
Pseudo±Boolean Valued Prolog

Melvin Fitting
Department of Mathematics and Computer Science, Herbert H. Lehman College (CUNY), Bronx,
New York 10468.
Department of Computer Science, The Graduate School and University Center (CUNY), 33 West
42 Street, New York, New York 10036.
Bitnet MLFLC@CUNYVM

A generalization of conventional Horn clause logic programming is proposed in which
the space of truth values is a pseudo-Boolean or Heyting algebra, whose members
may be thought of as evidences for propositions. A minimal model and an operational
semantics is presented, and their equivalence is proved, thus generalizing the classic
work of Van Emden and Kowalski.

§1 Introduction.

Logic programming has generally been developed in
a Classical two-valued setting; there are no “degrees
of truth”. What we propose here is the introduc-
tion of more general spaces of truth values, reading
truth values as “evidence factors”. Then conven-
tional logic programming may be seen as the special
case in which only total evidence is acceptable, and
so the space of evidences degenerates to two values:
evidence for; no evidence for.

A space of evidences must have some structure
to it. We make an informal case for giving it the
structure of a pseudo-Boolean, or Heyting algebra.
This is under the restrictive assumptions that evi-
dence is always correct, though some evidence may
be better (more complete) than others; and that
evidence does not change with time. Both these as-
sumptions are unrealistic, of course, but one must
begin somewhere. In a future paper we will con-
sider further generalizations that will address these
issues.

In the fundamental paper [6] an operational
and a denotational (minimal model) semantics is
presented for conventional Horn clause program-
ming. Here we extend that work to Horn clause
programming with a pseudo-Boolean algebra as the
space of truth values. The work of [6] then becomes
a special case, since the Classical two-valued space
is also a pseudo-Boolean algebra.

We do not consider anything more general than
Horn clause programming. However, McCarty has
developed a Prolog-like system [2] in which impli-
cations may appear in clause bodies, and these are
treated Intuitionistically. See also [3] and [4]. Since
pseudo-Boolean algebras provide a semantics for In-
tuitionistic logic [5], it would be of interest to in-
vestigate a combination of evidence factors as de-
veloped here with McCarty’s ideas. We do not take
this up here, however.

§2 Motivation.

Suppose we have a library B of books. And further,
suppose the books only contain true things. Then,
if we make an assertion X we can justify it by citing
a book b in B that says X. Thus assertion-plus-
evidence is a pair 〈X, b〉.

We want some structure in the library. For two
books b and c in B, write b ≤ c if every assertion in
book b is also in book c. This is a partial ordering
of B.

Further, for two books b and c in B, we can
always write a book containing exactly their joint
assertions and add it to the library. Suppose this
done. Then B is closed under ∩. Similarly we may
suppose B closed under ∪. For bounds we suppose
a book with blank pages, ⊥, and a book containing
the combined content of all the books in B, >.

To say b and c contain no common information
is just to say b ∩ c = 0. Suppose we take all books
that contain no information in common with b, and
copy all their information into a single volume, c.
Then c would be the largest (in the ≤ sense) book
such that b∩ c = ⊥. Call c the pseudo-complement
of b and denote it by −b. Then b ∩ −b = ⊥, but
not necessarily b ∪ −b = >.

More generally, for any b and c in B we may
suppose a relative pseudo-complement exists, a lar-
gest book such that the information it has in com-
mon with b is also in c. This is denoted b⇒ c. Thus
it is the largest volume such that b ∩ b⇒ c ≤ c.
Then −b = b⇒ ⊥.

As described, the library is what is known as
a pseudo-boolean algebra (PBA). There is a proper
definition in the next section; [5] is the standard
reference on their properties. Pseudo-boolean alge-
bras are a strictly broader class than boolean alge-
bras. The collection of all open sets of a topological
space is always a PBA, but not always a boolean
algebra. In particular, linear orderings give rise
to PBA’s, with meets and joins becoming infs and
sups. {T, F} is thus the simplest PBA. PBA’s are

Page 1



Melvin Fitting

the appropriate algebraic structure for modelling
intuitionistic logic, though that is not directly in-
volved here. What we claim is that a PBA is the
right formal counterpart of the notion of a collec-
tion of evidences or reasons, partially ordered by
inclusion. And what we propose is a generaliza-
tion of PROLOG in which truth values constitute
a complete PBA.

§3 Pseudo-Boolean Algebras

Let 〈B,≤〉 be a lattice. For b and c in B, the pseudo-
complement of b relative to c is the greatest element
x of B such that b ∩ x ≤ c. It is denoted b ⇒ c (if
it exists).

A pseudo-Boolean algebra (PBA) is a lattice
in which relative pseudo-complements always exist,
and which has a least element ⊥.

It follows that a PBA is distributive and has a
greatest element, >.

A PBA B is complete if
⋂
S and

⋃
S exist for

every non-empty S ⊆ B. In fact, it is enough to
assume either closure under meets or under joins to
have both.

From now on we will only be interested in com-
plete PBA’s (CPBA). Of course completeness is
trivial for finite algebras.

§4 “Conventional” Procedures

We present a PROLOG-style language with two
modifications. The first, and most trivial, is that
arrows go from left to right and are used exclusively,
replacing conjunctions. The second is that the un-
derlying data structure is left open. The general
treatment here is based on that of [1].

Identifiers are P ,Q,R,. . .
Variables are x,y,z,. . .
Constants are a,b,c,. . .
Terms are variables and constants
Atomic formulas are expressions of the form

P (t1, ..., tn) where P is an identifier and t1, . . . , tn
are terms.

Formulas are expressions of the form A1 →
A2 → A3 → · · · → An → B where each Ai and
B is atomic. B is the conclusion of this formula.
We think of this as parenthesized to the right. It
is thus equivalent to (A1 ∧ A2 ∧ A3 · · · ∧ An) → B
and to A1 → (A2 → (A3 → · · · (An → B) · · ·)), and
these equivalences hold Intuitionistically as well as
Classically. The Ai list may be empty: an atomic
formula itself is a formula (and is the conclusion of
it).

A data structure is a tuple 〈D; R1, ...,Rn〉 in
which D is a non-empty domain and R1, . . . ,Rn are

relations on D. Think of R1, . . . ,Rn as the “given”
relations of the data structure, the facts we simply
know.

We assume a data structure has been chosen
and is fixed from now on. To avoid complications
that are not relevant now, we assume the domain D
is exactly the set of constant symbols {a, b, c, . . .}.
To each relation R1, . . . ,Rn, a unique identifier R1,
. . . , Rn is associated. These identifiers are called
reserved identifiers. A formula is called acceptable
if no reserved identifier is used in its conclusion.
The point of this restriction is to make it impossible
for us to assign values to the given relations.

If we were not introducing PBA’s into the pic-
ture, we would now proceed as follows.

A procedure 〈S, P 〉 is a finite collection S of
acceptable formulas, together with a specified un-
reserved identifier P .

A trace of a procedure 〈S, P 〉 is a sequence of
variable–free formulas X1, X2, . . . , such that, for
each i, either:

1) Xi is a substitution instance of a formula in
S (variables are replaced by constants) or

2) Xi is of the form Rj(c1, . . . , cn) where 〈c1,
. . . , cn〉 is in the given relation Rj , or

3) there are j, k < i with Xj atomic and Xk of
the form Xj → Xi.

Finally, the output of a procedure 〈S, P 〉 is the
relation on D consisting of all tuples 〈c1, . . . , cn〉
such that P (c1, . . . , cn) is the last line of a trace of
〈S, P 〉.

We have given the “conventional” version thus
far in order to contrast it with the PBA version
below. We note that models can be defined and a
semantics based on them developed. We leave this
entirely, until the generalization later on.

§5 Procedures with evidence factors

Let B be a CPBA, fixed from now on. And let the
underlying programming language be as in the pre-
vious section. (Note: completeness of the pseudo-
Boolean algebra is not used in this section, but it
is necessary to connect things with the semantics
presented in the next section.)

If X is a formula and b ∈ B, the pair 〈X, b〉
is a formula with an evidence factor. The intuitive
reading is: my reason for asserting X is b or better.
It should be noted that 〈X,⊥〉 does not mean X is
known to be false, but rather, that we have no evi-
dence that X is true. In fact, 〈X,⊥〉 adds nothing
useful to a procedure.

A procedure now is 〈S, P 〉 where S is a set of
acceptable formulas with evidence factors and P is
an identifier.

Page 2



Pseudo–Boolean Valued Prolog

A trace of a procedure 〈S, P 〉 is a sequence
〈X1, b1〉, 〈X2, b2〉, . . . where, for each i either:

1) there is a member of S of the form 〈Y, bi〉
and Xi is a substitution instance of Y , or

2) Xi is of the form Rj(t1, . . . , tn) where 〈t1,
. . . , tn〉 ∈ Rj , one of the “given” relations, and
bi = >, the unit of B, or

3) there are j, k < i with Xj atomic, Xk =
Xj → Xi, and bi = bj ∩ bk.

Item 3 amounts to adopting the rule of deriva-
tion:

〈C, c〉 〈C → D, d〉 C atomic
〈D, c ∩ d〉

The output of procedure 〈S, P 〉 is the set of all
items of the form 〈P (t1, . . . , tn), b〉 which are last
lines of traces for this procedure.

§6 Models

We provide a kind of denotational semantics for the
language of the previous section. From now on we
assume we have a fixed data structure 〈D; R1,. . . ,
Rk〉 and a fixed CPBA B.

A valuation is a mapping v from the set of
variable-free atomic formulas into B. A valuation
extends uniquely to a mapping from all formulas
into B subject to the following conditions:

1) for A atomic, v(A→ X) = v(A)⇒ v(X)
2) for a formula X with variables, v(X) =⋂

{v(X ′) | X ′ a substitution instance of X}.
We use v both for the underlying valuation and

for its extension to all formulas.
A valuation v is in the data structure 〈D ;

R1,. . . ,Rk〉 if, for each “given” relation Ri, and for
the identifier Ri assigned to it, v(Ri(t1, . . . , tn)) =
> iff 〈t1, . . . , tn〉 ∈ Ri.

Let S be a set of acceptable formulas with ev-
idence factors. A valuation v is a model for S if
〈X, b〉 ∈ S implies v(X) ≥ b.

Finally, a model for a procedure 〈S, P 〉 is a
model v for S in the given data structure.

Now the main results of this section are easily
sketched. First, there is always a minimal model
for a procedure; minimal in the sense that the truth
values it assigns are ≤ those assigned by any other
model. And second, truth values assigned by this
minimal model correspond to those given by traces
based on the procedure. Proper statements of these
results will be found below.

Let vtriv be the mapping such that vtriv(X) =
> for all formulas X. This is a model for every
procedure, hence any given procedure 〈S, P 〉 always
has at least one model.

Let 〈S, P 〉 be a procedure. Define a mapping
vS as follows. For variable–free atomic formulas A,
vS(A) =

⋂
{v(A) | v is a model for 〈S, P 〉}. Then

vS is extended to all formulas using conditions 1)
and 2) above.

Claim 1. For every formula X,
vS(X) ≥

⋂
{v(X) | v is a model for 〈S, P 〉}.

Proof. We consider only one case. Say X
is variable-free, of the form A → Y , where A is
atomic, and the claim has been established for sim-
pler variable- free formulas (fewer arrows), in par-
ticular for Y . Then proceed as follows. Let v0 be
any model for 〈S, P 〉. Then
vS(A) ∩

⋂
{v(A→ Y ) | v a model for 〈S, P 〉}

≤ v0(A) ∩ v0(A→ Y )
= v0(A) ∩ v0(A)⇒ v0(Y )
≤ v0(Y ).

Since v0 was an arbitrary model,
vS(A) ∩

⋂
{v(A→ Y ) | v a model for 〈S, P 〉}

≤
⋂
{v(Y ) | v a model for 〈S, P 〉}

≤ vS(Y )
by induction hypothesis. But in any PBA, b⇒ c is
the largest thing such that b ∩ b⇒ c ≤ c. Hence⋂
{v(A→ Y ) | v a model for 〈S, P 〉}
≤ vS(X)⇒ vS(Y )
= vS(X → Y ).

Claim 2. vS is itself a model for 〈S, P 〉.
Proof. Follows from claim 1.

vS is the minimal model for 〈S, P 〉. It exactly
captures the behavior of 〈S, P 〉, as we proceed to
show.

Claim 3. Let v be any model for 〈S, P 〉 (in
particular the minimal one). If 〈P (t1, . . . , tn), b〉 is
an output of 〈S, P 〉 then v(P (t1, . . . , tn)) ≥ b.

Proof. Easy induction on trace length. The
key step, corresponding to Rule 3 for constructing
traces is handled as follows. Suppose v(A) ≥ a and
v(A→ Y ) ≥ b. We want v(Y ) ≥ a ∩ b. But
a ∩ b
≤ v(A) ∩ v(A→ Y )
= v(A) ∩ v(A)⇒ v(Y )
≤ v(Y ).

Next, define a valuation vtrace as follows. For
a variable free atomic A, let vtrace(A) =

⋃
{c |

some trace of 〈S, P 〉 ends with 〈A, c〉}. Then ex-
tend vtrace to all formulas as usual.

Claim 4. For every constant-free formula X,
vtrace(X) ≥

⋃
{c | some trace of 〈S, P 〉 ends in

〈X, c〉}.
Proof. Suppose X is A→ Y where A is atomic,

and the result is known for Y (and for A by defi-
nition). Let a0 be an arbitrary member of {a |

Page 3



Melvin Fitting

some trace ends with 〈A, a〉} and let c0 be an ar-
bitrary member of {c | some trace ends with 〈A→
Y, c〉}. Then certainly, using trace Rule 3, there is
a trace ending with 〈Y, a0 ∩ c0〉. So by the induc-
tion hypothesis, vtrace(Y ) ≥ a0 ∩ c0. Since a0 was
arbitrary, it follows that vtrace(Y ) ≥ vtrace(A) ∩
c0. But then vtrace(A) ⇒ vtrace(Y ) ≥ c0, that is,
vtrace(A→ Y ) ≥ c0.

Claim 5. vtrace is a model for 〈S, P 〉.

Proof. If 〈X, a〉 ∈ S, it follows from Claim 4
that vtrace(X ′) ≥ a for every substitution instance
X ′ of X, and then vtrace(X) ≥ a follows.

Main Claim. On “outputs” we have
vS(P (t1, . . . , tn)) = vtrace(P (t1, . . . , tn)).

Proof. By Claim 3 we have vS(P (t1, . . . , tn)) ≥
vtrace(P (t1, . . . , tn)). In the other direction, by the
definition of vS on variable free atomic formulas and
Claim 5 it follows that
vS(P (t1, . . . , tn)) ≤ vtrace(P (t1, . . . , tn)).

References.

[1] Computability Theory, Semantics, and Lo-
gic Programming, M. C. Fitting, Oxford University
Press, New York, 1987.

[2] Fixed Point Semantics and Tableau Proof
Procedures for a Clausal Intuitionistic Logic, L. T.
McCarty, Technical Report LRP–TR–18, Rutgers
University, 1986.

[3] Clausal Intuitionistic logic: an outline, L.
T. McCarty, submitted to Journal of Automated
Reasoning, 1986

[4] A Theory of modules for logic programs, D.
A. Miller, Proceedings, 1986 IEEE Symposium on
Logic Programming, 1986.

[5] The Mathematics of Metamathematics, sec-
ond edition, H. Rasiowa and R. Sikorski, PWN –
Polish Scientific Publishers, Warsaw, 1968.

[6] The Semantics of predicate logic as a pro-
gramming language, M. Van Emden and R. Kowal-
ski, Journal of the Association for Computing Ma-
chinery, Vol 23, pp. 733–742, 1976.

Research supported by PSC–CUNY Grants 666396, 667295 and NSF Grant CCR–8702307.

July 11, 1987

Page 4


