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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 67, Number 2, June 2002 

INTERPOLATION FOR FIRST ORDER S5 

MELVIN FITTING 

Abstract. An interpolation theorem holds for many standard modal logics, but first order S5 is a 

prominent example of a logic for which it fails. In this paper it is shown that a first order S5 interpolation 

theorem can be proved provided the logic is extended to contain propositional quantifiers. A proper 

statement of the result involves some subtleties, but this is the essence of it. 

?1. Introduction. While an interpolation theorem can be proved for many first 
order modal logics, S5 is a notable exception, [5]. One might naturally suspect that 
if more machinery were available to build interpolant candidates, an interpolation 
theorem could be obtained. This is the route taken in [2], for instance, where 
world-designating propositional variables are added. Propositional quantifiers can 
be seen as a limited, but natural, second order construct, and they also provide what 
is needed. This will be shown by a method based on a tableau proof procedure. 

In a modal setting, propositional quantification is not as straightforward as one 
might think. I'll begin by reviewing a little of what is known about it in a purely 
propositional setting-there seems to be no study of it in a first order context. I give 
a tableau system for proving first order modal formulas involving propositional 
quantifiers. Showing completeness of this system brings in machinery originally 
developed for higher type classical logic. Then I properly state the interpolation 
theorem, and give its constructive proof. 

?2. Propositional quantification background. Propositional quantifiers have never 
become mainstream, but they have a history that threads its way through the entire 
of modern logic. Bertrand Russell [13], for instance, used them to define disjunc- 
tion and negation from implication. Classically, adding propositional quantifiers to 
propositional logic obviously leaves things decidable, since one can think of them 
as ranging over {true,false}, and apply a truth table analysis. They do, however, 
raise the complexity of satisfiability from NP complete to P-space complete [15]. 

Adding propositional quantifiers to propositional modal logics is much trickier. 
There are different versions, because there are two notions of frames. 

1. Most commonly, a frame is a structure (S, W), with . a set of possible worlds, 
and M an accessibility relation. Then propositions are arbitrary subsets of A, 
and propositional quantifiers range over these subsets. Such frames are called 
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622 MELVIN FITTING 

second order frames, by analogy with "true" second order classical models. 
They also supply the primary interpretation of propositional quantifiers. These 
prepositionally quantified modal logics are denoted S47z+, S5?t+, and so on. 

2. Defining frames as above leads to problems since the fit between Kripke and 
algebraic semantics is not satisfactory [10, Chapter 1]. To get around this, 
generalized frames were introduced in [17]. These are structures (S', W, 9), 
where . and W are as before, and 9 is a designated collection of subsets of 
9 called propositions, required to be closed under natural operations corre- 
sponding to formula syntax. Frames of this kind are calledfirst order frames, 
and are analogous to Henkin models for classical second order logic. They 
also supply the secondary interpretation of propositional quantifiers. If propo- 
sitional quantifiers are restricted to range over members of 9, the logics are 
denoted S4m, S5?t, and so on. 

If one adds straightforward axioms for propositional quantifiers to the customary 
modal proof machinery, one can prove completeness results with respect to first 
order frames [3, 4]. Reasonable tableau rules work well too. That is, S47T, S57T, and 
so on, have natural proof procedures, as one would expect. 

Second order frames are more problematic. Fine and Kripke showed S47T+, and 
several other prepositionally quantified modal logics, are recursively isomorphic 
to second order classical logic (unpublished, but a weaker version is in [4]). But, 
S57z+ is decidable [4, 1 1]! (S5?t+ embeds in monadic second order classical logic, 
and this is decidable, [1].) Also, S57z+ can be axiomatized [4, 11] by adding the 
following to S57T: (I3X) [X A (V Y) ( Y D Li(X D Y))] . There is also a logic, S57t-, 
corresponding to a semantics in which no closure conditions are imposed on the 
collection of propositions in a generalized frame. It too has been axiomatized, in [4]. 

?3. Syntax and semantics. The modal language, L, has first-order free variables, 
x, y, ..., and propositional variables, X, Y.... I'll use ar, #,... to denote variables 
of either kind. To keep things simple, I do not include constant or function sym- 
bols in the language. Atomic formulas are I and T, propositional variables, and 
expressions of the form R(xl,..., xn), where R is a relation symbol and xl,..., xi 

are first-order variables. Formulas are built up with -, A, D, and quantifier V bind- 
ing each of the two types of variables. Other connectives, quantifiers, and modal 
operators are defined as usual, as are free variable occurrences and substitutions. 

More than one version of propositional quantification is available for proposi- 
tional S5. First order quantification can be constant domain or varying domain. 
Clearly it is necessary to be quite precise about the semantics that will be used. 
I'll give three versions, beginning with the most general one. Note that first order 
quantification is taken to be constant domain. 

DEFINITION 3.1. A QS57r- model is a structure (S, X, S, 1) where: . ' is a non- 
empty set (of possible worlds), 9 is a non-empty set (the first-order domain), S 
is a non-empty collection of subsets of ' (the propositional domain), and J7 is a 
mapping, assigning to each n-place relation symbol and each possible world some 
n-place relation on 9. Members of S are called the propositions of the model, and 
D is the interpretation. 
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INTERPOLATION FOR FIRST ORDER S5 623 

DEFINITION 3.2. A valuation in a QS5z- model (S, X, S, JA) is a mapping v 
that assigns to each first-order variable a member of 9 and to each propositional 
variable a member of 9. Valuation w is an a-variant of v if w agrees with v on all 
variables except possibly ar. 

Now the key notion of truth in a model. The notation used is Id, F kv (P: 
formula (P is true at possible world F of model Id, with respect to valuation v. 

DEFINITION 3.3. Let X = (S, , 9X, A/) be a QS5T- model, let F c ', and let 
v be a valuation. 

1. Atomic cases. 
(a) Id, F IV R(xl.i.. , X71) X (x I), . . . , v(x71)) E (R, F). 
(b) For a propositional variable X, Id, F IFv X r F C v(X). 
(C) Id, lF v T and I, F lykv L. 

2. I, Fv-4'I, FV (. 
3. Id, lF v (D A T <-- IdF v (Dand I, lF v T. 
4. Id, F Iv Am < X, A KIv ( for all A C S. 
5. Id, r ikv (V)F < Id, F X Kl (D for every a-variant w of v. 

An a-variant of a valuation is another valuation, and so assigns members of S 

to propositional variables. Thus item 5 makes propositional quantifiers range over 
members of 9. 

DEFINITION 3.4. Let X = (S. X, S, A) be a QS57T- model. An atom is a 
non-empty member of S with no non-empty proper subset in 9. 

Now two stronger notions of model are defined. In the first, formulas determine 
propositions. In the second, besides this, there must be lots of atoms. 

DEFINITION 3.5. Let Id (S, X, 9, A/) be a QS5T- model. X is a QS57z model 
if, for every valuation v and for every formula (D of L, {F c I Id, F k (D} is 
a member of S. Id is a QS57T+ model if it is a QS57z model, and every possible 
world belongs to an atom. 

A formula (P of L is valid in Id provided Id, IFv (D for every v and every F C v 
(D is QS57T- (QS57Z, QS57Z+) valid if it is valid in every QS57T- (QS572, QS57T+) 

model. 

There is an obvious parallel between S57Z and QS57Z that seems to be lost when 
moving to S57T+ and QS57T+. In S57T+ models, the set of propositions is the 
entire powerset of the set of worlds, but in QS57T+ models this need not be the 
case. There are two reasons for this discrepancy. First, it was shown in [4] that 
S57T+ has the same theory as the propositional logic characterized by a semantics 
imposing a propositional analog of QS57Z+, so things are not so far apart after 
all. Second, a referee for this paper notes that the direct analog of S52Z+ (with the 
set of propositions always being the full powerset of the set of possible worlds) is 
not axiomatizable, since second-order arithmetic embeds in it. This is more than 
enough to account for the version of QS57T+ we use. 

LEMMA 3.6. Suppose Id (S, X, 9, JA) is a QS57Z+ model, X is a propositional 
variable, and v is a valuation such that v(X) is an atom. If F, A C v(X), then for 
every formula (D, X, F k (D I,A IAv K . 
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624 MELVIN FITTING 

PROOF. Assume the hypothesis, and suppose F, A ? v(X), , F IHv (F but 
IA lIv (. Let S = { ,Q? l' Ik (( A X)}. Since X is a QS57T+ 
model, it is a QS57T model, and so S C 9. Clearly S C v(X). S + 0 since F C S. 
But also, A , S, so S is a proper subset of v(X), which means v(X) is not an 
atom. -i 

A classical logic model is specified by giving a domain and an interpretation, and 
these can be chosen essentially arbitrarily. The situation is similar with a QS57T- 
model: A, X, 9, and J7 can be specified more-or-less arbitrarily. But whether the 
result is a QS57T, or QS57T+ model is not, in general, easy to determine. One case 
in which it is obvious is when 9 consists of all subsets of S. In such a case, atoms 
are just singleton sets. 

?4. Statement of results. The following is straightforward to verify. 
THEOREM 4.1. The logic QS57T extends the logic QS57T-, and is extended by 

QS57T+. All of QS57T-, QS57T, and QS57T+ are conservative extensions of QS5, 
where QS5 is the usual constant domainfirst order version of S5 (without propositional 
variables or quantifiers). 

In Section 2 it was noted that (3X) [X A (V Y) ( Y D D(X D Y))] played a role 
in axiomatizing S57T+. We need an analog for the first order version. 

DEFINITION 4.2. 

Atom(X) =def OX A (VY){[0Y A (Y D X)] D E(X D Y)}. 

Atom =def (3X)f{X A Atom(X)}. 

Clearly Id, F Ikv Atom(X) if and only if v(X) is an atom. The OX part says 
that v (X) is non-empty. The quantified part says that v (X) is minimal. Then 
Id, F IHs Atom says that F belongs to an atom, so Atom is valid in a QS57T model 
Id if and only if Id is a QS57T+ model. Thus we have the following. 

THEOREM 4.3. A formula (F of L is QS57T+ valid if and only if OAtom D (D is 
QS57 valid. 

The remaining results require much more complex proofs. 
THEOREM 4.4. Both QS5T- and QS57T have sound and complete tableau systems. 
THEOREM 4.5. Let (D and T be closedformulas of L. If (D D T is QS57T- valid, 

then (F D T has an interpolant in QS57-+; that is, there is a closed formula Q such 
that all relation symbols of Q are common to (F and T, and both (F D Q and Q D ' 
are QS57T+ valid. 

?5. Prefixed tableaus. In this section I sketch prefixed tableau systems for QS57T- 
and QS57T. See [7, 9] for more details. Aprefixedformula is nO, where n is a positive 
integer, called a prefix, and (F is a formula. Intuitively, think of n as a "name" for 
a possible world, and n.OD as asserting that ( is true at that world. This use of 
'external' names for possible worlds provides a connection with methods of [2]. 

A prefixed tableau is a tree, constructed using certain branch extension rules. A 
proof of (F is a closed tableau, with 1.-,(F at its root. A tableau is closed if each 
branch is closed. A branch is closed if it contains n.T and also n.-ag, for some 
prefix n and some formula T, or if it contains n.I. 
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INTERPOLATION FOR FIRST ORDER S5 625 

As usual with tableaus, the language is expanded to provide existential witnesses 
for use in constructing proofs. 

DEFINITION 5.1. L+ is the extension of L with a new countable set of first order 
variables, called first order parameters, and a disjoint new set of propositional 
variables, called propositional parameters. We do not quantify parameters. A 
formula of L+ that may contain parameters, but that contains no free variables of 
L, will be called grounded. 

Tableau proofs are of closed formulas of L, but in them grounded formulas of L+ 
will appear. Parameters will be used to instantiate existential quantifiers, during the 
course of tableau proofs. Since parameters never occur bound, accidental capture 
of free variables by quantifiers is impossible. 

DEFINITION 5.2. A grounded substitution is a mapping from first order variables 
of L to first order parameters of L+, and from propositional variables of L to 
grounded formulas of L+. The action of a substitution is extended from variables 
to formulas in the usual way. If formula 'F has only ar free, and substitution u maps 
a to -c, I'll generally write 'F as (o(a) and (Du as (z). 

Branch extension rules for propositional connectives are as usual, except that the 
prefix is carried along. For instance, from n.-'--4 one infers n.'F. Likewise the first- 
order quantifier rules are as usual, again with prefixes carried along. The modality 
rules are standard, but are stated for those who may be unfamiliar with them. 

Necessity Rule: If prefix k already occurs on the branch, 
n 

tY 

Possibility Rule: If prefix k is new to the branch, 
n 

R> 

Finally we have the propositional quantifier rules. 

Propositional Universal QS5z- Rule: If P is any propositional parameter, 

n. (VX) t(X) 
n4(P) 

Propositional Universal QS57z Rule: If F is any grounded formula of L+, 

n. (VX) (VX(X) 
n.A (F) 

Propositional Existential Rule: If propositional parameter P is new to the branch, 

n.-i (VX)4(X) 
n.-4(P) 

Two tableau systems have been presented simultaneously, differing only in the 
branch extension rules for the propositional universal quantifier. If the QS57z- 
propositional universal rule is used, the tableau system is called the QS57T- system, 
and similarly for the QS57z system. 
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626 MELVIN FITTING 

?6. Completeness. Soundness is proved as usual for tableaus, and the argument 
is omitted. Arguments of this kind can be found in [6, 7, 9]. Completeness for 
QS57z- also follows standard lines, and once more I omit details. Completeness for 
QS57z is less straightforward, and key portions are given here. The proof amounts 
to a simplified version of a higher type argument from [16, 12]. 

Call a set S of grounded, prefixed formulas consistent if no tableau starting 
with a finite subset of S closes. Call S E-complete if it has appropriate witnesses. 
Specifically: 

1. n.-'(Vx)(t(x) C S implies n.-4-(p) C S for a first order parameter p, 
2. n.-'(VX) i(X) C S implies n.-'iP(P) C S for a propositional parameter P, 
3. n. G-OIi e S implies k.-4( E S for a prefix k. 

As usual, any consistent set of prefixed, grounded formulas that omits infinitely 
many parameters of each kind, and omits infinitely many prefixes, can be extended 
to a maximal consistent, E-complete set. When dealing with axiom systems, max- 
imal consistent, E-complete sets typically satisfy equivalences such as: X A Y is 
present if and only if both X and Y are present. With tableaus (without cut) only 
implications downward are obtainable: if n.X A Y is present, so are both n.X and 
n. Y. Fortunately, these implications are enough to establish completeness. 

Now, suppose H is a maximal consistent, E-complete set. A model will be 
constructed in which H is satisfied in a natural way. 

DEFINITION 6.1. An entity is a pair (F. S), where F is a grounded formula and S 
is a set of prefixes (positive integers). 

A possible value is any entity (F. S) such that, if n.F C H then n C S, and if 
n.-F E H then n , S. 

A possible extension is a set S of prefixes such that (F, S) is a possible value, for 
some formula F. 

A possible value is an entity that is, in some sense, compatible with the information 
in H. 

DEFINITION 6.2. A QS57T- model Id (S. X, S, J) (called the H-model) is 
constructed as follows: ' is the set of prefixes (positive integers); 9 is the set of 
first order parameters; S is the set of possible extensions; for R a k-place relation 
symbol, D (R, n) = {K Pi, . . . , Pk) C 9k n.R(pi. Pk) c HI}. 

It is obvious that the H-model is a QS5T- model. It will be shown that it is a 
QS57z model. 

DEFINITION 6.3. Let v be a valuation in Id, and let u be a grounded substitution 
(Definition 5.2). u is an associate of v provided, 

1. for any propositional variable X, (Xc, v(X)) is a possible value; 
2. for any first order variable x, v(x) = xr. 

Every valuation v in Id has an associate (in general, many). For a propositional 
variable X, v (X) is a possible extension, so there is a grounded formula F such that 
(F. v(X)) is a possible value. Choose one such F and set Xr = F. For first order 
variable x, set xr = v (x). Then a is a grounded substitution that is an associate of 
V. 
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INTERPOLATION FOR FIRST ORDER S5 627 

PROPOSITION 6.4. Let v be a valuation in Id, and let u be any associate of v. For 
any formula (P of L: 

1. If n.Q((D) C H then Id, n Il-v (D. 
2. If n. (--cD) C H then Id, n Ylv (D. 

PROOF. The two items are shown simultaneously, by induction on the complexity 
of (D. Most of the cases are standard and are omitted. I give just the Propositional 
Quantifier ones. Suppose (D is (VX)P(X), and the result is known for formulas of 
lower degree than (D. 

1. Suppose n.[(VX)T(X)]c C H. Let v' be an arbitrary X-variant of v. We 
show that Id, n kv, TP(X); it follows that Id, n IFv (VX)W(X). 

Say v'(X) = S. S is a possible extension, so there is a grounded formula 
F such that (F. S) is a possible value-let a' be the substitution that is like a, 
except that Xc' = F. Clearly a' is an associate of v'. Since n.[(VX)T(X)]u E 

H, then n.[T(F)]c C H. This is equivalent to n.[T(X)]c' C H. Since T(X) 
is of lower degree than (VX)P(X), the induction hypothesis applies, and so 
Id, n Ikv TP(X). 

2. Suppose n.[-'(VX)T(X)]u E H. Then n.[-N'(P)]c C H, for some proposi- 
tional parameter P. Let a' be like a, except that Xc' = P. Then n.[-iT(X)]u' 
C H. 

Let S = {k I k.P C H}. It is easy to see that (P, S) is a possible value. 
Let v' be the X-variant of v such that v'(X) = S. a' is an associate of v'. 
Since TP(X) is of lower degree than (Vx)W(X), Id, n lI,, TP(X). Since v' is an 
X-variant of v, it follows that Id, n lv (VX)W(X). H 

COROLLARY 6.5. For any formula (P of L, and for any valuation v in Id, {n I 
X, n lF- (D} C 9, the set of possible extensions. 

PROOF. Let substitution u be any associate of v. (Du is a grounded formula of 
L+. For convenience let S = {n I I, n kv (D}. We show that ((Du, S) is a possible 
value, from which it follows that S is a possible extension. 

Suppose n.(Fc C H. By Proposition 6.4, Id, n KI (D, hence n C S. Similarly if 
n.-4i@ C H, X, n lVv (D, and so n ' S. This concludes the proof. H 

Completeness for the QS57z tableau system follows. If (D is a closed formula of 
L that has no QS57z tableau proof, then {1 .-i(F} is consistent, and so extends to 
a maximal consistent, E-complete set H. Let Id be the corresponding H-model, 
a QS57z- model by construction. Also, let v be any valuation, and let u be any 
associate of v. Since (D is closed, (Pu = (. Since 1.-,(D C H, Id, 1 Iv (P. And 
finally, by Corollary 6.5, Id is actually a QS57z model. 

?7. Quasi-interpolants. The interpolation theorem, 4.5, will be proved by show- 
ing how to extract an interpolant from a closed tableau. I'll follow the methodology 
of [8], which is a variant of that in [14]. In a tableau proof of (P D T, one begins 
with the negation of the formula, which yields (P and --,T. From here on we keep 
track of which tableau entries descend from (P and which from --T by marking them 
with an L (for left side of implication) or R (for right side). 

A biasedformula is either L(n.(P) or R(n.(F), where n.(F is a prefixed formula. A 
biased tableau is one in which only biased formulas appear, and for which branch 
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628 MELVIN FITTING 

extension rules are modified by adding L's and R's in the obvious way. For instance, 
the conjunction rule gives us the following two biased rules. 

L(n.4 A T) R(n.F A T) 
L(n.'T) R(n. T!) 
L (n .T) R (n. T) 

Similarly all the other tableau rules split into L versions and R versions. Now 
a branch is closed if it contains a syntactic contradiction, ignoring the L and R 
symbols. If (P D T has a QS5T- tableau proof, it can obviously be converted into 
a closed, biased tableau beginning with L(1.() and R(1 -NT). 

A quasi-interpolant (definition below) will be assigned to each finite set of biased 
formulas that can generate a closed biased tableau. If F D 'P is a QS5T- valid 
closed formula, the set {L(1 iF), R(1.--'P)} must then have a quasi-interpolant. 
Eventually I'll show how to convert this quasi-interpolant into a real interpolant 
for the formula (P D T. 

In order to define the notion of a quasi-interpolant, we first introduce a distin- 
guished family of propositional variables. Recall that Definition 3.4 requires that a 
QS57T+ model must have lots of atoms. 

DEFINITION 7.1. Let A1, A2, A3, ... be a new infinite list of propositional param- 
eters, called atom parameters. A valuation v in a QS57T+ model (S, X, 9, JA) is 
called atom respecting provided it assigns atoms in 9 to atom parameters. 

In effect, atom parameters supply names for atoms from inside the modal lan- 
guage. They are distinct from the propositional parameters we use to instantiate 
propositional existential quantifiers. Atom parameters will eventually be elimi- 
nated. 

DEFINITION 7.2. Call a formula (P Atom-QS57T+ valid if Id, F kv (P for every 
QS57T+ model Id, for every world F of Id, and for every atom-respecting valuation v. 

DEFINITION 7.3. Let {L(i1.(Pi),... , L(im.(Pm), R(j1.TP),... , R(jk.Tk)} be a fi- 
nite set of biased formulas. A quasi-interpolant for this set is a formula Q meeting 
the following conditions. 

1. The only free variables in Q are propositional and first order parameters, 
including atom parameters. 

2. Every relation symbol or parameter that occurs in Q must also occur in 
{Ai,,... ,Ai,,,(,... , m} andin {Aj,., ,AAk,,... . Pk}. 

3. [D(Ai1 D (DI) A ... A D(Ai. D Oam)] D Q is Atom-QS57T+ valid. 
4. Q D [LI(Aj, D --,T,) V ... V EL(Ajk D -Pk)] is Atom-QS5T+ valid. 

Note: in the definition above, Ai, and Ajn are the atom parameters having the 
explicit indices shown, the prefixes of On and 'Pn respectively. 

THEOREM 7.4. If there is a closed QS57T- tableau for {L(i1.(PI),.. L(im. 

OPm), R(ji.Ti)... * *R(ik.Tk)}, then the set has a quasi-interpolant. 
PROOF. The proof is constructive, and is similar to the classical version. A quasi- 

interpolant is assigned to each closed tableau branch. Then, each tableau rule 
application is undone, and quasi-interpolants are produced for the resulting shorter 
branches based on those for the original longer ones. In this way, a quasi-interpolant 
is finally produced for the initial set. 

This content downloaded from 47.18.24.249 on Sat, 13 Sep 2014 18:50:36 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INTERPOLATION FOR FIRST ORDER S5 629 

I'll write T int Q to indicate that Q is a quasi-interpolant for a set T of biased 
formulas. In what follows I'll assume S = {L(i1 .1 ),... , L(im .Fm), R(ji .W1 ). 7 

R(ik Tk)} SL is the set of parameters and prefixes occurring in L-formulas of S. 
Similarly for SR. Q{y/fl,} is the result of replacing all occurrences of y in Q with 
occurrences of the variable /1. 

Closed Branch Cases: 

S U {L(n.A?), L(n.4)} -t I S U {R(n.4), R(n.-4)} int T 

S U {L(n.l)} int 1 S U {R(n.l)} in T 

S U {L(n.4'), R(n.-4)} J 1E(A D )() 

S U {R(n.4), L(n.-4D)} OntD(An D-4'). 

Negation Cases: 

S U {L(n.T)} int Q S U {L(n.l)} int Q 

S U {L(n. -l)} I Q S U {L(n.-iT)} int Q 

S U {R(n.T)} i nt S U {R(n.l)} int Q 

S U {R(n.-l)} i) 
nt 

S U {R(-,T.)} l Q 

S U {L(n.'F)} int Q S U {R(n.D)} in Q 

S U {L(n.--4-)} int Q S U {R(n. --4)} it Q 

Conjunctive Cases: 

S U {L(n.42), L(n.T)} Q S U {R(n.(D), R(n.T)} 
t 

Q 

SU{L(n.AWT)J} int-fQ SU{R(n-.PAT)} 'tQ 

Disjunctive Cases: 

S U {L(n.-4D)} nt) 0 S U {L(n.-NT)} in Q 

SU{L(n.-,(DAWT))} -nt OVQ 

S U {R(n.-4D)} int U S U {R(n.-N')} int Q 

SU{R(n.-(DAT))J} i)OA Q 

Existential Cases: Let y be a parameter not occurring in S or in (Vax) (O), first 
order if a is a first order variable, and propositional otherwise. 

S U {L(n.-iw(y))} -nt Q S U {R(n.- p(y))} -nt Q 

S U {L(n.-4V(V)y(a))} -'nQ SU {R(n.--(Vca)s(aD)} 
't Q 

Universal Cases: y is a parameter of the same type as the variable ae, and the 
variable ,B is new to Q. (f/ is introduced to get around the restriction that 
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630 MELVIN FITTING 

parameters aren't quantified.) 

SU{L(n.op(y))} n if Y CSL 
S U {L(n. (Va),(o(a))} 

int 

S U {L(n o ( (y))} I 
in if y X SL 

S U {L (n. U R (V()) } -o (V)Q{y//3} 

SU{R(n.o(py))} Q if Y e SR 

S U { R (n. (V8() o (a))} m 

S U {R(n.p(y))} intQ 

S U {R (n. (V)O (a))} (/3#)Q{y/fl} 
if Y SR. 

Modal Possibility Cases: In these, the prefix n must not appear in S, and must 
be distinct from h. 

S U {L(n.-A4)} -nt Q S U {R(n.-4q)} lt Q 

S U {L(h.-iED)} int Q S U {R(h.- O)} i" Q 

Finally the cases that will be presented in some detail. Recall the definition of 
Atom(X), Definition 4.2. 

Modal Necessity Cases: The propositional variable Q is new to Q. 

if n C SL 
S U {L(h.OLI')} -tQ 

SU L(n.()} int Q if n!SL 

S U {L(h.OLM)} i (VQ)[Atom(Q) D Q{An/Q}] 

if n C SR 
S U {R(h.OLM)} '1- Q 

SU{R(n.'F)} i if n CSR 

S U {R(h.OLM)} it(3Q)[Atom(Q) A Q{An/Q}] 

Soundness for these rules is generally similar to the usual classical and modal 
arguments. I'll do the Necessity Rules in detail. 

Two of the quantifier cases use the validity (Vx)p (x) D p(p). A modal analog 
is: LI(Ah D L14) D EI1(An D D), an Atom-QS52z+ valid formula, as I will show in a 
moment. With it the soundness of the first and third rules above is straightforward. 
Suppose, in a QS57z+ model, that D(Ah D L14) is true at world F, with respect to 
atom respecting valuation, v. Ah is an atom parameter, so v (Ah) is an atom and 
hence non-empty. Say A c v(Ah), so Ah is true at A. But Ah D DO is true at A 
since it is necessary at F. Hence LAD is true at A, and so D is true at every world. 
Then An D D is true at every world, so E](An D cD) is true at F. 

Finally I'll show soundness of the second rule above (the fourth is similar). 
Assume S U {L(n.'F)} -?j ? Q, where n V SL. I'll show S U {L(h.OAD)} 

't 

(VQ)[Atom(Q) D Q{An/Q}]. 
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INTERPOLATION FOR FIRST ORDER S5 631 

By assumption, both of the following are Atom-QS5rz+ valid. 

[D(Ai, D (D) A A D(Ai,.. D (D,) A D(A, D (D)] D Q 

Q D [ED(Aj, D -A'1) V ... V O(Ajk D -Ak)]- 

Also every relation symbol or parameter that occurs in Q occurs in {fAi,,.. ., Ai,,,, 
A,,s. . . , mD I} andin{ ,Aj,. .., AikTI.. Pk}. 

First, I'll show the Atom-QS52t+ validity of the following. 

(VQ)[Atom(Q) D Q{A,/Q}] D [D(Aj, D --F1T) V ... V L](A Ak D -Fk)]- 

But this is easy. (VQ)[Atom(Q) D Q{A,/Q}] D [Atom(A,) D Q{A,/A,}] is 
QS57z valid and, since A, is an atom parameter, Atom(A,) is Atom-QS52z+ valid. 
Consequently (VQ)[Atom(Q) D Q{A,/Q}] D Q is Atom-QS52z+ valid, and the 
desired formula follows. 

Next, I'll show the Atom-QS52z+ validity of the following. 

[D(Ail D (DI) /\ .. A * / :(Ai,,/ D (Dm) A\ EI(Ah D ECaD)] D 

(VQ)[Atom(Q) D Q{A/Q}I]. 

Suppose otherwise; say that at world F of model X', and for some atom respecting 
valuation v we have 

Xd F 1Fv O(Ail D (DI) A .. A O(Ai... D (Dm) /\ O(Ah D O0D) 

X, F lyv (VQ)[Atom(Q) D Q{A,/Q}]. 

There must be a Q-variant v' of v such that X', F 'v, Atom(Q) but X, F IYv, 
Q{A,/Q}. By the first of these, v'(Q) must be an atom. Let v" be the A, variant 
of v' such that v"(A,) = v'(Q). Then v" is another atom respecting valuation. By 
the second, X, F levl Q. 

Q was a "new" propositional variable, and n X SL, so A, does not occur in any 
of O(Aj, D (DI),..., O(Ai,, D (am). Then v and v" agree on all the free variables of 
these formulas, so, 

X, F IFVH/ D(Ail D 1I) A ... A O(Ai,. D (Dm). 

Also X, F I DE(Ah D EiAt). v(Ah) is an atom, hence non-empty. If A C v(Ah), 
at A we have DL, hence D is true at every world with respect to v. D is a grounded 
formula and so cannot contain A, or Q free, so v and v" agree on the free variables 
of O. It follows that we have Xd, F Iasso D(A, D (D). Since we have [D(Ai, D 

(IO) A ... A D(Ai. D (D,) A O(A, D (D)] D Q, it follows that X, F lFvK, Q, and we 
have a contradiction. 

The condition on relation symbol and parameter occurrences is straightforward 
to verify, and is left to the reader. 

This concludes the proof. - 

?8. The interpolation theorem. Theorem 7.4 is not quite what we want, but it is 
almost there. With it available, here is the proof of Theorem 4.5. 

PROOF. Let (D and T be closed formulas of L such that (D D T is QS57z- valid. 
Then there is a proof of (D F T in the QS57z- tableau system, and consequently a 
quasi-interpolant, call it Q. 
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632 MELVIN FITTING 

1. Since ID and T are closed formulas, Q cannot contain any first order parameters 
or propositional parameters other than atom parameters. 

2. The only atom parameter Q can contain is Al. 
3. [D(A1 D cD)] D Q is Atom-QS52z+ valid. 
4. Q D [D(A1 D -,-,T)] is Atom-QS57z+ valid. 

Here is the candidate for an interpolant, where propositional variable Q is new 
to Q. 

Q* - (!Q)[Q A Atom(Q) A K{A1/Q}]. 

From the quasi-interpolant conditions, any relation symbol in Q* must be com- 
mon to JD and T. And since A1 was the only free variable in Q, either propositional 
or first order, Q* is a closed formula. It remains to show D : Q* and Q* D T 
are both QS5?z+ valid formulas. Let X be a QS57z+ model, let F be a possi- 
ble world of the model, and let v be an arbitrary valuation, not necessarily atom 
respecting. 

Suppose first that X, F lFv K ; I'll show X, F Kv .*. Since X is a QS5?z+ 
model, there is an atom S such that F C S. Let v' be any valuation that is like v 
except that it assigns atoms to atom parameters, and v' (A1) = S. Since 4 contains 
no free variables, 4 is true at the same worlds with respect to v' and v. Then 4D 
is true at F with respect to v', and hence at every member of S, by Lemma 3.6. 
Consequently A 1 D 4 is true at every member of S, with respect to v'. Also, A 1 D 4 
is true at every non-member of S, with respect to v', because Al will be false. Thus 
A 1 D 4 is true at every world, with respect to v', and so X, IFv, K (A1 D ID). 
Now by item 3 above, X, F Kv, Q. Of course X, F Fv, Al A Atom(A1). From 
all this it follows that X, F KFv (3Q)[Q A Atom(Q) A Q{A1/Q}], that is, XW, F KV 

Finally, suppose that XW, F tFv Q*; I'll show that X', F KFv T. Since X', F KFv 
(IQ)[Q A Atom(Q) A QA1/Q}i], for some Q-variant v' of v, X, F lkv Q A 
Atom(Q) A Q{A1/Q}. Since XF KW Atom(Q), v'(Q) is an atom. Let v" be 
like v except that it assigns atoms to atom parameters, and v"(A) = v'(Q). 
Since XF K-v Q?{A1/Q}, it follows that A' F lK,, Q. Using item 4 above, 
X K r l Dv, D(A1 D T). Since X, F lk, Q then X F lKv,, Al, and it fol- 
lows that X , F KI,, T. Finally, since T contains no free variables, X , F Ikv 
TP. 

This concludes the proof. - 

The interpolant Q* for a valid (D D T, constructed above, will not only have 
its relation symbols common to (D and ', but polarity will be respected as well: 
a relation symbol occurring positively in Q will occur positively in (D and T, and 
similarly for negative occurrences. We actually have a version of the Craig-Lyndon 
theorem. 

?9. Conclusion. In [5] Fine showed the Beth Definability Theorem fails for QS5 
with the Barcan formula. From his proof one can extract the following example. 
Let 

(D = (3x)A(x) A (Vy)>(Vx) [F (x) D D (A(y) D -F (x)) 

T = (3x)B(x) D (3y) (Vx)[F(x) D K (B(y) A -F(x)) 
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INTERPOLATION FOR FIRST ORDER S5 633 

Then PD 'P T is QS57r- valid, but has no interpolant in this logic. Using the 
construction above, the following is an interpolant for it in QS521+. 

(3Q){Q A Atom(Q) A (3R) [Atom(R) A 

(Vx) [ (Q D --F(x)) V 0 (R D F (x)) 

This formula is not equivalent to one without propositional quantifiers, since 
interpolation fails in QS52t-. Now consider the following QS52t- valid formula. 

{(Vx) 0[A(x) V B(x)] A (3x)D0-B(x)} D {E(Vx)C(x) D K(3x)[A(x) A C(x)]}. 

The construction above gives (3Q) [Atom(Q) A (3x)0 (Q D A (x))] as an interpolant 
in QS57r+. It is not hard to see this is equivalent to K(3x)A(x). Question: is 
there some way of recognizing which formulas admit elimination of propositional 
quantifiers and which do not? Is there some systematic procedure for eliminating 
them when possible? 

One of the referees suggested an alternative method of proof for Theorem 4.5. 
Propositional S5 translates into classical first-order logic in a standard way: treat 
modal operators as quantifiers over possible worlds. With first-order and proposi- 
tional quantifiers added to the modal language, a translation can be made into a 
classical three-sorted language. Suppose we denote the translate of 4 by .** There 
is an interpolation theorem for classical many-sorted logic, so if 4D 'P T is QS57r- 
valid, there is a classical interpolant, Q, for * D' T*. Ordinarily a formula like 
Q need not be the translate of any modal formula, but with propositional quanti- 
fiers available, atoms are definable and serve within the language as counterparts of 
possible worlds, making a 'reverse' translation possible. Thus Q gives us a modal 
interpolant. 

I have not worked through the details sketched in the previous paragraph, but I 
suspect this approach simply amounts to shifting the construction of the interpolant 
given in this paper to an alternative arena, with no essential changes. What is signif- 
icant, though, is that the referee also suggests a potential extension of Theorem 4.5 
might be proved along these lines. Suppose D P T is valid not in QS52t-, but in 
QS57r+. Again, V* D T* will be valid in a classical three-sorted logic. The coun- 
terpart of propositional quantifiers, in this logic, will essentially be second-order 
quantifiers in a Henkin model. The referee proposes that a classical interpolation 
theorem might be provable in such a setting that constrains second-order quantifi- 
cation in the interpolant to quantifiers that will 'translate back' to propositional 
quantifiers in the original modal setting. If this is the case, a classical interpolant 
for V* D T* could still be used to get a modal interpolant for ( D PT. This would 
mean QS57r+ itself has the interpolation property, and would avoid the 'mixed 
logic' flavor of Theorem 4.5. I do not know if the project can, in fact, be carried 
out. I welcome investigation by others. 
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