
Realizations and LP

Melvin Fitting
Dept. Mathematics and Computer Science

Lehman College (CUNY), 250 Bedford Park Boulevard West
Bronx, NY 10468-1589

e-mail: melvin.fitting@lehman.cuny.edu
web page: comet.lehman.cuny.edu/fitting

March 25, 2007

Abstract

LP can be seen as a logic of knowledge with justifications. Artemov’s Realization Theorem
says justifications can be extracted from validities in the more conventional Hintikka-style logic
of knowledge S4, in which they are not explicitly present. Justifications, however, are far from
unique. There are many ways of realizing each theorem of S4 in the logic LP. If the machinery
of justifications is to be applied to artificial intelligence, or better yet, to everyday reasoning,
we will need to work with whatever justifications we may have at hand—one version may not
be interchangeable with another, even though they realize the same S4 formula. In this paper
we begin the process of providing tools for reasoning about justifications directly. The tools
are somewhat complex, but in retrospect this should not be surprising. Among other things,
we provide machinery for combining two realizations of the same formula, and for replacing
subformulas by equivalent subformulas. (The second of these is actually weaker than just stated,
but this is not the place for a detailed formulation.) The results are algorithmic in nature—
semantics for LP plays no role. We apply our results to provide a new algorithmic proof of
Artemov’s Realization Theorem itself.

1 Introduction

The logic LP (logic of proofs) was introduced by Artemov. It is a propositional modal-like logic that
was created to help complete a research program originating with Gödel, to provide a natural arith-
metic foundation for intuitionistic logic, [7]. LP plays a central role in the solution of that problem.
But it also proves to be an extremely interesting logic for its own sake, a logic of justifications that
is closely related to a standard logic of knowledge, S4. Further, it is generalizable to justification
versions of the usual variety of logics of knowledge. It is, however, a difficult logic to work with.
Semantics, see [4], is more complex than that of standard modal logics, and the same applies to its
proof theory. The advantage that LP provides lies in its representation of justifications, intended
to be explicit proofs in the mathematical sense. From the point of view of logics of knowledge,
this provides a way of dealing with the well-known logical omniscience problems—justifications
grow more complex as we continue to reason, and so they supply a measure of how hard it is to
know something. With this technical machinery available, it should be possible to reason about
justifications themselves in useful ways. It turns out that doing so presents considerable technical
difficulties. In this paper we provide some tools. More on what these tools accomplishe will have to
wait until the end of this section by which point sufficient terminology will have been introduced.

1

2 Melvin Fitting

For a thorough presentation of LP including the original motivation, see [2], and for a discussion
of its evolution into a family of logics of knowledge, see [6]. Here things must be restricted to a brief
sketch of the basic ideas. LP has a modal-like language, but instead of a single modal operator it has
an infinite family of them—they are called proof polynomials, or justifications depending on context.
If t is a proof polynomial and X is a formula, t:X is another formula which can be read informally
as “t is a proof of X”, or “t is a justification for X”. Part of the formal machinery of the logic is a
calculus on proof polynomials. LP is intended to have a close relationship with the normal modal
logic S4, which in turn has a close relationship with intuitionistic logic and, as Gödel observed,
S4 necessity has the properties one associates with an informal notion of provability. The formal
connection between LP and arithmetic is Artemov’s Arithmetic Completeness Theorem, which is
not considered in this paper. The formal connection between LP and S4 is Artemov’s Realization
Theorem, which is given a new proof here. Loosely it says that each theorem of S4 can be converted
into a theorem of LP—a realization of the S4 theorem—that expresses the constructive content of
the S4 theorem. Negative occurrences of � become proof variables and positive occurrences of �
become proof polynomials that may involve those variables. A statement can be found below in
Theorem 2.1, and another, making use of the special machinery introduced here, in Theorem 3.6.

One of the new things in this paper is that realizations are turned into first-class mathematical
objects—essentially they become functions defined on occurrences of modal operators. In order
to do this conveniently, an annotated version of S4 is introduced, in which distinct occurrences of
the necessity operator are syntactically different symbols. All this makes it easier to reason about
realizations and their behavior. We think it will be found to be a useful tool generally—it certainly
has been one here.

We said that LP is a difficult logic to work with. Here is an example. Suppose A, B, and C are
formulas in a standard modal language, and we interpret the � operator as a knowledge operator;
�P is read as ‘P is known’. Now, suppose we have established that A ⊃ C and B ⊃ C in S4, a
common logic of knowledge—assume these formulas contain modal operators. Of course we can
conclude (A ∨ B) ⊃ C by standard classical reasoning. But suppose instead that the formulas
have been replaced by realizations of them—� occurrences have become explicit evidence, proof
polynomials. And suppose we have established that a particular realization of A ⊃ C and a
particular realization of B ⊃ C are the case in LP. Via an indirect argument, passing through
Artemov’s Realization Theorem, we can conclude that some realization of (A∨B) ⊃ C is provable
in LP. The difficulty is, this realization may have little, if any, connection with the ones for A ⊃ C
and B ⊃ C, and so our original pieces of evidence, embodied in the original realizations, may be
lost in the process. Can this be avoided? Can we build directly on the information we have in
the realizations for A ⊃ C and for B ⊃ C to get a realization for (A ∨ B) ⊃ C that is in some
way naturally related? This question will be addressed in Section 8 after a Realization Merging
Theorem has been proved.

Here is another example. We commonly replace, in a formula Z(A), a subfomula A with another
formula B that has been proved to be equivalent to A, getting a new formula Z(B), and conclude
that Z(A) and Z(B) are themselves equivalent. This is something we do all the time—it works in
classical propositional logic, in intuitionistic logic, and in normal modal logics. But again things
are not so simple in LP, where the subformula A of Z(A) may be embedded in a structure of
justifications as represented by proof polynomials. If A is replaced with B, justifications must
be updated to reflect the original ones combined with ones embodying the passage from A to B.
Further, A may be present in different parts of Z(A) with different supporting justifications. This
can lead to considerable complexities. Another LP tool provided is a replacement for the usual
replacement theorem, appropriate for LP.

The general plan of this paper is as follows. After a background presentation of LP we get into

Realizations and LP 3

new material. The LP presentation is entirely proof-theoretic—semantics plays no role here. An
annotated version of S4 is given, in which distinct occurrences of modal operators are syntactically
distinguished. This is a fundamental tool for what follows. Then realization functions are defined, as
functions on formulas of the annotated logic. A Realization Modification Theorem is proved. This
is, perhaps, best understood via the corollaries that follow it in subsequent sections. One of them
provides a solution to the first problem discussed above, about extracting a realization for (A∨B) ⊃
C from a realization for A ⊃ C and another for B ⊃ C. A different corollary is an analog of the
classical Replacement Theorem—replacement of subformulas by equivalent subformulas produces
an equivalent formula. It applies in a more restricted setting than the corollary allowing the
combining of realization functions. Finally, some of these results are combined to supply a new
proof of Artemov’s Realization Theorem—or perhaps it can be viewed as Artemov’s proof unfolded.

Since Artemov’s original work, the ideas of LP have been extended to a family of similar logics,
now called Justification Logics. Thus LP is one among many—indeed various multi-modal logics of
knowledge have also been brought into the picture. I do not address the whole family of justification
logics in detail here—things are complicated enough. But it is clear that my methods do extend,
and I comment briefly on this at the end of the paper.

I want to thank Roman Kuznets for very careful reading of an early draft of part of this paper,
and for catching several errors.

2 The Logic LP

This section contains a brief formulation of LP axiomatically. A semantics will not be needed in
this paper. The language of LP, denoted LLP here, is built from the following basic machinery,
which comes from [2].

1. propositional variables, P , Q, P1, P2, . . .

2. propositional constant, ⊥

3. logical connective, ⊃

4. proof variables, x, y, x1, x2, . . .

5. proof constants, c, d, c1, c2, . . .

6. function symbols ! (monadic), ·, + (binary)

7. operator symbol of the type 〈term〉:〈formula〉

Proof polynomials are built up from proof variables and proof constants, using the function
symbols. Ground proof polynomials are those without variables. Formulas are built up from
propositional variables and the propositional constant ⊥ using ⊃ (with other connectives defined
in the usual way), and an extra rule of formation: if t is a proof polynomial and X is a formula
then t:X is a formula.

The formula t:X can be read: “t is a proof of X.” Proof constants intuitively represent proofs
of basic, assumed truths. Proof variables in a formula can be thought of as implicitly universally
quantified over proofs. If t is a proof of X ⊃ Y and u is a proof of X, we should think of t · u, the
application of t to u, as a proof of Y . The operation ! is a proof-checker: if t is a proof of X then
!t is a verification that t is such a proof. The operation + combines proofs in the sense that t+ u
proves all the things that t proves plus all the things that u proves.

4 Melvin Fitting

The following axiom system for LP is from [1, 2]. Axioms are specified by giving axiom schemas,
and these are:

A0. Classical Enough classical propositional axiom schemes
A1. Application t:(X ⊃ Y) ⊃ (s:X ⊃ (t·s):Y)
A2. Reflexivity t:X ⊃ X
A3. Proof Checker t:X ⊃ !t:(t:X)
A4. Sum s:X ⊃ (s+t):X

t:X ⊃ (s+t):X

Rules of inference are modus ponens, and a version of the necessitation rule, for axioms only.

R1. Modus Ponens ` Y provided ` X and ` X ⊃ Y
R2. Axiom Necessitation ` c:X where X is an axiom A0 – A4

and c is a proof constant.

As usual, a proof is a finite sequence of formulas each of which is an axiom or comes from earlier
terms by one of the rules of inference. A notion of derivation can be introduced either directly, or
indirectly by defining Γ ` X to mean that (G1 ∧ . . . ∧Gn) ⊃ X is a theorem for some finite subset
{G1, . . . , Gn} of Γ.

The specification of which constants are associated with which axioms for rule R2 applications
is called a constant specification. A constant specification is injective if each proof constant is used
for at most one axiom. Injective constant specifications suffice, but are not required. If a proof
uses an injective constant specification, we will say the proof is injective, and what it proves is
injectively provable. In [4] constant specifications were assumed to be given beforehand, and their
properties were investigated in some detail. Computational complexity is dependent on details of
the constant specification. In [2] things were more flexible, and constants were generally assigned
during the course of a proof. In this paper we use the flexible version.

The Artemov Realization Theorem plays a fundamental role for LP. If Z is any theorem of LP,
and we replace every proof polynomial by � (the forgetful projection), the result is a theorem of
S4. This much is easy to see: it is clearly the case for each axiom of LP, and is preserved by the LP
rules of derivation. The Realization Theorem, [2], is a converse to this—an alternative formulation
more in keeping with the methodology of this paper can be found in Theorem 3.6.

Theorem 2.1 (Realization Theorem) If Z is a theorem of S4, there is some way of replacing
� symbols with proof polynomials to produce an injectively provable theorem of LP. Moreover this
can be done so that negative occurrences of � in Z are always replaced with distinct proof variables,
and positive occurrences by proof polynomials that may involve those variables.

Negative occurrences of proof variables can be thought of as inputs, and the proof polynomials
involving them as outputs. Thus theorems of S4, in a sense, carry implicit constructive functional
content which their embeddings into LP make explicit.

Definition 2.2 A substitution is a mapping from proof variables to proof polynomials. If σ is a
substitution and X is a formula, we write Xσ for the result of replacing each proof variable x in
X with the proof polynomial xσ. Similarly for substitution in proof polynomials.

The following is shown in [2].

Theorem 2.3 (Substitution Lemma) If X is a theorem of LP, so is Xσ. Further, if X has an
injective proof, so does Xσ.

Realizations and LP 5

The constant specification used for proving X and that used for proving Xσ will, in general, be
different, but this fact can be safely ignored for what we do here.

A fundamental result that will be used over and over in this paper is the Lifting Lemma, also
from [2], which says that proofs and derivations in LP can be internalized.

Theorem 2.4 (Lifting Lemma) Suppose

s1:X1, . . . , sn:Xn, Y1, . . . , Yk ` Z

then there is a proof polynomial t(s1, . . . , sn, y1, . . . , yk) (where the yi are variables) such that

s1:X1, . . . , sn:Xn, y1:Y1, . . . , yk:Yk ` t(s1, . . . , sn, y1, . . . , yk):Z.

Moreover, if the original derivation was injective, the same is the case for the later derivation.

Corollary 2.5 If Z has an LP proof, then for some ground proof polynomial t, t:Z will have an
LP proof, injective if the proof of Z was injective.

The proof polynomial t in the Corollary above can always be taken so that it does not involve
the operator +. The standard proof, by induction on axiomatic derivation length, constructively
produces such a polynomial. See [2] for details.

3 Annotations and Realizations

In this section some simple machinery is introduced to keep track of modal operator occurrences.
But first modal operators in the standard sense are needed. Let L� be the usual language of propo-
sitional modal logic, built up from propositional letters using ⊥, ⊃, and �, with other connectives
and ♦ taken as defined in the usual way, if needed.

The LP Realization Theorem treats positive and negative occurrences of modal operators dif-
ferently; negatives are replaced by proof variables while positives need not be. Further, different
negative occurrences in a formula are replaced with distinct variables. Generally all this has been
done somewhat informally, but formal machinery for it is straightforward. We introduce an an-
notated version, La

�, of the language L�, intermediate between L� and LLP. As will be seen, it
amounts to syntactic, and not semantic, machinery.

Definition 3.1 The language La
� and its features are introduced as follows.

1. Instead of a single modal operator �, there is an infinite family, �1, �2, These will be
called indexed modal operators. Formulas of La

� are built up as in L�, but using indexed
modal operators instead of �. Formulas of La

� will generally be referred to as annotated
formulas.

2. If X is an annotated formula, and X ′ is the result of replacing all indexed modal operators,
�n, with �, then X ′ is a formula of L�. We say X is an annotated version of X ′, and X ′ is
an unannotated version of X.

3. A properly annotated formula is an annotated formula meeting the conditions that: no indexed
modal operator occurs twice; and if �n occurs in a negative position n is even, and if it occurs
in a positive position n is odd.

6 Melvin Fitting

Example 3.2 Here is an example of a properly annotated formula.

�2(�1U ⊃ �4(�3P ⊃ �6V)) ⊃ �5W (1)

One can think of a properly annotated formula as a bookkeeping device to keep track of occur-
rences of modal operators and their polarities—negative occurrences are even, positive occurrences
are odd. Properly annotated formulas play a fundamental role, but it is important to note that
formulas that are annotated but not properly so also arise naturally. For instance, if X is properly
annotated and Y is a subformula, it may not itself be properly annotated—it will not be if Y is a
negative subformula of X because polarities have been reversed in passing from X to Y . Gener-
ally we will fix a properly annotated formula X and work with subformulas of it, all of which are
annotated, and properly so in context as subformulas of X.

Semantically, annotations are simply ignored. That is, in an S4 model M = 〈G,R,〉 we use
the following rule of evaluation:

M,Γ �nX ⇐⇒M,∆ X for every ∆ ∈ G with ΓR∆

Then in a model, an annotated formula X and its unannotated version X ′ behave alike at each
world. As we remarked earlier, annotations are for syntactical and not for semantical purposes.

Now that we have annotated formulas, realizations can be defined functionally in a natural way.
Before giving the definition, it might be useful to comment on one item that is about to come up
in it. Let us say the displayed occurrence of term t in the formula t:Z is self-referential if t also has
an occurrence in Z. It is shown in [8] that one must admit self-referential proof constants in order
to have the Realization Theorem hold. In this paper we will sometimes need to exercise control
over the self-referentiality of proof variables, hence item 3 below.

Definition 3.3 Realization functions and related notions are defined as follows.

1. A realization function is a mapping from positive integers to proof polynomials that maps
even integers to LP variables. Moreover it is assumed that all realization functions behave
the same on the even integers; specifically, if r is any realization function, r(2n) = xn, where
x1, x2, . . . is the list of proof variables arranged in a standardized order.

2. If X is a formula of La
�, an annotated formula, and r is a realization function, by r(X) is

meant the result of replacing each modal operator �i in X with the proof polynomial r(i).
More precisely, for subformulas of X, r(A ⊃ B) = r(A) ⊃ r(B), r(P) = P for P atomic, and
r(�iZ) = r(i):r(Z). Of course r(X) is formula of LP.

3. Let X be an annotated formula. We say the realization function r is non self-referential on
variables over X provided, for each subformula �2nY of X the variable r(2n) = xn does not
occur in r(Y).

Example 3.4 Let r be a realization function such that the following holds, where f , g, h, and k
are particular proof polynomials that need not be fully specified for present purposes, except that
the only variables are those explicitly shown, and the behavior of r on other inputs is not needed.

r(1) = g(x2, x3, x5) r(4) = x2

r(2) = x1 r(5) = h(x1, x2, x3)
r(3) = f(x3) r(6) = x3

(2)

Realizations and LP 7

Let X = X(P) be formula (1) from Example 3.2 (in Section 6 P will play a special role, though
it does not at the moment). Then we have the following. Note that r is non self-referential on
variables over X(P).

r(X(P)) = x1:[g(x2, x3, x5):U ⊃ x2:(f(x3):P ⊃ x3:V)] ⊃ h(x1, x2, x3):W (3)

Finally, here is our official definition of a realization.

Definition 3.5 If X is a formula of L�, a conventional modal formula, a realization of X is any
formula of LP of the form r(X ′) where r is a realization function and X ′ is any properly annotated
version of X.

Artemov’s Realization Theorem can now be given the following formulation.

Theorem 3.6 If Z is a theorem of S4, there is a realization of Z that is an injectively provable
theorem of LP. In fact if Z is a theorem of S4, then for any properly annotated version X of Z
there is a realization function r such that r(X) is injectively provable in LP.

4 Restricted Realization Modification

We will be considering some general ways of modifying realization functions. One is the merging
of several realization functions into a single one that is related to the originals in useful ways.
Another arises in connection with an LP analog of the familiar Replacement Theorem. Originally,
establishing basic properties of these modification techniques required separate but similar proofs,
see [5] for one of them. Eventually the proofs were combined, making the overall work considerably
simpler. The cost, however, is that we must formulate a theorem that is general enough, and such
a theorem is less easy to grasp intuitively. Before reading this section you might take a look at
sections 6–8 in which various corollaries are derived. These corollaries have a simpler nature, and
can be used as a lead-in to the present section.

All results in this paper are algorithmic. Verification that the algorithms are correct is generally
more complicated than the algorithms themselves, so in each case an algorithm is stated fully first,
then its correctness is established. We hope this makes following the work somewhat easier.

The Restricted Realization Modification Theorem, below, is called ‘restricted’ for two reasons.
First, there is a non self-referentiality on variables condition, H–2. (Definition 3.3 should be re-
called here.) Later, in Section 7, we will see that this can sometimes be dropped (though perhaps
not always). Second, a pair 〈rϕ, σϕ〉, consisting of a realization function and a substitution, is
constructed for each subformula ϕ of a given annotated formula. We will see that this can always
be simplified—there is a single pair that will work uniformly for every subformula. But we must
go through the restricted version before we can establish a uniform one.

It was mentioned that there will be particular modification techniques that follow from the
work of this section. One concerns the merging of multiple realization functions; you can see the
beginnings of this with the presence of r1, r2, . . . , multiple realization functions, in condition H–2
below. The other primary modification technique has to do with the replacement of a subformula
of a given formula by another subformula; you can see this beginning to emerge too, with two
formulas A and B being mentioned in conditions H–1 and H–3.

Definition 4.1 Let X be an annotated formula (not necessarily properly annotated) and let σ be
a substitution.

8 Melvin Fitting

1. σ meets the no new variable condition provided that for each variable x the proof polynomial
xσ contains no variables other than x.

2. An even indexed modal operator �2n that occurs in X is said to be an input operator in X
(whether �2n is in a negative position or not). If �2n is an input operator we say xn is an
input variable of r(X), where r is any proper realization function (they all behave the same
on even integers).

3. σ lives on input positions in X provided the only variables xn for which xnσ 6= xn are such
that �2n occurs in X .

There is a certain complication that should be discussed before launching into the formal details.
We care about proper annotation but, as noted earlier, subformulas of a properly annotated formula
need not be properly annotated. In order to deal with this we fix a formula X(P) that is properly
annotated and work with subformulas of X(P), which are properly annotated within X(P), but
may not be when considered on their own.

In what follows, if ψ(P) is an annotated formula and P is a propositional letter, ψ(A) is the
result of replacing all occurrences of P in ψ(P) with occurrences of the annotated formula A.

Definition 4.2 Let X(P) be an annotated formula in which the propositional letter P has at most
one positive occurrence, let A and B be annotated formulas, and let r0 be a realization function.

1. For a subformula ϕ(P) of X(P), we say a realization/substitution pair 〈r, σ〉 replaces r0(A)
with r0(B) at P in ϕ(P) within X(P) provided:

(a) if ϕ(P) is a positive subformula of X(P) then r0(ϕ(A))σ ⊃ r(ϕ(B)) has an injective LP
proof;

(b) if ϕ(P) is a negative subformula of X(P) then r(ϕ(B)) ⊃ r0(ϕ(A))σ has an injective LP
proof.

2. We say 〈r, σ〉 hereditarily replaces r0(A) with r0(B) at P in X(P) provided, for each subfor-
mula ϕ(P) of X(P), 〈r, σ〉 replaces r0(A) with r0(B) at P in ϕ(P) within X(P).

The following theorem allows for N realization functions. In this paper at most two will be
needed for the Realization Theorem, but applications not considered here can involve more.

Theorem 4.3 (Restricted Realization Modification) Assume the following.

H–1. X(P) is a properly annotated formula in which the propositional letter P has at most one
positive occurrence, A and B are properly annotated formulas, A and X(P) share no indexes,
and B and X(P) share no indexes.

H–2. r1, r2, . . . , rN are realization functions, all non self-referential on variables over X(A).

H–3. For each k = 1, . . . , N , rk(A) ⊃ rk(B) has an injective proof.

H–4. r1(B) = r2(B) = . . . = rN (B).

Then for each subformula ϕ(P) of X(P) there is some realization/substitution pair 〈rϕ, σϕ〉 such
that:

C–1. 〈rϕ, σϕ〉 replaces rk(A) with rk(B) at P in ϕ(P) within X(P), for k = 1, . . . , N .

Realizations and LP 9

C–2. σϕ lives on input positions in ϕ(P);

C–3. σϕ meets the no new variable condition;

C–4. If rk is non self-referential on variables over X(B) for every k = 1, . . . , N then rϕ is non
self-referential on variables over X(B).

First the algorithm for constructing 〈rϕ, σϕ〉 is given, then it is proved correct.

Begin Algorithm Assume the conditions H–1 through H–4 hold. The algorithm proceeds recur-
sively, on the structure of ϕ(P), a subformula of X(P). Here are the cases.

Base Case: ϕ(P) is atomic. Set rϕ = r1 and σϕ to be the identity substitution.

Modal Case: ϕ(P) is �iθ(P), and 〈rθ, σθ〉 has been constructed.

ϕ(P) positive: By hypothesis, each of the following is provable.

r1(θ(A))σθ ⊃ rθ(θ(B))
r2(θ(A))σθ ⊃ rθ(θ(B))

...
rN (θ(A))σθ ⊃ rθ(θ(B))

Use the Lifting Lemma to produce ground proof polynomials u1, . . . , uN that “prove”
the respective formulas above, that is, the following are injective LP theorems.

u1:[r1(θ(A))σθ ⊃ rθ(θ(B))]
u2:[r2(θ(A))σθ ⊃ rθ(θ(B))]

...
uN:[rN (θ(A))σθ ⊃ rθ(θ(B))]

Then set σϕ = σθ and define rϕ as follows.

rϕ(n) =
{

[u1 · r1(n) + u2 · r2(n) + . . .+ uN · rN (n)]σθ if n = i
rθ(n) otherwise

The sum displayed in the n = i case needs parentheses since + is not assumed to be
associative, but any grouping will work in this case.

ϕ(P) negative: In this case i must be even. By hypothesis, the following are provable.

rθ(θ(B)) ⊃ r1(θ(A))σθ

rθ(θ(B)) ⊃ r2(θ(A))σθ

...
rθ(θ(B)) ⊃ rN (θ(A))σθ

Use the Lifting Lemma to produce proof polynomials u1, . . . , uN that “prove” the
respective formulas above, so the following are LP theorems.

u1:[rθ(θ(B)) ⊃ r1(θ(A))σθ]
u2:[rθ(θ(B)) ⊃ r2(θ(A))σθ]

...
uN:[rθ(θ(B)) ⊃ rN (θ(A))σθ]

10 Melvin Fitting

Then set rϕ = rθ and define σϕ as follows, where i = 2j.

xnσϕ =
{

(u1 + u2 + . . .+ uN) · xj if n = j
xnσθ otherwise

Implication Case: ϕ(P) is θ(P) ⊃ η(P) and 〈rθ, σθ〉 and 〈rη, ση〉 have been constructed. It is shown
that the two substitutions commute. Set σϕ = σθση = σησθ, and define rϕ as follows.

rϕ(n) =

rθ(n)ση if �n in θ(B)
rη(n)σθ if �n in η(B)
r1(n) otherwise

End Algorithm

Begin Correctness Proof Assume hypotheses H–1 through H–4 of Theorem 4.3 hold. Note
that, because of H–1, both X(A) and X(B) are properly annotated. We proceed by induction on
the complexity of the subformula ϕ(P). Call a subformula ϕ(P) of X(P) good provided there is
some 〈rϕ, σϕ〉 such that C–1 to C–4 hold; we also say 〈rϕ, σϕ〉 is a witness to the goodness of ϕ(P).
We will show every subformula of X(P) is good, and that the algorithm just described produces
witnesses.

Let ϕ(P) be a subformula of X(P) and as an induction hypothesis, suppose all its proper
subformulas are good—we show ϕ(P) itself is good. There are several cases to consider.

Case: ϕ(P) is atomic. The algorithm sets rϕ = r1 and σϕ to be the identity substitution. σϕ

trivially lives on input positions in ϕ(P) and meets the no new variable condition. And if
r1 is non self-referential on variables over X(B), of course so is rϕ. To finish the verification
that 〈rϕ, σϕ〉 is a witness to the goodness of ϕ(P) there are two subcases to consider.

Subcase: ϕ(P) is not P ; say it is Q, which might occur positively or negatively. Then for
each k, both rk(ϕ(A))σϕ ⊃ rϕ(ϕ(B)) and rϕ(ϕ(B)) ⊃ rk(ϕ(A))σϕ are simply Q ⊃ Q,
which certainly has an injective LP proof.

Subcase: ϕ(P) is P . This must be a positive subformula of X(P) since the occurrence of P in
X(P) is positive. For each k we need the injective provability of rk(ϕ(A))σϕ ⊃ rϕ(ϕ(B)).
This is rk(A) ⊃ r1(B), but r1(B) = rk(B) by H–4, so we need injective provability of
rk(A) ⊃ rk(B), which we have by H–3.

Case: ϕ(P) is �iθ(P), and this is a positive subformula of X(P) (hence i is odd). By the induction
hypothesis there is 〈rθ, σθ〉 that witnesses the goodness of θ(P). In particular, for each
k = 1, . . . , N the following is an injective theorem of LP: rk(θ(A))σθ ⊃ rθ(θ(B)). By the
Lifting Lemma, Corollary 2.5, for each k = 1, . . . , N there is a ground proof polynomial uk

such that uk:[rk(θ(A))σθ ⊃ rθ(θ(B))] is an injective theorem of LP. Then, using Application
and Modus Ponens, the following is an injective LP theorem for k = 1, . . . , N .

(rk(i)σθ):rk(θ(A))σθ ⊃ (uk · (rk(i)σθ)):rθ(θ(B))

We have (rk(i)σθ):[rk(θ(A))σθ] = [rk(i):rk(θ(A))]σθ = rk(�iθ(A))σθ = rk(ϕ(A))σθ. Then, for
k = 1, . . . , N we have injective provability of the following.

rk(ϕ(A))σθ ⊃ (uk · (rk(i)σθ)):rθ(θ(B))

Realizations and LP 11

It follows by LP axiom A4, Sum, that for each k = 1, . . . , N , the following is injectively
provable:

rk(ϕ(A))σθ ⊃ {u1 · (r1(i)σθ) + u2 · (r2(i)σθ) + . . .+ uN · (rN (i)σθ)}:rθ(θ(B))

or equivalently, since each uk contains no variables,

rk(ϕ(A))σθ ⊃ {[u1 · r1(i) + u2 · r2(i) + . . .+ uN · rN (i)]σθ}:rθ(θ(B))

The algorithm has us set σϕ = σθ, so of course σϕ meets the no new variable condition. Also
σθ lives on the input positions in θ(P), and hence σϕ lives on the input positions in ϕ(P) as
well, since i must be odd.

The algorithm also has us set rϕ to be like rθ, except that

rϕ(i) = (u1 · r1(i) + u2 · r2(i) + . . .+ uN · rN (i))σθ.

Note that, since �iθ(B) is a subformula of X(B) which is properly annotated, i cannot occur
as an index in θ(B), and hence rθ(θ(B)) = rϕ(θ(B)). Putting all this together, we have the
following, injectively, for each k = 1, . . . , N .

rk(ϕ(A))σϕ = rk(ϕ(A))σθ

⊃ {[u1 · r1(i) + u2 · r2(i) + . . .+ uN · rN (i)]σθ}:rθ(θ(B))
= rϕ(i):rθ(θ(B))
= rϕ(i):rϕ(θ(B))
= rϕ(�iθ(B))
= rϕ(ϕ(B))

Finally, suppose each rk is non self-referential on variables over X(B). We show the same
is true of rϕ. Since rϕ is the same as rθ except on i, which is odd, and rθ is non self-
referential on variables over X(B), if rϕ failed to be so it must be that �i : θ(B) is part
of some subformula �2nZ(B) of X(B) and the variable xn occurs in rϕ(i). But rϕ(i) =
(u1 · r1(i) + u2 · r2(i) + . . .+ uN · rN (i))σθ where each uk is ground. Since σθ meets the no
new variable condition, each rk(i)σθ has the same variables as rk(i). But this violates the
condition that each rk is non self-referential on variables over X(B).

Case: ϕ(P) is �iθ(P), where this is a negative subformula of X(P). By the induction hypothesis
there is 〈rθ, σθ〉 that witnesses the goodness of θ(P). Since X(P) is properly annotated, i
must be even, say it is 2j. Then every realization function will replace �i with the proof
variable xj . Since θ(P) is a negative subformula, for each k = 1, . . . , N the following are
injectively provable: rθ(θ(B)) ⊃ rk(θ(A))σθ. By the Lifting Lemma, Corollary 2.5, there are
ground proof polynomials uk such that uk :[rθ(θ(B)) ⊃ rk(θ(A))σθ] is an injective theorem
of LP, for k = 1, . . . , N . Then by the Sum axioms, for each k = 1, . . . , N , the following is
injectively provable.

(u1 + u2 + . . .+ uN):[rθ(θ(B)) ⊃ rk(θ(A))σθ]

From these using Application and Modus Ponens, the following is an injective LP theorem
for each k = 1, . . . , N .

xj:rθ(θ(B)) ⊃ ((u1 + u2 + . . .+ uN) · xj):rk(θ(A))σθ

12 Melvin Fitting

The algorithm has us set rϕ = rθ. If each rk is non self-referential on variables over X(B)
so is rθ by the induction hypothesis, and then so rϕ since rϕ = rθ. Note that rϕ(ϕ(B)) =
rθ(�iθ(B)) = xj : rθ(θ(B)). Thus we have injective provability of the following, for each
k = 1, . . . , N .

rϕ(ϕ(B)) ⊃ ((u1 + u2 + . . .+ uN) · xj):rk(θ(A))σθ

The algorithm has us set σϕ to be the same as σθ except that xjσϕ = (u1 +u2 + . . .+uN) ·xj .
Then we must have injective provability of the following, for each k = 1, . . . , N .

rϕ(ϕ(B)) ⊃ (xjσϕ):rk(θ(A))σθ

By hypothesis, σθ meets the no new variable condition, and since (u1 + u2 + . . . + uN) · xj

contains only xj as a variable, σϕ also meets this condition. Also σθ lives on the input
positions in θ(P). Since σϕ differs from σθ only on xj , then σϕ lives on the input positions in
�iθ(P) = �2jθ(P) = ϕ(P).

Since �iθ(A), that is �2jθ(A), is a subformula of X(A), and each rk is non self-referential on
variables over X(A), then xj cannot occur in rk(θ(A)) for any k = 1, . . . , N . Consequently for
each k = 1, . . . , N , (xjσϕ):rk(θ(A))σθ = (xjσϕ):rk(θ(A))σϕ = [rk(�iθ(A))]σϕ = [rk(ϕ(A))]σϕ.
Then we have the injective provability of the following, for each k = 1, . . . , N .

rϕ(ϕ(B)) ⊃ rk(ϕ(A))σϕ

Case: ϕ(P) is θ(P) ⊃ η(P). By the induction hypothesis both θ(P) and η(P) are good. Let 〈rθ, σθ〉
witness the goodness of θ(P) and 〈rη, ση〉 witness the goodness of η(P). We combine these
into something that witnesses the goodness of θ(P) ⊃ η(P).

We first show we have commutativity of substitutions. That is, σθση = σησθ. We do this by
a case analysis.

Suppose �2i is in input position in θ(P); we show xi(σθση) = xi(σησθ). The substitution
σθ lives on input positions in θ(P), while ση lives in input positions in η(P), and the input
positions of θ(P) and η(P) are not shared since θ(P) ⊃ η(P) is a subformula of the properly
annotated formula X(P). Consequently we have xiση = xi. Then of course xi(σησθ) =
xiσθ. Also, since σθ meets the no new variable condition, xiσθ only has xi as a variable, so
xi(σθση) = xiσθ. So for �2i in input position in θ(P) we have xi(σθση) = xi(σησθ).

In a similar way xi(σθση) = xi(σησθ) if �2i is in input position in η(P). Hence xi(σθση) =
xi(σησθ) if �2i is in input position in θ(P) ⊃ η(P).

Finally, if �2i is not in input position in θ(P) ⊃ η(P), xiσθ = xiση = xi since σθ lives on
input positions in θ(P) and ση lives on input positions in η(P). Thus in all cases, xi(σθση) =
xi(σησθ). Hence commutativity of substitutions has been shown.

The algorithm has us set σϕ = σθση = σησθ. Since both σθ and ση meet the no new variable
condition, it follows that σϕ also does. And because xiσθ = xiση = xi if xi is not in input
position in θ(P) ⊃ η(P), σϕ lives on input positions in θ(P) ⊃ η(P).

Next the algorithm has us define a realization function as follows.

rϕ(n) =

rθ(n)ση if �n is in θ(B)
rη(n)σθ if �n is in η(B)
r1(n) otherwise

Realizations and LP 13

Since θ(B) ⊃ η(B) is a subformula of the properly annotated formula X(B), the antecedent
and the consequent cannot share an index, so rϕ is well-defined. It is a realization function,
that is, rϕ(2i) = xi, by the following argument. Suppose that �2i occurs in θ(B); then it
cannot occur in η(B). Since rθ is a realization function, rθ(2i) = xi, and since ση lives on
input positions in η(P), and �2i is not one of them, xiση = xi. Thus rϕ(2i) = xi in this case.
Similarly if �2i occurs in η(B). Obviously if things fall into the ‘otherwise’ case the result is
immediate since r1 is a realization function.

Provability of certain implications must be shown. The proof now divides into two cases,
depending on whether ϕ(P) = θ(P) ⊃ η(P) is a positive or a negative subformula of X(P).
We’ll cover the positive case; the other is similar. In the positive case, θ(P) is a negative
subformula of X(P), and η(P) positive. Since 〈rθ, σθ〉 witnesses the goodness of θ(P) and
〈rη, ση〉 witnesses the goodness of η(P), the following are injective theorems of LP for each
k = 1, . . . , N :

rθ(θ(B)) ⊃ rk(θ(A))σθ

rk(η(A))ση ⊃ rη(η(B))

What must be shown is the injective provability of the following, for k = 1, . . . , N .

rk(ϕ(A))σϕ ⊃ rϕ(ϕ(B))

By definition of ϕ, we need injective provability of

rk(θ(A) ⊃ η(A))σϕ ⊃ rϕ(θ(B) ⊃ η(B))

or equivalently,
[rk(θ(A))σϕ ⊃ rk(η(A))σϕ] ⊃ [rϕ(θ(B)) ⊃ rϕ(η(B))],

so it is enough to show the injective provability of the following.

rϕ(θ(B)) ⊃ rk(θ(A))σϕ

rk(η(A))σϕ ⊃ rϕ(η(B))

We have injective provability of rθ(θ(B)) ⊃ rk(θ(A))σθ, hence we also have injective prov-
ability of rθ(θ(B))ση ⊃ rk(θ(A))σθση by Theorem 2.3, but this is rϕ(θ(B)) ⊃ rk(θ(A))σϕ.
Likewise we have injective provability of rk(η(A))ση ⊃ rη(η(B)), so we also have injective
provability of rk(η(A))σησθ ⊃ rη(η(B))σθ, and this is rk(η(A))σϕ ⊃ rϕ(η(B)).

Finally, suppose rk is non self-referential on variables over X(B) for each k = 1, . . . , N , and
so by the induction hypothesis, rθ and rη also are. Suppose rϕ failed to be non self-referential
on variables over X(B); we derive a contradiction. By the supposition, there must be a
subformula �2nW (B) of X(B) such that xn occurs in rϕ(W (B)). Then xn occurs in rϕ(j)
for some �j in W (B). There are three cases to consider: �j is part of θ(B), �j is part of
η(B), and �j is in X(B) but outside both θ(B) and η(B).

Suppose first that �j is part of θ(B). From the definition of rϕ in this case, rϕ(j) = rθ(j)ση,
and xn occurs in this. Since ση meets the no new variable condition, xn must occur in rθ(j).
But this contradicts the assumption that rθ is non self-referential on variables over X(B).
The argument is similar if �j is part of η(B). And finally if �j is not part of either θ(B) or
η(B), then rϕ(j) = r1(j), and this contradicts the condition that r1 is non self-referential on
variables over X(B).

End Correctness Proof

14 Melvin Fitting

5 Uniform Realization Modification

The theorem proved in the previous section establishes the existence of a pair 〈rϕ, σϕ〉 that combines
and alters realizations in certain ways, but there is one such pair for each subformula ϕ of a given
formula X. Now we show this can be done uniformly: there is a single realization/substitution pair
that will serve for every subformula of X.

Theorem 5.1 (Uniform Realization Modification) Assume hypotheses H–1 to H–4 of Theo-
rem 4.3. Then there is some single realization/substitution pair 〈r, σ〉 such that:

U–1. 〈r, σ〉 hereditarily replaces rk(A) with rk(B) at P in X(P) for k = 1, . . . , N ;

U–2. σ lives on input positions in X(P);

U–3. σ meets the no new variable condition;

U–4. If rk is non self-referential on variables over X(B) for k = 1, . . . , N then r is non self-
referential on variables over X(B).

Begin Algorithm Use the algorithm of Theorem 4.3 to construct 〈rϕ, σϕ〉 for each subformula ϕ
of X. Then set r = rX and σ = σX .
End Algorithm

Begin Correctness Proof
For each subformula ϕ(P) of X(P) let 〈rϕ, σϕ〉 be the realization/substitution pair constructed
according to the algorithm of Theorem 4.3. We will show that if we take r = rX and σ =
σX , this provides an appropriate 〈r, σ〉. Conditions U–2 to U–4 are immediate by C–2 to C–4
of Theorem 4.3. To show condition U–1 here is a useful bit of temporary terminology. For a
subformula ϕ(P) of X(P):

〈r, σ〉 meets the Hereditary Condition on ϕ(P) if, for each subformula ψ(P) of ϕ(P),
〈r, σ〉 replaces rk(A) with rk(B) at P in ψ(P) within X(P), for each k = 1, . . . , N .

We will show that for each subformula ϕ(P), the pair 〈rϕ, σϕ〉 meets the Hereditary Condition on
ϕ(P). Then taking ϕ(P) to be X(P) will finish the argument. We show this by going through
each of the cases in the proof of Theorem 4.3. When we refer to C–1 we mean this conclusion of
Theorem 4.3.

The base case is where ϕ(P) is atomic, possibly P , possibly not. Either way there are no
proper subformulas to consider. Since 〈rϕ, σϕ〉 has property C–1 on ϕ(P) itself, 〈rϕ, σϕ〉 meets the
Hereditary Condition on ϕ(P) in this case.

Suppose ϕ(P) is �iθ(P), a positive subformula of X(P), and 〈rθ, σθ〉 meets the Hereditary
Condition on θ(P). In this case, rϕ is the same as rθ except on i and i does not occur in θ(B) since
X(B) is properly annotated, so rϕ and rθ agree on θ(B) and its subformulas. Also σϕ = σθ. It
follows that 〈rϕ, σϕ〉 also meets the Hereditary Condition on θ(P). By construction, 〈rϕ, σϕ〉 has
property C–1 on ϕ(P) itself, so it meets the Hereditary Condition on ϕ(P).

Similarly suppose ϕ(P) is �2jθ(P), a negative subformula, and 〈rθ, σθ〉 meets the Hereditary
Condition on θ(P). In this case rϕ = rθ and σϕ is the same as σθ except on xj . Since each rk
(k = 1, . . . , N) is non self-referential on variables over X(A), xj cannot occur in any rk(θ(A)), and
hence σϕ and σθ agree on the variables of each rk(θ(A)), and their subformulas. It follows that
〈rϕ, σϕ〉 meets the Hereditary Condition on θ(P). Since 〈rϕ, σϕ〉 has property C–1 on ϕ(P) itself
by construction, it meets the Hereditary Condition on ϕ(P).

Realizations and LP 15

Finally, suppose ϕ(P) is θ(P) ⊃ η(P) and 〈rθ, σθ〉 meets the Hereditary Condition on θ(P)
and 〈rη, ση〉 meets the Hereditary Condition on η(P). Let W (P) be any subformula of ϕ(P).
I’ll discuss the case where W (P) is a positive subformula, the argument is similar if W (P) is
negative. In this positive case we must show rk(W (A))σϕ ⊃ rϕ(W (B)) is injectively provable for
each k = 1, . . . , N . If W (P) is ϕ(P) itself we have the result by Theorem 4.3, so now suppose
W (P) is a proper subformula. Then it must be a subformula of θ(P) or of η(P), say the former—
the argument is similar if it is the later. Then rϕ(W (B)) = rθ(W (B))ση, from the definition of
rϕ. Also σϕ = σθση. We have injective provability of rk(W (A))σθ ⊃ rθ(W (B)) since 〈rθ, σθ〉
meets the Hereditary Condition on θ(P). Then by Theorem 2.3 we have injective provability of
rk(W (A))σθση ⊃ rθ(W (B))ση, which is what was wanted.

End Correctness Proof

6 The Replacement Theorem

In S4 (and in normal modal logics generally) one can show a replacement result: If A ≡ B is
provable, and X(B) is like X(A) except that some subformula occurrences of A have been replaced
with B, then X(A) ≡ X(B) is also provable. Equivalence usually plays a central role here, and this
has its problems for LP. If A ≡ B is expanded into a formula in conjunctive normal form one sees
that A occurs both positively and negatively, as does B. Since positive and negative occurrences
of modal operators play different roles when realized in LP, any LP analog of the replacement
result in a form that uses equivalence should not be expected. There is, however, a version of
Replacement that is less problematic for present purposes. If X(B) is like X(A) except that some
positive occurrences of A have been replaced with B, then if A ⊃ B is provable so is X(A) ⊃ X(B).
Here is a formal statement of it, for S4, in a version that uses notation from Section 4.

Proposition 6.1 Let ϕ(P) be a formula of L� in which the propositional letter P has only positive
occurrences. Let ϕ(Z) be the result of replacing occurrences of P with occurrences of the L� formula
Z. Then, if A ⊃ B is provable in S4, so is ϕ(A) ⊃ ϕ(B).

In this form, Replacement respects polarity of subformula occurrence. There is one more minor
problem before we get to the serious ones for an LP analog. The Proposition allows for the replace-
ment of several occurrences of A with occurrences of B. We will be interested in using properly
annotated formulas. But if ϕ(P) and A are both properly annotated, and A actually contains
indexed modal operators, ϕ(A) can never be properly annotated if P occurs more than once in
ϕ(P). Very simply, the requirement on proper annotations that no indexed modal operator occurs
more than once would be violated in ϕ(A). So we must restrict ourselves to the replacement of
single occurrences of subformulas. Of course multiple replacements can be done sequentially.

Now we get to the serious matters. Proof polynomials represent justifications. If A is replaced
with B inside a more complex LP formula, justifications for A must be adjusted to incorporate a
justification for the passage from A to B, justifications for subformulas containing justifications for
A need adjustment, and so on up. A version of Replacement for LP is not simple to formulate.
The following originated in [5] (with a somewhat stronger conclusion), but here it is treated as an
immediate consequence of the more general Uniform Realization Modification Theorem 5.1. Once
again we have a result proved under a non self-referentiality condition on variables.

Theorem 6.2 (Replacement For LP) Assume the following.

16 Melvin Fitting

1. X(P) is a properly annotated formula in which the propositional letter P has one positive
occurrence, A and B are properly annotated formulas, A and X(P) share no annotations,
and B and X(P) share no annotations;

2. r1 is a realization function that is non self-referential on variables over X(A);

3. r1(A) ⊃ r1(B) has an injective LP proof.

Then there is some realization/substitution pair 〈r, σ〉 that hereditarily replaces r1(A) with r1(B) at
P in X(P). Also, σ lives on the input positions in ϕ(P) and meets the no new variable condition.
Finally, if r1 is non self-referential on variables over X(B) then r will also be non self-referential
on variables over X(B).

Proof This is the special case of Theorem 5.1 in which only a single realization function is given.

Example 6.3 This continues Example 3.4, and an explicit connection will be made shortly.
First consider the L� formula �(�U ⊃ �(��R ⊃ �V)) ⊃ �W . In this, �R has a positive

occurrence. Since �R ⊃ ��R is a theorem of S4, by an application of Proposition 6.1 the following
must also be an S4 theorem—�R is replaced with ��R.

[�(�U ⊃ �(��R ⊃ �V)) ⊃ �W] ⊃ [�(�U ⊃ �(���R ⊃ �V)) ⊃ �W] (4)

Next, consider the LP formula x1:[g(x2, x3, x5):U ⊃ x2:(f(x3):k(x3):R ⊃ x3:V)] ⊃ h(x1, x2, x3):W ,
where f(x3), g(x2, x3, x5), h(x1, x2, x3), and k(x3) are proof polynomials whose details need not
concern us for this example. Notice that the forgetful projection of this LP formula is the L�

formula �(�U ⊃ �(��R ⊃ �V)) ⊃ �W looked at above. Now, k(x3) :R ⊃!k(x3) :k(x3) :R is
an LP theorem, an axiom in fact, with forgetful projection �R ⊃ ��R. If a simple analog of
Proposition 6.1 held for LP, we would expect the following to be an LP theorem.

{x1:[g(x2, x3, x5):U ⊃ x2:(f(x3):k(x3):R ⊃ x3:V)] ⊃ h(x1, x2, x3):W}
⊃
{x1:[g(x2, x3, x5):U ⊃ x2:(f(x3):!k(x3):k(x3):R ⊃ x3:V)] ⊃ h(x1, x2, x3):W}

We have not verified that it is not a theorem, but almost certainly this is the case. Instead we
apply Theorem 6.2 and conclude that formula (5) below really is an LP theorem for particular proof
constants c, d, and e—how this comes about will be discussed in detail. Notice that the forgetful
projection of LP theorem (5) is the S4 theorem (4).

{(e · x1):[g(d · x2, x3, x5):U ⊃ (d · x2):(f(x3):k(x3):R ⊃ x3:V)] ⊃ h(e · x1, d · x2, x3):W}
⊃
{x1:[g(d · x2, x3, x5):U ⊃ x2:((c · f(x3)):!k(x3):k(x3):R ⊃ x3:V)] ⊃ h(e · x1, d · x2, x3):W}

(5)

In order to apply Theorem 6.2 to produce (5) annotated formulas must be introduced. It is
here that we continue Example 3.4. Suppose we take A to be �7R and B to be �9�11R, so that
we have the following.

A ⊃ B is �7R ⊃ �9�11R

Realizations and LP 17

A and B are properly annotated, as was X(P) from (1), and there is no annotation overlap. Then
we have the following.

X(A) is �2(�1U ⊃ �4(�3�7R ⊃ �6V)) ⊃ �5W

X(B) is �2(�1U ⊃ �4(�3�9�11R ⊃ �6V)) ⊃ �5W

Let us specify more of the realization function r that was partly given in (2).

r(7) = k(x3)
r(9) =!k(x3)
r(11) = k(x3)

Then r is non self-referential on variables over X(A), and we have the following.

r(X(A)) = x1:[g(x2, x3, x5):U ⊃ x2:(f(x3):k(x3):R ⊃ x3:V)] ⊃ h(x1, x2, x3):W

Also r(A) ⊃ r(B) is k(x3):R ⊃!k(x3):k(x3):R, which is an LP axiom.
Let c, d, and e be ground proof polynomials such that the following have injective proofs.

c:[k(x3):R ⊃!k(x3):k(x3):R]
d:{[(c · f(x3)):!k(x3):k(x3):R ⊃ x3:V] ⊃ [f(x3)):k(x3):R ⊃ x3:V]}
e:{[g(d · x2, x3, x5):U ⊃ x2:((c · f(x3)):!k(x3):k(x3):R ⊃ x3:V)] ⊃

[g(d · x2, x3, x5):U ⊃ (d · x2):(f(x3):k(x3):R ⊃ x3:R)]}

Using the algorithm of Theorem 6.2, a realization/substitution pair that hereditarily replaces
r(A) with r(B) at P in X(P) is 〈r∗, σ∗〉, specified as follows.

r∗(1) = g(d · x2, x3, x5) r∗(6) = x3

r∗(2) = x1 r∗(7) = k(x3)
r∗(3) = c · f(x3) r∗(9) = !k(x3)
r∗(4) = x2 r∗(11) = k(x3)
r∗(5) = h(e · x1, d · x2, x3)

And σ∗ is the identity substitution except that σ∗(x1) = e · x1 and σ∗(x2) = d · x2. The formula
r(X(A))σ∗ is

(e · x1):[g(d · x2, x3, x5):U ⊃ (d · x2):(f(x3):k(x3):R ⊃ x3:V)] ⊃ h(e · x1, d · x2, x3):W

and r∗(X(B)) is

x1:[g(d · x2, x3, x5):U ⊃ x2:((c · f(x3)):!k(x3):k(x3):R ⊃ x3:V)] ⊃ h(e · x1, d · x2, x3):W.

Finally r(X(A))σ∗ ⊃ r∗(X(B)) is formula (5) as given earlier. This example is worked out in
greater detail in [5].

7 Realization Weakening

The theorems proved so far all have a non self-referentiality condition in their hypotheses. Can it
be dropped? In the general case we don’t know, but it can be dropped in certain special cases of
interest. In fact, to give our proof of the Realization Theorem in Section 10 we only need a very
special case of Theorem 5.1, and that is proved here—for it, non self-referentiality conditions can
be avoided. The special case is where we replace u1:F , u2:F , . . . , uN:F with the uniformly weaker
(u1 + u2 + . . .+ uN):F . For our proof of the Realization Theorem, we can take N = 2.

18 Melvin Fitting

Theorem 7.1 (Realization Weakening) Assume the following.

S–1. X(P) is a properly annotated formula in which the propositional letter P has at most one
positive occurrence;

S–2. �pK and �qK are both are properly annotated formulas, there is no annotation overlap
between X(P) and �pK, and X(P) and �qK, and p and q are different;

S–3. r1, r2, . . . , rN are realization functions that agree on K;

S–4. r1, r2, . . . , rN all agree on q, mapping it to r1(p) + r2(p) + . . .+ rN (p) (any parenthesization
will do).

Then there is a realization/substitution pair 〈r, σ〉 that hereditarily replaces each rk(�pK) with
rk(�qK) at P in X(P), for k = 1, 2, . . . , N . Also, σ will live on the input positions in X(P) and
will meet the no new variable condition.

If we set r1(K) = r2(K) = . . . = rN (K) to be F , r1(p) = u1, r2(p) = u2, . . . , rN (p) = un, and
r1(q) = r2(q) = . . . = rN (q) = u1 + u2 + . . . + uN , the theorem above provides a replacement of
u1:F , u2:F , . . . , uN:F with (u1 + u2 + . . .+ uN):F , as promised at the beginning of this section.

The idea of the algorithm, loosely, is as follows. First determine the ‘problem points,’ those
places where self-referentiality on variables occurs. Eliminate these problems by introducing new
variables as place-holders, to replace terms that cause trouble. With this done, Theorems 4.3 and
5.1 can be applied. Then we remove the place-holding variables by substituting back the original
terms for them.

Definition 7.2 Call an index n in a properly annotated formula Z problematic with respect to a
realization function r if xk occurs in r(n) while �n occurs in Z within the scope of �2k. Schemat-
ically, n is problematic with respect to r if somewhere in Z we have the following situation.

r(

Z︷ ︸︸ ︷
· · ·�2k(· · ·�nW · · ·) · · ·) =

r(Z)︷ ︸︸ ︷
· · ·xk:(· · · r(n):︸︷︷︸

contains xk

r(W) · · ·) · · ·

Problematic indexes occur when there is self-referentiality on variables. A problematic index
can be made unproblematic by re-defining r on that index to be a new variable. This is the first
step of the algorithm that follows.

Begin Algorithm We refer to a variable as new to mean it does not occur in any of rk(X(P)) or
rk(K) or rk(p) or rk(q), for k = 1, . . . , N , and has not been introduced previously in the process of
carrying out Step 1 below.

Step 1 Define new realization functions r′1, r
′
2, . . . r′N as follows. On indexes that are not prob-

lematic, and are different than q, let r′1 and r1 agree, r′2 and r2 agree, . . . , r′N and rN agree.
The problematic indexes in X(�pK) are the significant ones.

First consider problematic indexes outsideK. For each index n inX(�pK) that is problematic
with respect to r1 and that occurs outside K, introduce a new variable and set r′1(n) to be
that variable; . . . ; for each index n that is problematic in X(�NK) with respect to rN and
that occurs outside K, introduce a new variable and set r′N (n) to be that variable.

Realizations and LP 19

Next consider problematic indexes that occur in K. It will be shown that if an index is in
K and is problematic in X(�pK) with respect to any rk, it is problematic with respect to
all rk. For each index n in K that is problematic in X(�pK) with respect to r1, r2, . . . , rN ,
introduce a new variable and set r′1(n) = r′2(n) = . . . = r′N (n) to be that variable.

Call the new variables that have been introduced place-holding variables.

Finally, the index q cannot occur in X(�pK); set r′1(q) = r′2(q) = . . . = r′N (q) = r′1(p) +
r′2(p) + . . .+ r′N (p) (parenthesized somehow).

Step 2 r′1, r
′
2, . . . , r′N are realization functions that are non self-referential on variables over

X(�pK). It will be shown that all the hypotheses of Theorem 5.1 are met. Now apply the
algorithm of that Theorem, getting a realization/substitution pair 〈r∗, σ∗〉 that hereditarily
replaces r′k(�pK) with r′k(�qK) at P in X(P), for k = 1, . . . , N .

Step 3 Define an ‘undoing’ substitution σ′ as follows. Let k be one of 1, . . . , N . If n is an index
in X(�pK) outside K that is problematic with respect to rk, a place-holding variable r′k(n)
was introduced. On the variable r′k(n) set

r′k(n)σ′ = rk(n)σ∗

If n is an index inK that is problematic inX(�pK) with respect to any (all) rk a place-holding
variable r′k(n) was introduced (the same for all k). On this variable r′k(n) set

r′k(n)σ′ = rk(n)σ∗

(where only the variable and not the choice of k will be shown to matter).

Finally, if x is not one of the place-holding variables, set

xσ′ = x

Step 4 Define a realization function by setting r(n) = r∗(n)σ′ for indexes in X(P), �pK, and
�qK, and arbitrarily otherwise (except that even indexes must map to proof variables). The
realization/substitution pair we want is 〈r, σ∗〉.

End Algorithm

Begin Correctness Proof First we show that if n is a problematic index in some properly an-
notated formula Z with respect to a realization function r then n must be odd. Here is the simple
argument. If n is a problematic index, �n occurs in the scope of �2k and r(n) contains xk. If n
were even, say 2m, then r(n) = xm since r is a realization function. Then if r(n) contains xk it
must be that xm = xk, hence m = k, and so n = 2m = 2k. But then the same index would occur
twice in Z, which is impossible since Z is properly annotated.

Now, assume S–1 to S–4. Suppose n is an index in K that is problematic in X(�pK) with
respect to ri. Since ri(n) = rj(n) by S–3, and all realization functions agree on even indexes, it
follows immediately that n is problematic with respect to rj as well.

We thus have the background needed for Step 1 of the algorithm. Carry that step out.
Since problematic indexes must be odd, if we change a realization function by redefining it

on problematic indexes, the result will be another realization function, since it will still map even

20 Melvin Fitting

indexes to variables. This ensures that the functions r′k defined in Step 1 are all realization functions.
And since we have removed problematic indexes by introducing new variables, it is easy to see that
r′1, r

′
2, . . . , r′N are non self-referential on variables over X(�pK). We check that the other conditions

of Theorems 4.3 and 5.1 are met.
r′1, r

′
2, . . . , r′N agree on K by construction and by S-3. Also they agree on q. Consequently

r′1(�qK) = r′2(�qK) = . . . = r′N (�qK).
For each k = 1, 2, . . . , N , r′k(�pK) ⊃ r′k(�qK) is the formula

r′k(p):r
′
k(K) ⊃ (r′1(p) + r′2(p) + . . .+ r′N (p)):r′k(K)

This is an LP theorem using the Sum Axiom.
We have shown enough to verify that conditions H–1 to H–4 of Theorems 4.3 and 5.1 are met,

using r′1, r
′
2, . . . , r′N , with A = �pK and B = �qK.

Now apply Step 2 of the algorithm, producing a realization/substitution pair 〈r∗, σ∗〉 such
that σ∗ lives on input positions in X(P) and meets the no new variable condition, and 〈r∗, σ∗〉
hereditarily replaces r′k(�pK) with r′k(�qK) at P in X(P), for each k = 1, 2, . . . , N .

Apply Step 3 of the algorithm, re-introducing the proof polynomials that were eliminated earlier.
We now have a substitution, σ′. There is a minor point involving the case where n is an index in K
that is problematic—we must verify that this case is well-defined. The variable r′k(n) is the same
for all k, by the construction in Step 1. But also, rk(n)σ∗ is the same for all k, since r1, . . . , rN all
agree on indexes in K by condition S–3. This ensures well-definedness.

Before going on to Step 4 it will be convenient to introduce yet another substitution, σ′′, closely
related to σ′. It does not play a role in the algorithm itself, but does play a significant role in
verifying its correctness.

On variables that are not place-holding, set σ′′ to be the identity. And on place-holding variables
we proceed as follows.

If n is an index in X(�pK) outside K that is problematic with respect to rk, a new place-holding
variable r′k(n) was introduced in Step 1 of the algorithm. On this variable set r′k(n)σ′′ = rk(n).

If n is an index in K that is problematic in X(�pK) with respect to any (all) of r1, . . . , rN ,
a new place-holding variable r′k(n) was introduced in Step 1 (the same for all k). On this variable
set r′k(n)σ′′ = rk(n). (The choice of k doesn’t matter, by S–3.)

An important fact concerning σ′′ is this, for each k = 1, . . . , N .

r′k(Z)σ′′ = rk(Z) for Z a subformula of X(�pK) (6)

Here is the argument for (6): we show that for every index n in X(�pK), r′k(n)σ′′ = rk(n). Suppose
first that n is a problematic index in X(�pK) (whether in K or not). Then r′k(n) is a place-holding
variable, so by definition of σ′′ we have r′k(n)σ′′ = rk(n). If n is not problematic, r′k(n) = rk(n).
Since all place-holding variables were new, none can occur in rk(n), and on non place-holding
variables σ′′ is the identity. So for n not problematic, r′k(n)σ′′ = rk(n)σ′′ = rk(n).

Another key fact concerning σ′′ is the following ‘semi-commutativity’ result.

σ∗σ′ = σ′′σ∗ (7)

In the verification of (7) there are three cases to consider.
First, suppose x is a variable that is not place-holding. Then xσ′′σ∗ = xσ∗ because σ′′ is the

identity on such variables. Also xσ∗σ′ = xσ∗ because σ∗ meets the no new variable condition,

Realizations and LP 21

hence xσ∗ contains only the variable x, on which σ′ is the identity. Hence xσ∗σ′ = xσ′′σ∗ in this
case.

Next consider a place-holding variable, say r′k(n) where n is a problematic index in X(�pK)
occurring outside K. For this, r′k(n)σ∗σ′ = r′k(n)σ′ since σ∗ lives on input positions in X(�pK)
and r′k(n) was a new variable, on which σ∗ must be the identity. Further, r′k(n)σ′ = rk(n)σ∗ by
definition of σ′. But also r′k(n)σ′′σ∗ = rk(n)σ∗ by definition of σ′′. Hence r′k(n)σ∗σ′ = r′k(n)σ′′σ∗

in this case.
The case of a place-holding variable arising from a problematic index occurring in K is similar.

Since this covers all the cases, we have established that σ∗σ′ = σ′′σ∗.

Finally we come to Step 4 of the algorithm. Define the function r as specified in the algorithm.
This is actually a realization function since if 2n is an even index in X(P), �pK, or �qK, r(2n) =
r∗(2n)σ′ = xnσ

′ = xn, since σ′ is the identity on variables that are not place-holders, and place-
holding variables were all new. Of course r may be self-referential on variables, but that won’t
matter now.

It is immediate from the definition of r that we have the following, for each k = 1, . . . , N .

r∗(Z)σ′ = r(Z) for Z a subformula of X(�qK) (8)

We must show that 〈r, σ∗〉 hereditarily replaces each rk(�pK) with rk(�qK) at P in X(P), for
k = 1, . . . , N . To see this, let ϕ(P) be a subformula of X(P), say it is positive; the argument is
similar if it is negative. What must be shown is the injective provability of the following.

rk(ϕ(�pK))σ∗ ⊃ r(ϕ(�qK)) (9)

Since 〈r∗, σ∗〉 hereditarily replaces r′k(�pK) with r′k(�qK) at P in X(P), we have the injective
provability of the following.

r′k(ϕ(�pK))σ∗ ⊃ r∗(ϕ(�qK))

Then by Theorem 2.3 we also have the following.

r′k(ϕ(�pK))σ∗σ′ ⊃ r∗(ϕ(�qK))σ′

By (7) this gives us the following.

r′k(ϕ(�pK))σ′′σ∗ ⊃ r∗(ϕ(�qK))σ′

But r′k(ϕ(�pK))σ′′ = rk(ϕ(�pK)) by (6), and r∗(ϕ(�qK))σ′ = r(ϕ(�qK)) by (8), hence we have
the following,

rk(ϕ(�pK))σ ⊃ r(ϕ(�qK))

which is formula (9).
End Correctness Proof

The problem in stating a more general version of the result above lies in the definition of r′1,
. . . , r′N . They were chosen to remove self-referentiality on variables. But then, it is not enough
that r1(A) ⊃ r1(B), . . . , r2(A) ⊃ r2(B) be injectively provable, we also need that r′1(A) ⊃ r′1(B),
. . . , r′2(A) ⊃ r′2(B) be. In the special case considered above, this was carefully arranged to produce
axioms. In other cases we might not be so fortunate. There is no statement of a general case
attempted here, but it is not needed for our present purposes.

22 Melvin Fitting

8 The Realization Merging Theorem

It may happen that several realization functions arise that are applied to the same annotated
formula. The results of this section show that they may be merged into one. An important thing
to note about the theorem is that it does not have a non self-referentiality condition on variables.

Definition 8.1 Let X be an annotated formula and r1, r2, . . . , rN be realization functions.

1. For a subformula ϕ of X, we say a realization/substitution pair 〈r, σ〉 merges r1, . . . , rN on
ϕ in X provided, for each k = 1, . . . , N :

(a) if ϕ is a positive subformula of X then rk(ϕ)σ ⊃ r(ϕ) is an injective theorem of LP;

(b) if ϕ is a negative subformula of X then r(ϕ) ⊃ rk(ϕ)σ is an injective theorem of LP.

2. We say 〈r, σ〉 hereditarily merges r1, . . . , rN on X provided, for each subformula ϕ of X,
〈r, σ〉 merges r1, . . . , rN on ϕ in X.

Theorem 8.2 (Realization Merging) Let X be a properly annotated formula, and r1, . . . , rN
be realization functions. Then there is a realization/substitution pair 〈r, σ〉 that hereditarily merges
r1, . . . , rN on X. Further, σ will live on the input positions in X, and will meet the no new variable
condition.

Begin Algorithm Let P be a propositional letter not in X, let p and q be distinct odd indexes
not in X, and let K be P . Now apply the algorithm of Theorem 7.1.
End Algorithm

Begin Correctness Proof Assume the hypothesis. Let P , p, q, and K be as in the algorithm.
Without loss of generality we can assume r1(q) = . . . ,= rN (q) = r1(p) + . . .+ rN (p), since neither
p nor q occur in X. Then conditions S–1 to S–4 of Theorem 7.1 are met (some of them rather
vacuously). It follows that there is a realization/substitution pair 〈r, σ〉 that hereditarily replaces
each rk(�pK) with rk(�qK) at P in X(P). Since P does not occur in X, this simply amounts to
saying 〈r, σ〉 hereditarily merges r1, . . . , rN on X. We also have that σ lives on input positions in
X and meets the no new variable condition.
End Correctness Proof

Example 8.3 Here is a simple example illustrating Theorem 8.2. Let X be the annotated formula
�2A ⊃ (�4B ⊃ �1C), where A, B, and C are atomic. This is properly annotated, indeed trivially
so since there are no nested modal operators. And let r1 and r2 be realization functions such that

r1(1) = f(x1, x2) r2(1) = g(x1, x2)
r1(2) = x1 r2(2) = x1

r1(4) = x2 r2(4) = x2

As it happens, both r1 and r2 are non self-referential on variables over X. Here is a realiza-
tion/substitution pair 〈r, σ〉 that hereditarily merges r1 and r2 on X.

Let a, b, c be ground proof polynomials such that a:(A ⊃ A), b:(B ⊃ B), and c:(C ⊃ C) have
injective proofs. For the substitution σ we have the following.

x1σ = a · x1

x2σ = b · x2

xnσ = xn otherwise

Realizations and LP 23

And for the realization function we have the following.

r(1) = [c · f(a · x1, b · x2) + c · g(a · x1, b · x2)]
r(2) = x1

r(4) = x2

The final substitution and realization functions meet the conditions of Theorem 8.2.

In the Introduction we discussed a problem that can now be resolved. For starters, with
annotated formulas available the problem can be restated more conveniently. Suppose (A∨B) ⊃ C
is a properly annotated formula (with ∨ taken as an abbreviation). And suppose we have realization
functions r1 and r2 such that r1(A ⊃ C) and r2(B ⊃ C) are both theorems of LP. Thus r1(A ⊃ C)
and r2(B ⊃ C) both embody correct instances of our reasoning, using explicit justifications. Is
there a realization function r such that r((A ∨B) ⊃ C) is a theorem of LP?

One can give an immediate answer of ’yes’ to the question just asked. The argument goes
as follows. Let A0, B0 and C0 be unannotated versions of A, B, and C. Since r1(A ⊃ C) and
r2(B ⊃ C) are theorems of LP, then A0 ⊃ C0 and B0 ⊃ C0 are theorems of S4. But then so is
(A0 ∨ B0) ⊃ C0, so by the Realization Theorem 3.6, there is a realization function r such that
r((A ∨B) ⊃ C) is a theorem of LP.

The problem with the answer just given is that the realization function r need not have any
relationship with r1 and r2. By passing through the forgetful projection and the Realization
Theorem we have, in effect, started fresh. So a better question would be: is there a realization
function r such that r((A∨B) ⊃ C) is a theorem of LP where r is, in some natural way, constructed
from r1 and r2, thus making use of the explicit justifications we had. The answer is ‘yes.’ We can
use Theorem 8.2. Here is the argument.

For convenience, let X be the annotated formula (A ∨ B) ⊃ C. By Theorem 8.2, there is a
realization/substitution pair 〈r, σ〉 that hereditarily merges r1 and r2 on X. We claim r((A∨B) ⊃
C) is a theorem of LP. To see this, first note that since A and B are negative subformulas of X,
and C is a positive subformula, the following are theorems of LP.

r(A) ⊃ r1(A)σ
r(B) ⊃ r2(B)σ

r1(C)σ ⊃ r(C)
r2(C)σ ⊃ r(C)

Also, by assumption, we have as LP theorems the following.

r1(A) ⊃ r1(C)
r2(B) ⊃ r2(C)

and hence by Theorem 2.3, we also have the following.

r1(A)σ ⊃ r1(C)σ
r2(B)σ ⊃ r2(C)σ

24 Melvin Fitting

Putting all this together, we have the following derivation.

r(A ∨B) = r(A) ∨ r(B)
⊃ r1(A)σ ∨ r2(B)σ
⊃ r1(C)σ ∨ r2(C)σ
⊃ r(C) ∨ r(C)
⊃ r(C)

The point is that r is directly calculated from r1 and r2. If LP and its relatives are to become
viable logics of justifications, the ability to make use of already acquired justifications in subsequent
arguments is fundamental. The example just given shows a way that this can sometimes be done.

9 Gentzen Sequent Calculi

Algorithmic proofs of the Realization Theorem have always been based on a cut free proof procedure
for S4. Either a sequent calculus or a tableau system can be used—essentially one is the other run
backwards. In the history of LP it is sequent formulations that have been the general standard, so
that is what will be used here. We need versions for propositional S4, and for an annotated version
of it.

For S4 the following calculus will be used. A sequent for S4 is a pair of finite multisets of
formulas in the language L�, where the pair is written Γ −→ ∆, with Γ and ∆ being multisets.
Using multisets avoids the need for explicit permutation rules. Axioms are the following sequents,
where P is any propositional letter.

P −→ P ⊥ −→

Then the rules of derivation are as follows. In stating them, Γ and ∆ are multisets, X and Y
are formulas, and if Γ = {Y1, . . . , Yk} then �Γ = {�Y1, . . . ,�Yk}.

LW
Γ −→ ∆

Γ, X −→ ∆
RW

Γ −→ ∆

Γ −→ ∆, X

LC
Γ, X,X −→ ∆

Γ, X −→ ∆
RC

Γ −→ ∆, X,X

Γ −→ ∆, X

L ⊃
Γ, Y −→ ∆ Γ −→ ∆, X

Γ, X ⊃ Y −→ ∆
R ⊃

Γ, X −→ ∆, Y

Γ −→ ∆, X ⊃ Y

L�
Γ, X −→ ∆

Γ,�X −→ ∆
R�

�Γ −→ X

�Γ −→ �X

As usual, a proof of a formula X in this calculus is a proof of the sequent −→ X. This is a
standard sequent calculus for S4, and soundness and completeness arguments are well-known in
the literature.

We also need a version of this sequent calculus for annotated formulas. Except for the two
modal rules, all the axioms and rules have exactly the same form but formulas are from La

�. Thus

Realizations and LP 25

annotations must be preserved in moving from sequents above the line to sequents below the line.
The modal rules become the following.

L�a
Γ, X −→ ∆

Γ,�2nX −→ ∆
R�a

�2n1Y1, . . . ,�2nk
Yk −→ X

�2n1Y1, . . . ,�2nk
Yk −→ �2p+1X

Both sequent calculi have the subformula property. If X has a proof, it has one in which every
formula that appears is a subformula of X. Indeed, something stronger will be needed: if X has a
proof, it has one in which every formula on the left of an arrow is a negative subformula of X and
every formula on the right of an arrow is a positive subformula of X. This is well-known for the
S4 calculus, and can easily be established for the annotated version. It plays a central role in the
proof of the Realization Theorem given in Section 10.

There is one more fundamental result that we will need, concerning the annotated calculus.
Since it is not standard, it is set forth more formally.

Proposition 9.1 If Z is a formula of L� that is a theorem of S4, and if X is any properly annotated
version of Z, then X has a proof in the annotated Gentzen calculus.

Here is a sketch of the verification of this Proposition. If one takes a proof of Z in the (unanno-
tated) sequent calculus, one can use this to construct an annotated proof of X. Replace the final
−→ Z with −→ X, then step-by-step propagate the annotations upward, from conclusions of rules
to premises, until the entire sequent construction has been annotated. A formal version of this
amounts to an induction on the number of sequents in the unannotated proof, and is omitted.

10 The Realization Theorem

The goal of this section is to give a proof, using the machinery developed in earlier sections, of
Artemov’s Realization Theorem. For convenience we repeat the earlier statement of it.

Theorem 3.6 If Z0 is a theorem of S4, there is a realization of Z0 that is an injectively provable
theorem of LP. In fact, if Z0 is a theorem of S4, then for any properly annotated version Z of Z0

there is a realization function r such that r(Z) is injectively provable in LP.

Begin Algorithm If Z is a properly annotated version of Z0, and Z0 is a theorem of S4, Z will
have a sequent calculus proof in the system with annotations. We construct a realization function
for each sequent in a proof P of Z—roughly, a realization of a sequent is a realization of the
formula that says the conjunction of the left of the sequent implies the disjunction of the right of
the sequent. The realization function for the final sequent in P is the desired realization function.

For sequents that are axioms, any realization function will do.

For all rules except L ⊃ and R�a, if r realizes the premise of a sequent rule, r will also realize
the conclusion.

For the L ⊃ rule, if r1 realizes Γ, Y → ∆ and r2 realizes Γ → ∆, X, then r will realize
Γ, X ⊃ Y → ∆, where r is the merging of r1 and r2 using the algorithm of Theorem 8.2.

For the R�a rule, suppose r0 realizes �2n1Y1, . . . ,�2nk
Yk −→ X. We must realize

�2n1Y1, . . . ,�2nk
Yk −→ �mX.

26 Melvin Fitting

Since r0 realizes �2n1Y1, . . . ,�2nk
Yk −→ X, there is an LP proof of

(xn1:r0(Y1) ∧ . . . ∧ xnk
:r0(Yk)) ⊃ r0(X).

Then by the Lifting Lemma there is a proof polynomial t(xn1 , . . . , xnk
) such that

(xn1:r0(Y1) ∧ . . . ∧ xnk
:r0(Yk)) ⊃ t(xn1 , . . . , xnk

):r0(X)

is provable.
The realization r that we want is like the original r0 except that r(m) is the result of replacing

r0(m) with r0(m) + t(xn1 , . . . , xnk
). The following makes this precise.

Let p and q be distinct new odd indexes. Let r1 and r2 be the same as r0 except that r1(p) =
r0(m), r2(p) = t(xn1 , . . . , xnk

), and r1(q) = r2(q) = r1(p) + r2(p). Let P be a new propositional
letter, and let Z(P) be Z with �mX replaced with P . Use the algorithm of Theorem 7.1 to
hereditarily replace r1(�pX) with r1(�qX) and r2(�pX) with r2(�qX) at P in Z(P), getting a
realization/substitution pair 〈r∗, σ∗〉. Finally, let r be like r∗ except that r(m) = r∗(q). Then r
realizes �2n1Y1, . . . ,�2nk

Yk −→ �mX.
End Algorithm

Begin Correctness Proof Assume Z0 is a theorem of S4. Let Z be any properly annotated
version of Z0. By Proposition 9.1 there is a proof of → Z in the annotated Gentzen calculus—call
the proof P. We need a connection between sequents and formulas. This was stated informally in
the algorithm, now we make it precise.

For each sequent S of annotated formulas, a corresponding annotated formula ‖S‖ is defined.

1. ‖X1, . . . , Xn −→ Y1, . . . , Ym‖ is the annotated formula (X1 ∧ . . . ∧Xn) ⊃ (Y1 ∨ . . . ∨ Ym).

2. ‖X1, . . . , Xn → ‖ is the annotated formula (X1 ∧ . . . ∧Xn) ⊃ ⊥.

3. ‖ −→ Y1, . . . , Yk‖ is the annotated formula (Y1 ∨ . . . ∨ Yk).

Let us say an annotated sequent S is realized if there is a realization function r such that r(‖S‖)
is injectively provable in LP. The algorithm supplies a realization function for each sequent S in
proof P. Then this will be the case for the final sequent, −→ Z, but ‖ −→ Z‖ is simply Z, and so
the existence of a realization function r such that r(Z) is injectively provable in LP is established.
To show each sequent S in P is realized, we show the correctness of the steps outlined in the
algorithm.

The ground case, axioms, is trivial. Sequents that are axioms have no modal operators, so any
realization function will do.

We next must show that each of the rules of inference preserves being realized. This is immediate
for most of them. Take RC as a representative example. If r is a realization function such that
r(‖Γ −→ ∆, X,X‖) has an injective LP proof, it is easy to see that r(‖Γ −→ ∆, X‖) will also have
an injective LP proof. All rules except for L ⊃ and R�a follow this pattern.

Of the two hard cases, we treat L ⊃ first. Suppose both Γ, Y −→ ∆ and Γ −→ ∆, X are realized.
We must show that Γ, X ⊃ Y −→ ∆ is also realized. Of course Γ, Y −→ ∆ and Γ −→ ∆, X might
be realized by different realization functions. Assume we have a realization function r1 such that
r1(‖Γ, Y −→ ∆‖) has an injective LP proof, and a possibly different realization function r2 such
that r2(‖Γ −→ ∆, X‖) has an injective LP proof. By the Realization Merging Theorem 8.2, there
is a realization/substitution pair 〈r, σ〉 that hereditarily merges r1 and r2 on Z. We show that
r(‖Γ, X ⊃ Y −→ ∆‖) is injectively provable.

Realizations and LP 27

Suppose ϕ is an annotated formula on the left in one of the two premise sequents of the L ⊃
rule application. That is, ϕ is in Γ or is the formula Y . Then ϕ is a negative subformula of Z, so
both r(ϕ) ⊃ r1(ϕ)σ and r(ϕ) ⊃ r2(ϕ)σ are injectively provable. Also if ϕ on the right, that is, if ϕ
is a member of ∆ or is X, it must be a positive subformula of Z and so both r1(ϕ)σ ⊃ r(ϕ) and
r2(ϕ)σ ⊃ r(ϕ) are injectively provable. As a consequence of all this, r1(‖Γ, Y → ∆‖)σ ⊃ r(‖Γ, Y →
∆‖) and r2(‖Γ → ∆, X‖)σ ⊃ r(‖Γ → ∆, X‖) are easily seen to be injectively provable. By the
Substitution Lemma 2.3, both r1(‖Γ, Y −→ ∆‖)σ and r2(‖Γ −→ ∆, X‖)σ are injectively provable.
It follows that both r(‖Γ, Y → ∆‖) and r(‖Γ → ∆, X‖) are injectively provable. Now we have
a single realization function, r, that works for both sequents, and it is an easy task to show that
r(‖Γ, X ⊃ Y −→ ∆‖) is injectively provable.

Finally we consider the case R�a. Suppose �2n1Y1, . . . ,�2nk
Yk −→ X is realized, say using

the realization function r0. We show �2n1Y1, . . . ,�2nk
Yk −→ �mX is realized, where both these

sequents occur in proof P. Note that the indexes 2ni are all even, while m must be odd. The
hypothesis is that the following formula is injectively provable

(xn1:r0(Y1) ∧ . . . ∧ xnk
:r0(Yk)) ⊃ r0(X) (10)

We must produce a realization function r such that (xn1 :r(Y1) ∧ . . . ∧ xnk
:r(Yk)) ⊃ r(m):r(X) is

injectively provable.
Using (10) and the Lifting Lemma, Theorem 2.4, there is a proof polynomial t(xn1 , . . . , xnk

)
such that

(xn1:r0(Y1) ∧ . . . ∧ xnk
:r0(Yk)) ⊃ t(xn1 , . . . , xnk

):r0(X) (11)

is injectively provable.
A natural attempt at creating an appropriate realization function would be to define r to be

the same as r0 except that r(m) = t(xn1 , . . . , xnk
). Now Z is properly annotated and �mX is a

subformula, so m does not occur in X. Thus we would have r(X) = r0(X), and hence we would
have the injective provability of the following.

(xn1:r0(Y1) ∧ . . . ∧ xnk
:r0(Yk)) ⊃ r(m):r(X)

But this does not ensure we would have the injective provability of the thing we need,

(xn1:r(Y1) ∧ . . . ∧ xnk
:r(Yk)) ⊃ r(m):r(X)

because �m may have occurrences in one or more of Y1, . . . , Yk, and so r0 and r may not be the
same on them. The possible presence of r0(m) in (xn1 :r0(Y1) ∧ . . . ∧ xnk

:r0(Yk)) must be dealt
with, and we do this by realizing �m with r0(m) + t(xn1 , . . . , xnk

) rather than just t(xn1 , . . . , xnk
).

Demonstrating that this yields a provable sequent brings Theorem 7.1 into play, and this is the
source of some complications. In order to apply Theorem 7.1 we need distinct indexes p and q. In
our application of the Theorem here both are, in a sense, stand-ins for m. The formal argument
below amounts to introducing new indexes p and q, applying Theorem 7.1, then eliminating the
indexes at the end.

Both �2n1Y1, . . . ,�2nk
Yk −→ X and �2n1Y1, . . . ,�2nk

Yk −→ �mX are sequents in a proof, P,
of the formula Z, so all formulas in these sequents are subformulas of Z. Then �mX occurs as a
(positive) subformula of Z exactly once, since Z is properly annotated. Let P be a propositional
letter that does not occur in Z, and let Z(P) be like Z except that the subformula �mX has
been replaced with P . Then P must have a single positive occurrence in Z(P), and Z is the same
as Z(�mX). Also, no index in �mX can occur in Z(P), again since Z = Z(�mX) is properly
annotated.

28 Melvin Fitting

Let p and q be distinct odd indexes that do not occur in Z. Then Z(P), �pX, and �qX
are properly annotated, Z(P) and �pX have no annotation overlap, and Z(P) and �qX have no
annotation overlap.

Define two realization functions r1 and r2 to be the same as r0, except that r1(p) = r0(m),
r2(p) = t(xn1 , . . . , xnk

) and r1(q) = r2(q) = r0(m) + t(xn1 , . . . , xnk
). Note that r1(X) = r2(X) =

r0(X) since p and q do not occur in X.
Now we can apply Theorem 7.1, Realization Weakening. There is a realization/substitution pair

〈r∗, σ∗〉 that hereditarily replaces r1(�pX) with r1(�qX) at P in Z(P) and hereditarily replaces
r2(�pX) with r2(�qX) at P in Z(P). The realization function r∗ is almost the one we want. That
is, we will show that

(xn1:r
∗(Y1(�qX)) ∧ . . . ∧ xnk

:r∗(Yk(�qX))) ⊃ r∗(�qX) (12)

has a sequent calculus proof. The difficulty is the presence of the index q. The last step will be to
eliminate it.

Consider one of the formulas on the left of the sequent �2n1Y1, . . . ,�2nk
Yk −→ �mX, say

�2niYi. This is a negative subformula of Z. Let us write �2niYi(P) for the result of replacing the
subformula �mX in �2niYi with P (the occurrence of �mX may be vacuous). Then �2niYi(P) is a
subformula of Z(P) amd �2niYi is the same thing as �2niYi(�mX). (Note that 2ni and m cannot
be the same since one index is even and the other is odd.) Since we have hereditary replacement
of r1(�pX) with r1(�qX) at P using 〈r∗, σ∗〉, we have the injective provability of the following.

r∗(�2niYi(�qX)) ⊃ r1(�2niYi(�pX))σ∗ (13)

r1 is the same as r0 except on p and q. Now q does not occur in �2niYi(�pX), p does not occur in
Yi(P) or in X, and r1(p) = r0(m), so r1(�2niYi(�pX)) = r0(�2niYi(�mX)) = r0(�2niYi). Since r∗

and r0 are realization functions, r∗(�2ni) = r0(�2ni) = xni . Then from (13) we have the following,
for each i = 1, . . . , k.

xni:r
∗(Yi(�qX)) ⊃ xni:r0(Yi)σ∗ (14)

The formula P itself is a positive subformula of Z(P). Since 〈r∗, σ∗〉 hereditarily replaces
r2(�pX) with r2(�qX) at P in Z(P), we have injective provability of

r2(�pX)σ∗ ⊃ r∗(�qX) (15)

Since r2(�pX) = r2(p):r2(X) = t(xn1 , . . . , xnk
):r0(X), from (15) we have the following.

t(xn1 , . . . , xnk
):r0(X)σ∗ ⊃ r∗(�qX) (16)

Now, from (11), using the Substitution Lemma, Theorem 2.3, we have the following.

(xn1:r0(Y1)σ∗ ∧ . . . ∧ xnk
:r0(Yk)σ∗) ⊃ t(xn1 , . . . , xnk

):r0(X)σ∗ (17)

Combining (14), (16) and (17) we have injective provability of the following.

(xn1:r
∗(Y1(�qX)) ∧ . . . ∧ xnk

:r∗(Yk(�qX))) ⊃ r∗(�qX) (18)

That is, we have succeeded in showing (12) as promised.
Now we are in the final phase, eliminating q in favor of m. The index q does not occur

in X since it was chosen to be a new index, and m does not occur in X because �mX is a
subformula of the properly annotated formula Z. Let r be like r∗ except that r(m) = r∗(q). Then

Realizations and LP 29

r∗(�qX) = r(�mX). Likewise q does not occur in Yi(P), and neither does m, since Yi(P) is Yi

with the subformula �mX replaced with P . Then r∗(Yi(�qX)) = r(Yi(�mX)) = r(Yi). So, from
(18) we have the following.

(xn1:r(Y1) ∧ . . . ∧ xnk
:r(Yk) ⊃ r(�mX) (19)

And this shows that the consequent of rule R�a is realized.
End Correctness Proof

11 Conclusion

The logic LP is now understood to be one of a family of related justification logics—it corresponds
to S4. It can be weakened by dropping the ! operator and its axiom, yielding what is known as
LP(T). In the other direction it can be strengthened by adding a negative proof checker, dual to
!, yielding a logic called LP(S5), see [9] for instance. Likewise it can be extended to incorporate
multiple agents, and even common knowledge. How much of the work in this paper extends to
these logics? In this generality further investigation is needed, especially when multiple agents are
involved. But here is an indication that the results very likely will extend.

The main theorems of this paper are Theorem 4.3 and 5.1; other results are corollaries of these.
The essential features of LP that are used in proving these theorems are the Substitution Lemma
and the Lifting Lemma. The logic LP(S5) satisfies both of these. Consequently the main theorems
of this paper extend to LP(S5) as well. There is a (somewhat peculiar) sequent calculus for LP(S5)
in [3] (actually, it is presented as a tableau system, but this is a minor difference). A Realization
Theorem for LP(S5) can then be shown, along the same lines as the one for S4 was shown here.
Recently the Realization Theorem for LP(S5) was shown in [9], by a semantic argument. Present
methods provide a second, proof-theoretic, argument as well.

S4 is not only a modal logic, it is also well-known as a logic of knowledge in the Hintikka
tradition—a logic with a single knower having positive introspection. Then LP can be seen as that
logic of knowledge made explicit, with “known to be the case” replaced by “known because of
such-and-such evidence”. Seen this way, the Realization Theorem amounts to a way of extracting
the explicit content of a knowledge statement in which justifications are present only implicitly.
One can think of the whole LP/S4 package as a kind of labor-saving device. We can reason more
easily about knowledge if we don’t make things explicit, but when we need explicit justifications,
they can be calculated.

This, however, is not the whole story. A theorem of S4 can have many realizations—explicit
justifications for things are not unique. We may need to supply justifications, not according to a
general paradigm, but based on justifications we already have. For this, a direct application of the
Realization Theorem is not sufficient. This paper can be seen as a first attempt at providing tools
for precisely this sort of reasoning about evidence.

Once LP is seen as a logic of knowledge, extending it to a multi-agent version is an obvious
step. Work has been done on this by a number of people, and is still ongoing. It is likely that the
theorems of this paper extend to multiple agents. Also, we have looked at what might be called
‘pure’ versions of LP and of S4. All knowledge is strictly logical knowledge. But there are facts of
the world too. We might know it rained in some particular place at some particular time. We don’t
know this by a process of logical reasoning, but we may deduce facts from it using logic. To use
terminology that is standard elsewhere in the modal logic literature, we might want to consider LP
with local as well as with global assumptions. It must be left to future research to determine how
LP will function with local assumptions. In particular, what happens to the Realization Theorem,

30 Melvin Fitting

and what happens to the results of this paper. This would bring us closer to everyday reasoning,
as contrasted with the reasoning of pure mathematics.

References

[1] S. Artemov. Operational modal logic. Technical Report MSI 95-29, Cornell University, Decem-
ber 1995.

[2] S. Artemov. Explicit provability and constructive semantics. The Bulletin for Symbolic Logic,
7(1):1–36, 2001.

[3] M. C. Fitting. A simple propositional S5 tableau system. Annals of Pure and Applied Logic,
96:107–115, 1999. Originally in The Parikh Project, Seven papers in honour of Rohit, Uppsala
Prints and Reprints in Philosophy, 1996 Number 18.

[4] M. C. Fitting. The logic of proofs, semantically. Annals of Pure and Applied Logic, 132:1–25,
2005.

[5] M. C. Fitting. A replacement theorem for LP. Technical report, CUNY Ph.D. Program in
Computer Science, 2006. http://www.cs.gc.cuny.edu/tr/.

[6] M. C. Fitting. Reasoning with justifications. submitted to Studia Logica, 2007.

[7] K. Gödel. An interpretation of the intuitionistic propositional calculus. In S. Feferman, editor,
Kurt Gödel, Collected Works, Volume One, pages 300–303. Oxford, 1986. Originally published
as ‘Eine Interpretation des intuitionistischen Aussagenkalküls’, in Ergebnisse eines mathema-
tischen Kolloquiums, vol 4, pp 39–40 (1933).

[8] R. Kuznets. On self-referentiality in modal logic. The Bulletin of Symbolic Logic, 12(3):510,
2006.

[9] N. Rubtsova. Evidence reconstruction of epistemic modal logic S5. In D. Grigoriev, J. Harrison,
and E. A. Hirsch, editors, Computer Science — Theory and Applications, Lecture Notes in
Computer Science, vol 3967, pages 313–321. Springer-Verlag, 2006.

