the interpolant.

Any propositional letter occurring in Z1 ∨ Z2 occurs in Z1 or in Z2 (possibly both). If a
letter occurs in Z1, by item 1 above it occurs in a formula of bar(S ∪ {β1}) and in a formula
of unbar(S ∪ {β1}). But all propositional letters occurring in β1 also occur in β, so any
propositional letter occurring in Z1 must occur in both bar(S) and in unbar(S). Similarly for
propositional letters in Z2, using item 3. So, every propositional letter in Z1 ∨ Z2 occurs in
both bar(S) and in unbar(S).

We must show that there are closed tableaus for both unbar(S) ∪ {T Z1 ∨ Z2} and bar(S) ∪
{T Z1 ∨ Z2}. The second of these is easy. Since we are discussing the case where β has
either T or F as its sign, β 6∈ bar(S). Likewise β1 and β2 must have T or F as their sign,
so bar(S ∪ {β1}) and bar(S ∪ {β2}) both are just bar(S). Then to get a closed tableau for
bar(S) ∪ {T Z1 ∨ Z2} apply the tableau rule for T ∨, splitting to two branches, one with
bar(S) ∪ {T Z1 ∨ Z2, T Z1} and the other with bar(S) ∪ {T Z1 ∨ Z2, T Z2}. This gives us
branches that can be continued to closure using items 2 and 4 above.

To complete the argument we need to show there is a closed tableau for unbar(S)∪{T Z1∨Z2}.
Here is the tableau construction. Begin with a single branch containing the members of
unbar(S) ∪ {T Z1 ∨ Z2}. Applying the T ∨ rule, add both T Z1 and T Z2 to the branch end,
and then apply a rule to β, splitting the branch end with one fork containing β1 and the other
β2. The branch ending in β1 can be closed by item 2 above, and the branch ending in β2 can
be closed by item 4.

Now we are ready to prove interpolation in a uniform way for our logics.

Proof of Proposition 5.2 Suppose 〈M, D〉 |= Γ −→ ∆. Using our soundness and completeness
theorems there are X1, . . . , Xn ∈ Γ and Y1, . . . , Yk ∈ ∆ such that some 〈M, D〉 tableau beginning
with

S = {T X1, . . . , T Xn, T Y1, . . . , T Yk} (?)

is closed. By Lemma 5.4 the set S has an interpolant, Z. Then all propositional letters in Z are
in unbar(S), and hence in members of {X1, . . . , Xn} ⊆ Γ. Similarly all propositional letters in Z
are in bar(S), hence in members of {Y1, . . . , Yk} ⊆ ∆. Further there are closed 〈M, D〉 tableaus
for unbar(S) ∪ {T Z} and for bar(S) ∪ {T Z} and so, using soundness and completeness again,
〈M, D〉 |= Γ −→ Z and 〈M, D〉 |= Z −→ ∆.
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6 A Brief History

It would be surprising if the kind of tableau machinery discussed here were entirely new. It is not.
What is new is the general algebraic approach. This makes it possible to consider an infinite family
of structures, prove things uniformly, interpolation for instance, and ultimately determine that only
a small number of logics are actually characterized by an infinite family of natural structures. This
section mentions some of the earlier literature. There are several tableau style proof systems that
have appeared for FDE, and some for LP. We only bring up those that are closely related to our
particular tableau style approach.

A four-sign tableau system for FDE can be found in [10, Section 5]. (K3 and LP are not treated.).
Suppose we think of the four truth values in the lattice for FDE as Belnap did [4, 5]: only true,
only false, both, and neither. Then [10] introduces four tableau signs t, f , t∗, f∗, and gives them
the following meanings.

JtK = {only true, both}
JfK = {only false,neither}
Jt∗K = {only true, neither}
Jf∗K = {only false,both}

Comparing things, these signs correlate with our usage for FDE as follows.

JtK = JT K

JfK = JT K

Jt∗K = JF K
Jf∗K = JF K

Using this correlation, the tableau system in [10] is the same as the symmetric system here for
FDE. It would have been possible at the time, of course, to consider extending the rules in [10] to a
broader range of algebraic structures beyond FDE, but the work there went in a different direction.

One of the directions investigated in [10] should be mentioned here. Tableaus have a natural
application to automated theorem proving. Standard tableau rules are decompositional. A signed
formula generates simpler signed formulas. A tableau system called KE considers a different sort of
rule, in a sense generalizing modus ponens. For instance for a standard classical tableau system it
would allow the addition of T Y to a branch containing T X and T X ⊃ Y . This is closely connected
to analytic cut, allowing a cut rule that is restricted to subformulas of formulas already present. As
a full system this originated in [23, 24], but was modified in [10] for FDE and investigated for its
computational efficiency. This is something that might usefully be further explored in our present
setting. We do not pursue it here.

Our tableau system for LP first appeared in [7], as did our system for FDE. Probably the main
reason that the system for K3 did not appear there is that in the 1990’s people were not commonly
looking at consequence (which is interesting for K3) but only at validity (which is not, since K3 has
no validities).

The tableau system for FDE in the well-known [26, Section 8.3] of Graham Priest has a close
relationship with ours. Instead of prefixes, the use of + and − signs are combined with a special
role for negation. Then what appears on a tableau branch is one of X,+ or X,−, where X is a
formula that may begin with a negation symbol, which is the ordinary symbol and not an ‘outside’
symbol like our signs. One can read X,+ as representing that X is true and X,− that it isn’t.
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Here is a translation from our signed version to the Priest version.

T X becomes X,+

T X becomes X,−
F X becomes ¬X,+
F X becomes ¬X,−

This allows one to avoid introducing signs, but it is at the cost of overloading the use of the negation
symbol. The overloading makes a translation in the other direction something of a problem. For
instance, should ¬X,− translate to T ¬X or to F X,−? In [28] Smullyan faced exactly the same
issue with his unsigned version of tableaus. We do not go into the issue further here. The tableau
rules in [26] either correspond to ours directly or to rules that are admissible.

In a sense the present work has its ultimate origins in the book [20]. It is possible that this
book had an influence on [7], though it is not cited as a reference. The book is cited in [25], which
does things using sequent calculi instead of tableaus. Related semantical work can be found in [11].

7 Conclusion and Future Work

While there is an infinite family of prime logical Morgan lattices, the number of logics determined is
very small. But the ones thus determined have played an important role, especially recently given
the fundamental issues emerging from research on the strict/tolerant phenomena. Indeed FDE, K3,
and LP are much discussed currently. It a nice thing that all these can be formulated to have the
same simple tableau rules as CL. Or perhaps it should not be surprising since they are all sublogics
of classical logic. There clearly is considerable unity to the family, and this is one of the ways it
shows up. And, as we have seen, tableaus give a simple account of why the family is not bigger
than it is.

There are two directions that look interesting for future research. One is intuitionistic logic,
which can also be seen as a sublogic of classical logic but of a very different kind. Despite differences,
connections are there, and hopefully will be the subject of a subsequent paper. The other direction
is investigating what, if anything, can be said that is of interest concerning families of logics
determined by weakening the lattice conditions of prime logical Morgan lattices. Here ideas stand
on less certain ground, and it remains to be seen what emerges.

References

[1] Alan Ross Anderson and Nuel D. Belnap Jr. The Logic of Relevance and Necessity. Vol. 1. Princeton
University Press, 1975.

[2] Ofer Arielier Arieli and Arnon Avron. “Reasoning with logical bilattices”. In: Journal of Logic, Lan-
guage, and Information 5.1 (1996), pp. 25–63.
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