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Abstract

In this paper we discuss the pure logic of necessitation N, a modal logic containing
classical propositional calculus, with modus ponens and necessitation as inference rules,
but without any axioms for manipulating modalities. We develop a theory of the logic N.
We propose a sound and complete Kripke-like semantics for N and build a tableaux
system for testing whether a formula is provable from a theory in the logic N. An
alternative method to compute modal-free consequences of a finite theory is also given.
Our main motivation to consider the logic N comes from the area of nonmonotonic
reasoning. The nonmonotonic variant of N seems to be particularly useful in investigations
of knowledge sets built when only partial information is available. In particular, this logic
N is deeply connected with the default logic. In this paper, we apply our results to
problems in nonmonotonic reasoning and we design algorithms for building the non-
monotonic consequence operator associated with N.

1. Introduction

In this paper we study a certain subnormal modal logic. This logic contains
classical propositional calculus, contains no specific axioms involving mod-
ality and allows for an unrestricted application of necessitation. We restrict
our attention to the language which is the standard extension of some fixed
language £ of classical propositional calculus by a single modal operator L.
This language will be denoted by %, .

Investigations of modal logics so far have mainly been concerned with
normal modal logics. A modal logic is normal if it is closed under uniform
substitution and

(1) contains classical propositional calculus, that is, contains all axioms for
propositional calculus and is closed under modus ponens;

(2) is closed under necessitation rule;

(3) contains the axiom K: L(¢ — y)— (Lp— Ly).

Let us call a modal logic subnormal if at least one of these conditions fails.
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There are, then, three main ways to define a subnormal modal logic:

(1) Replace classical propositional calculus by some weaker logic.
"(2) Restrict the applicability of the necessitation rule.
(3) Do not require that axiom K be contained in a logic.

In each of these cases there are problems with semantics for the resulting
systems. For case (1) several generalizations of the standard Kripke
semantics were proposed; see Plotkin and Stirling [18], Wijesekera [25],
Nishimura [16], and Ono [17] for an exhaustive list of references.

The second approach has been studied extensively and good accounts of
this research are given in the monographs by Segerberg [20], Chellas [1] and
Fitting [2], where semantical issues are discussed in detail.

In this paper, we deal with the third approach. Speaking precisely, we
study the following notion of provability. A proof of a formula ¢ from a set
of formulae  in a modal logic & is a sequence @,, @, ..., ¢, such that
@, = @, and for all i =n, either g, is a substitution instance of an axiom of
&, or @;el, or g; is obtained from preceding formulae in the proof by
modus ponens or the necessitation rule. In particular, the necessitation rule
can be applied to formulae in I, not only to axioms of &. The fact that a
formula ¢ is provable from I using the above notion of proof is denoted by
I+, @. The consequence operator Cng in logic & is defined by Cny(l) =
{p:1+s @}

Let us stress that this notion of provability is different from the notion of
provability considered in standard monographs on modal logics, for example
[1]. We allow application of necessitation to all formulae and not only to the
axioms of &.

In this paper, we are particularly interested in the case when & is the
weakest modal logic containing propositional calculus and closed under
modus ponens and necessitation. We call this logic the pure logic of
necessitation and denote it by N.

There are at least three motivations for studying the logic N and the
notion of provability introduced above.

Firstly, our treatment of necessitation corresponds to computational
intuitions, where L means that ¢ has been computed or derived. The logic
N appears to be the most natural logic for studying provability in formal
systems. Specifically, we have the’ following result which, for technical
reasons, we prove at the end of Section 5.

ProrosiTiON 1.1 .
Let R be a collection of inference rules of the form

(plx"') (pn

” )



L]

The Pure Logic of Necessitation /351
Let T be the modal theory obtained by replacing each rule (1) in R by
Lo,An...ALp,— .

Then for every set of formulae /< ¥ and for every formula we ¥, w
belongs to the least set of formulae containing I and closed under
propositional consequence and the rules from R if and only if /U Ty w.

Secondly, under our notion of provability, the logic N plays a special role
among all modal logics closed under necessitation. Namely, we have the
following straightforward result.

Prorosrition 1.2
Let & be a modal logic closed under necessitation. For every theory I ¢ %,

Cny(I) = Cnn(I U Ax(S)),
where Ax(%) is the set of all substitution instances of axioms of &.

Thirdly, important applications of subnormal modal logics, such as N,
have recently emerged from the efforts to formalize commonsense reasoning
with incomplete information. Such reasoning is inherently nonmonotonic—if
a fact p can be concluded from a theory I, it is not necessarily derivable from
a theory I’ which properly contains /. Most formalisms designed to describe
nonmonotonic reasoning can be characterized by means of a fixed point
construction applied to the consequence operator of some (monotone) logic.
Two basic nonmonotonic systems, default logic and autoepistemic logic, can
be characterized in such a way by means of the logic N [9, 21].

We will now briefly describe the use of modal logics and in particular of
the logic N in nonmonotonic reasonings. Modal logics were first proposed as
a means to formalize commonsense reasoning by McDermott and Doyle [14]
and McDermott [13]. Let & be a modal logic. McDermott and Doyle
described a construction which, for every modal logic &, produces its
nonmonotonic variant. They argued that in a nonmonotonic logic cor-
responding to &, a theory T can be considered as a belief (knowledge) set
associated with an initial theory I if and only if T is exactly the set of facts
that can be derived from 7 and all modal facts of the form ‘- is consistent’.
The formula ‘—@ is consistent’ is expressed as ~L¢@. If a theory T is closed
under ¥-consequence, then —@ is consistent with T precisely when ¢ ¢ T.
Consequently, McDermott and Doyle [14] and McDermott [13] introduced
the fixed point equation:

T=Cny(IU{-Lp:¢¢T}), 2

and proposed to consider its consistent solutions as candidates for the belief
sets of 1. In equation (2), Cny stands for the consequence operator in the
logic &, as introduced above. They proposed the following crucial definition:

~a theory T is an S-expansion of I if T is consistent and satisfies (2). The
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operator Cny is, of course, monotone. But T appears on both sides of
equation (2) and the dependence of T on I is no longer monotone. What is
more, a theory may have no ¥-expansions, exactly one F-expansion, or
many ¥-expansions.

Marek and Truszczynski [9] argued that N-expansions can be regarded as
knowledge sets of an agent with full introspection capabilities and pointed
out the close connection between extensions of default theories and
N-expansions. (For all undefined notions related to default logic see the
original paper by Reiter [19] or Marek and Truszczynski [9].) Consider a
default rule:

_ a:MB,, ..., MB,
° .

d ©))
Such a rule, following Reiter, is interpreted informally as follows: if « is
known, and if it is known that each f;, i =k, is possible (this is the reason
for the notation MB,), then establish w.

To capture this interpretation, it was proposed in [24] that a default d of
the form (3) be encoded by the following modal formula:

tr(d)=La A LMB,A... ANLMB,— w, 4)

where M abbreviates L. Let us point out that this translation treats the
premise part and justification part of a default rule differently. In fact the
modalities L and LM are related in the logic N in a very loose fashion, and
the interplay of the formulae of the form Lg and LMy, with @, ye ¥
corresponds precisely to that between the premise a and the premises Mb, in
deault logic.

For a default theory A = (D, W) (D is a set of defaults, W is a set of
formulae) define

tr(A)=WU{tr(d):d e D}.
The following result was proved in [24].

THEOREM 1.3
Let A= (D, W) be a default theory. A theory S < £ is an extension of A if
and only if $ =T N 2 for an N-expansion T of tr(A).

Theorem 1.3 is a generalization of Proposition 1.1. The proof, although
technically more involved, is similar to that of Proposition 1.1 given at the
end of Section 5. .

Let us mention here that no simple characterization of default extensions
in terms of stable expansions [15] is known. Each known characterization of
default logic by means of stable expansions uses extra-logical concepts like
reducts [6, 8] or requires that new atoms (in general, infinitely many) are



The Pure Logic of Necessitation / 353

introduced and that the rules are interpreted by more complex modal
formulae than those of the form (4) [22, 11].

We will briefly present now one application of Theorem 1.3 to default
logic. Recall that under the translation ¢r(-) which assigns to a default

a:MB, ..., MB,
)

the formula of &, :La A LMB, A... A LMB,— w, default extensions of a
default theory A= (D, W) are in a one-to-one correspondence with the
N-expansions of #r(A), that is solutions to the equation T = Cny(tr(A) U
{~Lo:9¢T}).

We shall now define an entailment relation for defaults as follows: Let
A= (D, W) be a default theory, and let d be a default. We say that A
entails d, in symbols A [>d if the extensions of A and A’ =(D U {d}, W)
are exactly the same.

It is easy to see that this relation > has the properties of reflexivity and
cumulative transitivity (cf. [7]).

The relation > can be characterized in the language %, ., that is, the
propositional language admitting denumerable conjunctions and disjunc-
tions, using the methods of [12]. Here we give a finitary sufficient condition
for the entailment A > d to hold.

ProrosiTioN 1.4
Let d be a default rule, and A a default theory. Let #(d), tr(A) be
translations into modal language. Then tr(A).by tr(d) implies A D> d.

Proor. Assume tr(A)bntr(d). Set A'=(DU{d}, W). Let S be any
extension of A. Then, by Theorem 1.3, there exists an N-expansion T of
tr(A) such that TN £ = S. This means that

T=Cnx(tr(A)U{—Lep:@¢T}).
Since tr(A) b tr(d),
T =Cnx(tr(A)U{tr(d)} U{-Lo:@¢T})
=Cnn(tr(AYU{~Lo:@ ¢ T}).
Thus T is an N-expansion of 7(A’) and since S = T N ¥, S is an extension of

A’ (by Theorem 1.3).
The converse implication is proved in a similar manner. a

To build nonmonotonic reasoning systems based on the logic N, algo-
rithms constructing all N-expansions of a finite theory I are needed. In the
paper, we develop a theory of the logic N. We propose a sound and
complete Kripke-like semantics for N and build a tableaux system for testing
whether a formula is provable from a theory in the logic N. An alternative



354 / The Pure Logic of Necessitation

method to compute modal-free consequences of a finite theory is also given.
Finally, our results are applied to problems of nonmonotonic reasoning.
Namely, we present algorithms to compute all N-expansions of a finite
theory.

2. Basic properties of provability in the logic N

In this section we present examples and prove some simple properties of the
provability operator in N — Cny.

ExampLE 2.1
(a) One of the basic properties of normal modal systems is that if g — ¢ is a
theorem, so is Lo — L. This property fails for the logic N. For example,
(a va)—a is a theorem of N but L(a v a)— La is not; a formal argument
for this claim will be given at the end of Section 3.

(b) Next we illustrate the concept of proof in the logic N. Consider the
theory I={La—b, L~-La— Lb,~Lb v a,~b}. The formula a can be
proved from I as follows:

(1) b and La— b yield —La (in propositional calculus).
(2) Necessitation applied to —La yields L-La.

(3) L-La and L~La— Lb yield Lb (by modus ponens).
(4) Lb and ~Lb v a yield a (in propositional calculus).

We will now develop a convenient representation of the provability
operator Cny. Let us define an operator A as follows:

A(D=Cn(l) A,n(D=Cn(IU{Lp:peA,)})
and

A=A

where Cn denotes the provability operator in classical propositional logic.

ProrosiTiON 2.1

Cnn(I) = A(D).
Proor. First, we define an auxiliary operator A':

Ao(I) = Cn(I) nei(l) = Cn(A (DU {Lg:peA,(D})
and

A = QO AlD.

Clearly, Cnn(I) = A’(I). By induction on 7 it easily follows that
A ()= A1)
Thus, Cnn(I) = A(I).
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By the L-depth of a formula @ we mean the maximum depth of nesting of
occurrences of L in ¢. In modal logics, because of the presence of modal
axiom schemata, it is often the case that any proof of a formula ¢ from a
theory I contains formulae of L-depth exceeding the maximum L-depth of
any formula in /U {@}. Proposition 2.1 implies that this is not the case for
the logic N. Let £, , denote the set of all formulae in &, with L-depth at
most k.

ProrosiTION 2.2
Let I ¢ %, ;. For every formula ¢ € £, ,, if [y @, then there is a proof of @
from I in N where each formula is in &, ;.

Proor. The proof is by induction on the level of ¢, defined as the minimum
n such that @ € A,(I). The proof is based on the following property of the
propositional provability operator: if ¢ € Cn(I), then there exists a proof of
@ from I with each formula built only of atoms occurring in /U {@}. We
omit the details. O

In a similar fashion a natural deduction system can be written for N and a
cut-elimination result proved (see [4] for a definition of the cut-rule in
natural deduction systems).

3. A semantics for the logic N

The logic N is subnormal. Consequently, there is no conventional Kripke
semantics for N. In this section we introduce a variant of Kripke semantics
that differs from the standard Kripke semantics in that infinitely many
accessibility relations are required, one for each formula. An N-structure is a
triple

M= <M’ {Rw}wefé’i» V)

where M is a nonempty set of objects called worlds, V gives valuations of
propositional variables (atoms of £) in the worlds from M, that is
V:M x At— {0, 1}, and each R, is a binary relation on M.

Given an N-structure 4, the satisfaction relation M, m E @, for m e M and
@ € %, is defined by induction on the complexity of ¢ as follows:

(1) If p is an atom, then M, mEp if V(m, p)=1.

(2) If y =~¢, then M, mEy if it is not true that M, m F ¢ (in symbols:
"“r m # (P)- °

B) If y=@, A @, then M, mEy if M, mEq@, and M, mE @,; the other
Boolean connectives are dealt with similarly.

(4) If y=Lg, then M, mEy if for every m’ such that (m, m’')eR,,
M, m'E .



356/ The Pure Logic of Necessitation

We say that an N-structure ( satisfies @ (M E @) if for all me M, M, mE ¢.
We say that # satisfies a theory I (M EI) if ME @ for every @ € L.

The basic intuition behind N-structures is that, in the logic N, any possible
relationship (other than identity) between formulae ¢ and y should have no
effect on the mutual relationship between the formulae Lo and Lvy. One
way to ensure that is to use separate relations R, and R,, for verifying the
validity of Le and L in the structure.

We now show that the logic N is sound with respect to the class of all
N-structures.

ProrosiTion 3.1
Let I+y5 9. Then for every N-structure A, if M1 then ME 8.

Proor. We proceed by induction on the length n of a derivation ¢, .. ., @,
of ¥. Assume, as an induction hypothesis, that the proposition holds for
every formula with a derivation from I of length less than n, and now
consider a formula 9 such that 7 +y & with a derivation of length n. There are
several possibilities.

If 6el or is a tautology of the propositional calculus the assertion is
evident. These two cases establish also the basis of induction.

If 4 is derived from earlier terms @ and @ — & of the derivation by modus
ponens then both ¢ and ¢ — ¥ have derivations from 7 of length less than n.
By the induction hypothesis, #, mE @ and M, m kE p— & for every m € M.
Then, by the definition of the relation of satisfiability, #, m £, for every
me M. -

Finally, if 9 follows from an earlier term @ by necessitation, then @ has a
derivation from I of length less than n and ¢ =Lg. By the induction
hypothesis for every m'e M, M, m' £ @. Consequently, for an arbitrary
m €M and every m’ such that (m, m')eR,, M, m'E@. Then, M, mELgp
that is, M, mE 9. O

Next, we will prove the completeness of the semantics of N-structures with
respect to provability in N. The proof is standard and follows the general
scheme for such arguments. It is based on the construction of a ‘canonical’
structure whose worlds are complete theories in the language £, (see [5] for
examples of such proofs for several normal modal logics). We give the proof
here for the convenience of readers not familiar with modal logics.

We begin by introducing two crucial notions. We say that § is T-
inconsistent if there exists a finite set {g,, ..., ¢,} =S such that Ty
@ V...V @, We say that § is T-consistent if S is not T-inconsistent.
Thus, S is T-consistent if and only if for every finite set {¢,, ..., ¢,} =S,
Tix—@oV ...V g, (Because the empty disjunction is false, if S = is
T-inconsistent then every set is T-inconsistent.)
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Lemma 3.2
If S is T-consistent, then S is propositionally consistent.

Proor. Suppose that S is propositionally inconsistent. Then there exists a
finite set {@,, ..., .} =S such that {¢,, ..., ¢,} L. Hence, using the
deduction theorem for propositional logic, F—@,v... v, and so Ty
@y V...V, acontradiction. O

Next we make an observation that allows us to produce T-consistent sets
of formulae.

Lemma 3.3
If S c %, is T-consistent and =L € S, then {—¢} is T-consistent.

Proor. Assume that {-@} is T-inconsistent. Then, Tky—¢@.
Consequently, Tty @ and so Tty L. This, of course, implies that T 'Fy——
Lg, so S is T-inconsistent. O

REMARK

A related property used in the case of normal modal logics is: if § is
T-consistent and ~L@ € S, then {~¢@}U {y:Ly €S} is T-consistent. The
schema K plays a critical role in the proof of this property, and it is not
available in N. This forces us to use the weaker statement, Lemma 3.3.

Now, we will prove the existence of maximal T7-consistent sets of
formulae.

Lemma 3.4 )
If S is T-consistent then S is contained in a maximal 7T-consistent set.

Proor. The union of every c-increasing sequence of T-consistent sets
containing S is 7T-consistent and contains S. Consequently the Kuratowski-
Zorn Lemma is applicable and so there exists a maximal T-consistent set
extending S. a

Now we list some basic properties of maximal 7-consistent sets. The
proofs are standard [3] and are omitted.

Lemma 3.5 g

If S is a maximal T-consistent set then S possesses these properties:
(a) For every # € ¥, % €S if and only if ¢ ¢ S.
(b) For every #,, },€ %, %, A #,€ S if and only if ¢, €S and ¥, € S.
(c) If Tty then ¢ € S. In particular, T < §S.

Now, using Lemma 3.5 we prove the completeness of N-structures with
respect to provability in the logic N. Although the argument is similar to the
standard one, our definition of accessibility relations is different, and this is
the reason why we provide the proof here.
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THEOREM 3.6
ForTc¥, and ye ¥, Tryy if and only if T k.

Proor. The ‘only if’ part was proved in Proposition 3.1. To prove the ‘if’
part we assume that Tlfxy and we build a canonical N-structure M =
(M, {R,}pcq, V) which satisfies T but does not satisfy 9. Our assumption
implies that {-y} is T-consistent. Define M to consist of all maximal
T-consistent sets S. Since {—y} is T-consistent, it can be extended to a
maximal T-consistent set. Thus M # . For m € M and an atomic p, we set
V(m, p) =1if and only if p € m. Furthermore we define m,R,m, if and only
if "Le € m, and ~@ € m,. We first prove the following crucial claim:

CrLamm
For every m € M, and every p € &,

M, mE@ ifandonlyif ¢@em.
We prove the claim by induction on the length of formula ¢.

(1) If p is atomic, then the definition of V implies the assertion.

(2) If @ =—9 then M, mE @ precisely when M, m 9. By the induction
hypothesis, this latter fact is equivalent to ¢ ¢ m. Since m is a maximal
T-consistent set, by Lemma 3.5(a) this last statement is equivalent to @ € m.
(3) If @ = 4, A ¥,, then we reason as in (2), using Lemma 3.5(b).

(4) Finally, we need to consider the case @ = L¥. First, assume that
L% em. We need to prove that #, mkL9¥. Assume to the contrary that
M, m E=LY. Then, for some m, such that (m, m,) e Ry, M, m, 9. Since
(m, m;) e Ry, L% em. Thus both L& and —-L¢ belong to m, and m is
inconsistent, a contradiction with Lemma 3.2. Conversely, suppose #, m
LY but LY ¢ m. Then, by Lemma 3.5(a), ~L¢ € m, and by Lemma 3.3 the
set {1} is T-consistent. Consequently, there exists a maximal T-consistent
set m, such that =% e m,. Since m, is consistent, & ¢ m,. By the induction
hypothesis, #, m,E—~3. By the definition of R, (m, m,)eR,. Then,
M, mE-LY. This is a contradiction and it completes the proof of the
claim. Claim0O

By Lemma 3.5(d), for all m e M, T < m. By the claim, for every m € M,
M, mET. Hence, M ET. On the other hand, there is a maximal T-consistent
set m containing —. Consequently, .#, m E—. Thus 4 i y.

We conclude this section with some examples.

ExamrpLE 3.1 .

(a) First we will show that L(a v a)— La is not a theorem of N. To this
end, consider the N-structure #, such that M = {m}, V(m,a)=0, R,=
{(m, m)} and R,.,= . It is easy to see that M ¥ L(a v a)— La. It is crucial
that we have two different accessibility relations in this structure. If all
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relations in an N-structure are identical then it collapses to a conventional
Kripke structure and each standard Kripke structure satisfies L(a v a)— La.
(b) Consider the theory I={La, L(a—b),-Lb}. Theory I is clearly
inconsistent in logic K, the least normal modal system. We will show that 7 is
N-consistent. To this end, consider the N-structure # defined as follows:
M={m}, V(m,a)=V(@m,b)=0, R,=R,.,= and R,={(m,m)}.
Again, it is easy to see that MF I

4. A tableaux method for the logic N

In this section we introduce the notion of a modal I-tableau for a finite
theory I and use it in an algorithm that, for a given formula ¢, decides
whether IHy @.

We begin by defining a classical I-tableau for ¢. Such a tableau is a rooted
binary tree, with formulae as node labels. If & occurs as a node label on a
branch, we say simply that a occurs on the branch. We call a branch of such
a tree directly closed if both a and -« occur on it, for some formula a. A
classical I-tableau is directly closed if each of its branches is directly closed.
A branch that is not directly closed is called open. In this section, to simplify
the description of the tableaux method for N, we assume that the only
classical connectives we use to build formulae in £ are = and A. The tableau
development rules for other connectives can easily be introduced as in [23]
or [3].

DerintTION 4.1 .
Let I={0,,...,0,}. A classical I-tableau for a formula ¢ is defined
recursively, as follows: ,

(1) The tree consisting of a single branch, with n+1 nodes labelled
6., ..., 6, @, is a classical I-tableau for g.

(2) If T'is a classical I-tableau for ¢, then the result T’ of applying one of
the following tableau development rules to T is another classical
I-tableau for g.

(a) If a formula =~ occurs on an open branch B of T but a does not,
then extend branch B by adding a new node to the end of B and
label it with a; .

(b) If a formula & A B occurs on an open branch B of T but at least
one of « or B does not, then extend B by adding two new nodes to
the end of B, one following the other, and label them « and S;

(c) If a formula =(a A B) occurs on an open branch B of T but neither
- nor -f occurs, then add two new nodes as left and right
children of the last node of B, and label one with —«, the other

.
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These tableau development rules are well-known and yield a tableaux
method for classical propositional calculus. Specifically, @ € Cn(I) if and
only if there is a closed (maximal) classical I-tableau for —¢. They will be
referred to as classical tableau rules.

A classical I-tableau for @ is maximal if no classical tableau rule applies to
it. Since [ is finite, each classical I-tableau can be extended to a maximal one
in a finite number of steps. An algorithm is straightforward and we omit the
details.

Now we take the modal connective into account, and define a broader
notion of tableaux.

DeFiNiTION 4.2
A modal I-tableau for a formula ¢ is defined recursively, as follows:

(1) A maximal classical I-tableau for a formula ¢ is a modal I-tableau for
®.

(2) Suppose T is a modal I-tableau for ¢, with an open branch B
containing a formula ~La&. Let T' be maximal classical I-tableau for
—av. Tableau T is a modal I-tableau for @; we call it a ~a-child of B.

Our tableaux method will construct maximal sets of tableaux (which will
be called ¢-saturated sets), and will use them to decide whether a formula is
derivable in N from a theory I. We give now a precise definition of a
@-saturated set.

DeriniTION 4.3
A set S of modal I-tableaux for g is called g-saturated provided:

(1) S contains a classical I-tableau for ¢; and

(2) for each T €S, for each open branch B of T, and for each formula
—La on B, there is in § a classical I-tableau for —~a (that is, a —a-child
of B).

Notice that if S is @-saturated, then it consists only of maximal classical
tableaux since, by the Definition 4.2, modal /-tableaux are maximal classical
I-tableaux.

There is a straightforward algorithm for constructing ¢-saturated sets. For
the following, I is a fixed finite set, and @ is a formula.

T := a maximal classical /-tableau for ¢;
§:={T};
while S is not g-saturated do
select a tableau in §, with an open branch B,.containing a formula Lo«
with no classical I-tableau for -« in §;
T := a maximal classical /-tableau for —«;
S:=SuU{T}.
od
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It is evident that this algorithm will always terminate, and at termination,
S will be @-saturated. Note also that the @-saturated set produced by the
algorithm contains exactly one classical /-tableau for ¢. In the remainder of
this section, we restrict our considerations to ¢-saturated sets that can be
produced by the algorithm above and we call the unique classical /-tableau
for @ in such a set the root tableau.

Now we extend the definitions of closure to the case of modal tableaux
contained in a g-saturated set.

DeFInITION 4.4
Let S be a g-saturated set of modal I-tableaux for ¢. Let C be the least set
X c § satisfying the following condition:

(*) T € X whenever, for each branch B of T, either B is directly closed, or B
has an a-child in X, for some formula a.

Note that X =S satisfies (*), and so the collection of sets satisfying (*) is
nonempty. Since it is closed under intersections, the smallest set C satisfying’
(*) exists. Note also that C contains all directly closed tableaux in S. Each
tableau in C is called S-closed. A branch of a tableau from S is S-closed if it
is directly closed or if for some formula « it has an S-closed a-child in S. A
branch is S-open if it is not S-closed.

The set C can be easily constructed by the following algorithm.

C:=0;
repeat
C':=0;
for all T e S\C do
if each branch B of T is directly closed or, for some formula «, B has
an a-child in C then C':={T}U C’

rof
C:=Ccuc,
util C' =,

The proof of correctness of this algorithm is simple and we omit the
details. Note that the algorithm allows us to assign ranks to tableaux in C.
Define the rank of a tableau in C to be the index of the iteration of the
repeat loop in which the tableau was included in C. For example, each
directly closed tableau is included into C in the first iteration. Thus, all
directly closed tableaux of § have rank 1. It is easy to see that all other
tableaux have ranks greater than 1.

We now have the following theorem.

THEOREM 4.5
Let § be a —p-saturated set of modal I-tableaux for -@. Then Ity ¢ if and
only if the root tableau of § is S-closed.
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This theorem proves correctness of the following algorithm for deciding
whether a formula ¢ is a consequence in the logic N of a finite theory I:
using the algorithms mentioned or outlined above construct a —g-saturated
set § of modal I-tableaux for —¢p. Next compute the set C of S-closed
tableaux. If C contains the root tableau of S, then Ity ¢. Otherwise, I iy @.

In order to prove Theorem 4.5 we need some technical facts. We begin
with a definition of the auxiliary concept of I-satisfiability. Loosely, J is
I-satisfiable if J is satisfied at some world of a model in which I is valid
(satisfied at every world).

DEeFINITION 4.6

Let I,J c %;. Theory J is I-satisfiable if there is an N-structure # and a
world m of M such that ME] and M, mEJ. A branch B of a classical
I-tableau is I-satisfiable if the set of all formulae on B is I-satisfiable. A
classical tableau is I-satisfiable if it has an [-satisfiable branch.

We have the following simple lemma.

Lemma 4.7

Let I be a finite theory, {¢} be I-satisfiable, and T be a classical I-tableau
for @. Then there is a branch B in T such that the set of formulae on B is
I-satisfiable. In other words, T is I-satisfiable.

Proor. The proof is by induction on the number of applications of the
classical tableau rules. It is standard and we omit the details. O

The next lemma plays a key role in the proof of the sufficiency part of
Theorem 4.5.

Lemma 4.8
Let S be a ¢-saturated set of modal I-tableaux for . An S-closed tableau in
S is not [-satisfiable.

Proor. Let T be an S-closed tableau in S. We proceed by induction on the
rank of 7. If the rank of T is 1, then T is directly closed. Let B be any
branch of 7. Then there are formulae « and ~a on B, for some a€.%,.
Consequently, B is not I-satisfiable. Thus, since B was an arbitrary branch of
T, T is not I-satisfiable. .

Suppose that the lemma holds for all S-closed tableaux with rank less than
k, and consider an S-closed tableau T €S with rank k. Tableau T is a
classical I-tableau for some formula 1. Assume that T is I-satisfiable. Then
there is a branch B in T such that the set F of formulae on B is I-satisfiable.
It follows that B is not directly closed. Thus, since B is S-closed, there is a
formula L« on B and a classical I-tableau T’ for ~a such that T’ isin S, T’
is S-closed and T’ has rank smaller than k. Since the set F of formulae on B
is I-satisfiable, there is an N-structure 4 and a world m such that # 1 and
M, m E F. In particular, #, m F—La. Consequently, there is a world m’ such
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that #, m' E—a. Thus, both {—a} and, by Lemma 4.7, T’ are I-satisfiable.
Tableau T' has a smaller rank than T and is S-closed. By the induction
hypothesis it follows that T’ is not I-satisfiable, a contradiction. Hence, T is
not I-satisfiable. a

Next we show that if a root tableau of a —@-saturated set of modal
I-tableaux for ~@ has an S-open branch, then I ify ¢. :

Lemma 4.9

Let I ¢ %, be finite and let S be a ~¢@-saturated set of modal I-tableaux for
-@. If the root tableau of § has an S-open branch, then there is an
N-structure #, such that # k1, and M} .

Proor. Define M to consist of the theories of the S-open branches of the
tableaux from S. Let m e M and let p be an atom. Set V(m, p) =1 if and
only if pem. Finally, for a € %, define a relation R, as follows:
(m,, my)eR, if "LYem,, and "% em,. Put M=(M, {Ry}ses,V). We
first prove the following claim.

CLam

If 3 em, then M, m k3. (Note that in the canonical structure used in the
proof of the completeness result in Section 3, all worlds were complete
theories and we were able to prove the equivalence of these two statements.
Here the worlds need not be complete and we can prove only implication
one way.)

Proor of the claim. Let m be the set of formulae on an S-open branch B.
We proceed by induction on the length of . If 9 is an atom, the claim holds
by definition.

(1) Assume that ¢ =-9. Since B is S-open, y ¢ m. If ¢ is an atom, then
M, m ¢, by the definition of V. If y =-,, then ¥, € m (by the definition
of classical tableaux). By the induction hypothesis, #, mEy,. Thus,
M, mED. If =@, Aq@, then for some i,i=1 or 2, ~g,em (by the
definition of classical tableaux). By the induction hypothesis, 4, m E-¢;.
Thus, M, mE-y. The last possibility is y = L,. Since B is not directly
closed and § is —g-saturated, there is a 7,-child T of B in S. The tableau T
is a classical /-tableau for —y,. Since B is S-open, there is an S-open branch
B’ in T. Let m' be the theory of B'. Then, —y,em’ and (m, m') e R,,,. By
the induction hypothesis, #, m' E—y,. Thus, M, m E-Ly,.

(2) Next suppose that & =y, A y,. It follows from the definition of the
development rules that vy, and y,em. By the induction hypothesis,
M, mEy, i=1,2. Consequently, #, mE¥.

(3) Finally, suppose ¢ = L. Since B is S-open, =Ly ¢ m. Thus, no world
in M can be accessed from m via R,. Consequently, #, mkE L. This
completes the proof of the claim.



364/ The Pure Logic of Necessitation

Now the assertion follows easily. Let B be an S-open branch in the root
tableau of S. Clearly, =@ € B. Then, the claim implies that there is a world
m € M such that #, mE—~@. Consequently, #, m# ¢. On the other hand,
each branch of a tableau in S contains I. Then, again using the claim, we
obtain that #(F 1.

Proor of Theorem 4.5. We use Lemmas 4.8 and 4.9. Let S be a
—@-saturated set of modal tableaux for ~¢@. Suppose that the root tableau of
S has an S-open branch. Then Theorem 3.6 and Lemma 4.9 imply that
I'fx @. Conversely, suppose that the root tableau of S is S-closed. Then, by
Lemmas 4.8 and 4.7, - is not I-satisfiable. That means, that for each
N-structure # if MEI, then for each world m of M, M, m}-gp or,
equivalently, #, m k ¢. Then, again by Theorem 3.6, Ity ¢.

ExampLE 4.1

Consider the theory I = {La— b, L~La— b, ~Lb v a, b}. Does Itya hold?
We have seen in Example 2.1 that the answer is yes. Now, we will show how
to use the method of modal I-tableaux to resolve this problem. Figure 1
shows a —a-saturated set S of /-tableaux. The tableau T'1 in the picture is the
root tableau and the tableau T2 is its = La-child. Branches marked by * are
directly closed. Tableau T'1 is a complete classical tableau for I and a. Levels
of T1 1-4 contain 1. Level 5 is ~a. At the level 6 we extend the tableau using

T1 T2

Fic. 1
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the formula of level 3. The right branch is closed at this point. At the level 7
we extend the tableau using the formula of level 2. The right branch is
closed at this point. At the level 8 we extend the tableau using the formula
of level 1. Again the right branch is closed immediately. The left branch is
not closed at this point and the tableau T'1 is not closed. We select now a
formula of the form —LW on an open branch (7’1 has just one open branch).
We build now a tableau for I and -W. In our case it is the tableau 72. Thus,
in the tableau T2, after initial four levels listing I we put -“W. In our case ¥
is "La. Thus at level 5 we put in the tableau 72 the formula —-—La. The
tableau 72 is then developed and it is a closed tableau—all its branches are
closed. This closes the last non-closed branch of the tabeau T'1. Thus, Itya
holds.

Several normal modal logics & possess the finite model property, that is, if
I is finite and I{, @, then there is a Kripke structure 4 for & with a finite
universe such that # kI and 4} ¢. The situation here is similar. We have
the following theorem which can be proved by using the N-structure
constructed in the proof of Lemma 4.9.

TueoreM 4.10 (Finite universe property)
Let Ic ¥, be finite and let @ € £, be such that I ¥y¢. Then, there is an
N-structure 4 with finite universe such that #FI and A ¥ ¢.

The proof of Lemma 4.9 provides a bound (in terms of the total length of
formulae in /) for the size of the universe.

In the case of N-structures, even if the universe of an N-structure is finite
there are infinitely many accessibility relations to deal with. So, after
restricting the size of the universe the next task is to reduce the number of
accessibility relations. This can be achieved by means of the following
theorem. Its proof is standard and is omitted.

Tueorem 4.11

Let I € %, and let M; = (M, {R; ;}pes., Vi), i =1,2, be N-structures such
that M, =M,, V,=V, and R, , =R, , for every subformula @ of I. Then, for
every m e M, (=M,), M,, mEI if and only if #,, m k1. In particular, 4, F I if
and only if 4, F 1.

If I is finite, Theorems 4.10 and 4.11 allow a restriction to models with
finite universes and finitely many -accessibility relations. Furthermore,
standard methods of Kripke structures allow us to restrict the domains of
valuations to atoms actually appearing in formulae of I.

5. Modal-free consequences in the logic N

In the previous section we presented a method to solve the membership
problem for the consequence operator of the logic N: given a finite theory
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Ic %, and a formula o« € %, determine whether Iy . In this section we
will study a restricted variant of the problem in which « is modal-free, that is
a € Z. In fact, for this restricted variant of the membership problem we will
describe an algorithm which, given a finite theory I ¢ %, produces a finite
set $ ¢ & such that

Cnn(I) N & = Cn(S).

The first step is to replace an arbitrary theory I ¢ £, by a theory J which
consists of formulae of L-depth at most 1. This requires introducing new
propositional atoms. We now describe the basic step in the construction of J.
For each modal atom L¢ of L-depth 1 occurring in / we introduce a new
propositional atom a,. In each formula y € I we replace all occurrences of
modal atoms of L-depth 1 by the corresponding new propositional atoms.
The resulting formula will be denoted by . Finally, we add formulae
Lo < a,, for all new atoms a,. The resulting theory will be denoted by e().
The language obtained from £ by adding to it atoms a, will be denoted by
.

LemMma 5.1
CnN(I) n g = CnN(e(I)) ﬂ g.

Proor. Let M¢= (M, {R%} e, V) be an N-structure. For ¢ € £, define
R, =R5. For an atom p € £ define V(p, m)=V*(p, m). Finally, define
M= (M, {R,}ycs, V). We will prove that for every ¥ € £, and every
meM,

M, mEy ifandonlyif M, mEy.

We proceed by induction on the length of . If v is an atom of £, then the
claim follows from the definition of V and from the equality ¥ = 9. Assume
that 9 =-a. Then y =—-a. By the induction hypothesis, ¢, m k & if and
only if #, mE a. Thus, the equivalence #°, mty if and only if M, mFy
follows. The cases of other Boolean connectives can be dealt with in a
similar fashion. Thus, assume that 9 = La. If o has L-depth at least 1, then
¢ =La&. Consequently, the statement J#°, mEvy is equivalent to the
statement: #°, m' E & for each m’ such that (m, m') € R%. Since R, =R, by
the induction hypothesis it follows that this last statement is equivalent to
the statement: M, m'ta for each m’' such that (m, m’') e R,, which is
equivalent to M, mE La.

If « has L-depth 0, then y =a,. Since M'FLa <> a,, the statement
Me, m E  is equivalent to #M°, mk La. Since o € &, & = a. Thus, R, =R:, =
R,. Therefore, the statement #°, m £ L« is equivalent to #, m k La.

Let now @ € Cny(I) N Z. Suppose that #° satisfies e(/). The claim we
proved implies that # (defined as before) satisfies I. Consequently, #F @.
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Since ¢ € ¥, @ =¢. Thus, again by the claim we proved, #°F¢@. By
Theorem 3.6, @ € Cny(e(1)).

The converse inclusion can be proved in a similar fashion. Consider an
arbitrary N-structure # = (M, {R,} .4, V). Define an N-structure M=
(M, {R}yes;, V) as follows. For y e ¥, set R,=R5=R,. All other
relations R, are chosen arbitrarily. Finally, for an atom peX put
Vé(p, m)=V(p, m) and for each new atom a, define V*(a,, m) =1 if and
only if M, m¥F L. Similarly as before, for each such #° the following
statements can be established (we omit the details):

(1) For every 3 € &, M, mt & if and only if #, mE .
(2) ForeverymeM, M, mELp < a,. )
(3) ForeverymeM, and y € &,, M, mE vy if and only if M, mE .

Let now @ € Cny(e(I)) N £. Consider an arbitrary N-structure # satisfying
I. Then, by (2) and (3), A satisfies e(/). Consequently, 4k @ and, by (D),
ME@. Thus, @ e Cnn(I). (Note that this reasoning proves a stronger
inclusion: Cnn(e(1)) N %, < Cny(I).)

Thus we introduced an operator e which, given a theory I ¢ %,, produces
a theory e(/) in a modal language with more propositional atoms. This
theory e() carries the information defining some propositional atoms as
equivalent to modal atoms. There are two important features of the theory
e(I). First, as long as / is finite and its L-depth is bigger than 1, e(/) is finite
and has a smaller L-depth. Secondly, the consequences of e(I) in the
original propositional language £ are the same as those of I.

Now we shall iterate this construction.

THEOREM 5.2
For every theory I ¢ %, (finite or not) there exists a theory J consisting of
formulae of depth at most 1 and such that

Cn)NE=Cnn(J)N L.

Proor. Let I, consist of all formulae of I that have L-depth at most n. By e”
denote the operator resulting from iterating n times the operator e. Define
Jo=1, Ji=1 and J,=e""'(I,) for n =2, and assume that when constructing
J, the same propositional atoms are ised for the modal atoms that occur in
I,_, that were used when constructing J,_,. This additional assumption
guarantees that J,_,cJ,. Define J=J;_,J,. Clearly, each formula in

e"~'(1,) has L-depth at most 1 and Lemma 5.1 implies that Cnn(I,)NZL =
Cnn(J)NZL. Since I =01, J=Us0J,, IOcI1 .., and J,cJ, c...,
the assertion follows. a

We now restrict attention to theories contained in £, ;. For such theory /
define (see Section 2 for the definitions of the operators A, and A)

B,(=A,()NZL
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and .
B(I)= ,.L=Jo B.(I).

It easily follows from the definition of the operator A that if I ¢ %, , then

B,.(I)=Cn({ULB,())NZL.
Consequently,
Cnn(I) N & = B(I).

Thus, to find Cnn(I) N £ it suffices to describe a method to compute B(I).

First, we will prove a technical fact. Let %, %, be two propositional
languages with disjoint sets of atoms, At, and At,, respectively. Let £ be the
language generated by the union At = At, U At,.

Each formula ¢ in & can be represented as a conjunction of disjunctions
av o with ae ¥ and we%,. Thus, each theory I has a propositionally
equivalent theory consisting of such disjunctions.

Let I={ao; v w;:ieS}, where each o;€ ¥ and each w, €%. Define
#,={J:J is finite, {a;:ie€J}+ L}. For a finite set JcS define w, =
VA{w;:iel}.

ProrosiTiON 5.3

Cn(HN %L, =Cn({w,:J € #,}).

Proor. Clearly, if {a;:ieJ}F L, then {«; v w;:i € J}}+ w,. Thus, for each
Je ¥, w,eCn(l)N %,.

We now prove the converse inclusion. Let w € &, and w ¢ Cn({w,:J €
%}). Then there is a valuation v, of At, such that v,(w) =0 and v,(w,) =1
for every J e #,. Let J' = {j:v,(w;) =0}. Consider now {a;:jeJ’'}. Since
vy(w;)=0, J' ¢ ¥,. Thus, {@;:jeJ'} is consistent. Let v, be a valuation of
At, such that v,(a;)=1 for all jeJ'. Combine v, and v, into a single
valuation v of At. This is possible since Af, N At,=. Now, let jeS. If
jeJ', then v,(a;) =1 and so v(a; v w;) =1. If j ¢ J', then v,(w;) =1 and so
v(a@; v w;) = 1. Consequently, v evaluates all I as 1. Since v coincides with v,
on At,, w¢ Cn([)N &,. O

Now we will describe a method-to compute B(I) for a theory I c ¥, .
First, without loss of generality, we may assume that each formula in / is of
the form & v w, where « is built only of modal atoms and w is built only of
propositional atoms, say I = {«&; v w,:i € S}, for some set of indices S. For
each n, we produce a set U,c{w,:JcS} such that B,(I)=Cn(U,).
Proposition 5.3 implies that for U, we can take.{w,:J € ¥,}. To compute
U, .., we proceed as follows. First, we find all modal atoms LS occurring in I
such that B e B,(I) (=Cn(U,)). Define I' to be the union of such modal
atoms and I. Then Proposition 5.3 implies that U,,, = {w,:J € ¥} satisfies
B,.(I)=Cn(U,.,). Clearly, B(I)=Cn({_U;- U,). If I is finite, then for
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some n, U, =U,,,;. At that point the construction can be stopped and
B(I)=Cn(U,).
Clearly, the method just described, together with Theorem 5.2, allows one
to find for every finite I ¢ £, a finite set U such that Cnn(I) N £ = Cn(U).
As an illustration of the usefulness of the operator B, we will prove now
Proposition 1.1.

Proor of Proposition 1.1
Let I ¢ £ and let R be a collection of rules of the form 1. Define

Qo(l, R) = Cn(l),
Q...(I, R)= Cn(IU {w:@-";p'—'(p"e R and @, ..., ¢, € Q,(, R)})
and
QU R)=U Q.1 R).

It is easy to see that Q(/, R) is precisely the least subset of £ containing /
and closed under propositional consequence and the rules from R.
Now, by induction on n, we prove that

B,(IVUT)= Qn(l’ R),

where T is the modal theory obtained by replacing in R each rule of the form
(1) by a modal formula Lo, A ... A Lg,— 3. The details are routine. O

6. Computing N-expansions

In this section we will use some of the previously obtained results to design a
method of computing all consistent N-expansions of a finite theory I c %,.
(Theory I has an inconsistent expansion if and only if 7 is N-inconsistent,
which can be checked directly using the results of Section 4 or 5.) This, in
view of Theorem 1.3, yields a method to compute extensions of default
theories.

First, we recall several related notions and results. Moore [15] defined an
expansion of a theory I < ¥, to be any theory T satisfying

T=Cn(IU{Lp:9oeT}U{~Lp:@¢T}).

Expansions of a theory I are stable (see [15, 10]). Let us recall that a theory
T c ¥, is stable if .

(1) T is closed under propositional consequence;
(2) T is closed under necessitation;
(3) forevery o ¢ T, Lo e T.
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A stable theory T is uniquely determined by its objective, that is modal-free,
part TNZ. For Uc %, let E(U) be the unique stable theory such that
E(U)yNZ=Cn(U).

Expansions of a finite theory I were characterized by Marek and
Truszczynski [10]. Since propositionally equivalent theories have the same
expansions, without loss of generality we may assume that / consists of
formulae of the form « v w, where « is built of modal literals only and w is
built of propositional literals, say I = {a; v w,:i € S}, for some finite set of
indices S. For such a theory I we have the following result.

THeOREM 6.1 [10]
A consistent theory T is an expansion of I if and only if

T=E({w::i€eS;}),
where S, ={ieS:~a; e T}.
In [9] the following results on N-expansions are proved.

THEOREM 6.2
LetIc ¥%,.

(1) Every N-expansion of [ is an expansion of I.
(2) Theory E(U), where U< %, is an N-expansion of [ if and only if
IcE(U)and Uc Cny(IU {~Lp: @ ¢ E(U)}).

ExampLE 6.1

The class of N-expansions for a theory I is, in general, a proper subclass of
the class of expansions. Consider a theory-I={Lp—p}. It easily follows
from Theorem 6.1 that I has two expansions E(J) and E({p}). On the
other hand, it follows from Theorem 6.2 that only one of them, namely
E((D), is an N-expansion for 1.

Thus, to compute all consistent N-expansions of I we need to consider all
consistent sets Uc {w,:i €S} and for each such set we need to check
whether /< E(U) and Uc Cny(IU {(-Lo:¢@ ¢ E(U)}). Algorithms to ac-
complish the first of these two tasks are given in [10]. Below we will describe
how to check whether Uc Cny(IU {-Le:¢@ ¢ E(U)}). Since IU {~Lp: @ ¢
E(U)} is infinite, algorithms developed in Sections 4 and 5 cannot be used
directly. To overcome this difficulty, we prove the following general result.

THEOREM 6.3

Let %, and %, be subsets of £, such that if p e &, i=1, 2, then ¢ € %, for
each subformula y of @. Let Ac¥ and Bc % meet the following
conditions:

(1) B is N-consistent;
(2) AcB;
(3) if @ € B\A then « is of the form —Lg, where LB € £\ %,.
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Then, for « € &, Aty a if and only if By a.

Proor. The implication from left to right is immediate from 2. Now,
suppose A ify o. Then there is an N-model #, = (M,, {RL),.,, V;) such that
M EA but M« Since B is N-consistent, there is an N-structure A, =
(M,, {R%},c4,, Vo) such that A,k B. Without loss of generality we can
assume that M, M, =.

Construct a new structure M= (M, {R,},cs,, V) as follows. Put M =
M UM,,

_ {(M1 XM)UR?. ifLgp¢2,
* (RLUR? otherwise.

and let V be the smallest valuation containing both V; and V,.
The following two claims can be proved by induction on the complexity of
@.
Claim 1. If ¢ € &,, then for each m € M,, M,, mE ¢ if and only if M, mE @.
Claim 2. If ¢ € %,, then for each m € M,, M,, mE ¢ if and only if M, mE @.
The first claim implies that 4} o. Consider now ¢ € B. If ¢ € A, then
both claims together imply that Mk . If ¢ ¢ A, then ¢ =—Lvy, where
Lye $\¥%. By the second claim, M, mk—-Ly for each meM,. In
particular, it follows from that #, m k-1, for some m,eM,. By the
definition of R,, we obtain that #, mE-Lvy, for each m e M,. Thus,
ME-Ly(=g¢). Consequently, #F B and B ify a.

Let Ic %,. Every formula L that occurs in a formula of [ is called a
modal atom of 1. The collection of modal atoms of [ is denoted ma([l). Let
us denote by £, the language generated by the atoms of £ and all the
atoms in ma(I).

CoroLrary 6.4
Let Uc¥ and IcE(U). Then Cny(IU{-Lg:Leema()\E(U)})N
°%’”a(l) CnN(I U {ﬂL(p (p ¢ E(U)}) n CZ)ma(l)

Proor. Directly from Theorem 6.3 by applying it to £, =¥%,,,4), L=9%,,
A=IU{-Le:Lpema(I)\E(U)} and B=1U {-L¢:¢@ ¢ E(U)}. a

Now, to check whether U = Cny(I U {-~Lo:@ ¢ E(U)}) we check whether
Uc Cny(IU{~Le:Lep ema(I)\E(U)}). The set 1U{-~L¢:Lpema(I)\
{Ly:yeE(U)}} is finite. Thus, methods developed in Sections 4 and 5
can be used.

ExampLE 6.2

We will use methods of Sections 5 and 6 to compute N-expansions of
I={L~Lqg—p, L-Lp—q}. There are four candidate theories for an
N-expansion since there are four subsets of the set {p, g}. Consider one of
these candidates: E({p}). Clearly, I < E({p}) (general algorithms to verify
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membership in a stable set are described in [10]). According to Theorem
6.2(2), to determine whether E({p}) is an N-expansion of I we have to
determine whether

peCny(IU{~Le:@ ¢ E{p})})
From Corollary 6.4, it follows that it is enough to check whether
p € Cny(IU {—~Lq,~L~-Lp}).

To resolve this, we could use either the method of tableaux or the method
described in Section 5. We take the latter approach here. First, we eliminate
formulae of depth greater than 1 by introducing new atoms: a for Lg and b
for Lp. Theory 1U {—Lq,—~L—~Lp} can be now replaced by I'={Lg—a,
-Lg——a, Lp—b, ~Lp—>-b, L~a—>p, L-b—gq, -a, ~L-b} which has
the same modal-free consequences in the language generated by p and g as
IV {~Lq,~L—~Lp}. Finally, using Proposition 5.3 and the definition of the
operator B we establish that p, —a, b are in Cny(I’). Thus

p € Cny(IU {—Lq, ~L~Lp})

and E({p}) is an N-expansion of I.

7. Conclusions

In this paper we investigated both proof theory and semantics for the pure
logic of necessitation N. The logic N is naturally related to various topics of
current investigations in knowledge representations, in particular, default
logic. Our results provide new methods for computing default extensions
and a tool for studying possible entailment relations in default logic.

We believe that the logic N deserves further investigations. The natural
rigour of provability in the logic N makes it suitable for formalization of
various processes of computation. In particular, the logic N underlies all
modal logics admitting the necessitation rule, for example, dynamic logic.

One subject not discussed in this paper is the complexity of membership
for the consequence operator in the logic N. Proposition 2.2 and Theorem
5.2 can be used to obtain some estimates.
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