Theoretical Computer Science 48 (1986) 229-255 229
North-Holland

PARTIAL MODELS AND LOGIC PROGRAMMING*.

Melvin FITTING

Department of Mathematics and Computer Science, Herbert H. Lehmann College, Bronx,
NY 10468, U.S.A., and Department of Computer Science, The Graduate School and University
Center, City University of New York, NY10036, U.S.A.

Communicated by A. Meyer
Received November 1985
Revised July 1986

Abstract. Three extensions of the standard PROLOG fixpoint semantics are presented (called sat,
strong, and weak), using partial models, models which may fail to assign truth values to all
formulas. Each of these semantics takes negation and quantification into account. All three are
conservative: they agree with the conventional semantics on pure Horn clause programs. The sat
and the strong semantics incorporate the domain closure assumption, but differ on whether to
assign a truth value to a classically valid formula some part of which lacks a truth value. The
weak semantics is similar to the strong semantics but abandons the domain closure condition,
and consequently, all programs give rise to continuous operators in this semantics. For the weak
semantics, a sound and complete proof procedure is given, based on semantics tableaus (or
equivalently, Gentzen Sequents).

1. Introduction

Logic programming with pure Horn clause formulas has a semantics that is
well-understood, thanks to [11, 1]. Extending the machinery to add negation (and
other connectives and quantifiers) is more problematic. Most fundamentally, the
relations that one can characterize through Horn clause programs are exactly the
recursively enumerable ones. Since not every recursively enumerable relation is
recursive, the most natural notion of negation, complementation, is not available.
‘Approximate’ versions such as negation by failure are generally used instead.

But there is also a semantic problem having nothing to do with issues of computa-
bility. Given a program with the single axiom P « 1P, it seems clear that no truth
value can meaningfully be assigned to P if negation is to behave in an intuitively
plausible way. The issue is the same as in the traditional liar paradox. If P is true,
the axiom P < 1P says P is false, and conversely. A semantics based on conventional
classical models cannot be appropriate.

* Partially supported by NSF Grant DCR 8504825.

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

230 M. Fitting

Partial models are a natural generalization of classical models. In a partial model,
the mapping from statements to truth values is a partial, not necessarily total,
function. Statements can be true, false, or lack a truth value. Of course, the assignment
of truth values must meet some constraints to reflect our understanding of the logical
connectives and quantifiers. Partial models seem to have been first considered in
philosophy, as a means of providing a semantics for languages containing their own
truth predicate. Kripke’s work [6], in fact, was motivation for the present work.
Partial models have been introduced into computer science as well in [7,3]. We
use them here as a natural tool for the semantical treatment of negation in logic
programming.

In addition to the inherent problems raised above concerning negation, there are
also issues that are matters of opinion. For instance, consider a program containing
the axiom P <« Qv —1Q. Should the truth value of P depend on that of Q? In ProLOG
using negation by failure, for instance, a goal of < P will invoke a further goal of
« Q, and if the work on this goal never terminates, neither will that for < P. Loosely,
P has no truth value if Q has none. But one can also make a case for the position
that P should be true, or « P should succeed simply because Q v 1Q is a tautology.

We do not intend to discuss which of these positions is the ‘right’ one. We believe
both are acceptable, and rightness is relative to the application one has in mind.
The only firm requirement we see is that any proposed extension of pure Horn
clause programming should be conservative, that is, when negation and the other
added programming machinery is not explicitly used in a program, then program
behavior should agree with the conventional sémantics. This still allows for a
multiplicity of extensions, which should be considered a virtue, not a vice.

In this paper we use partial models to provide semantics for logic programming
allowing all connectives and quantifiers. In fact, we give three different semantics,
all meeting the conservativeness condition. The first of these, which we call the
saturated semantics, embodies a natural generalization of the treatment of negation
in [1], to allow negation in the body. This was previously considered at some length
in [3] in a slightly different form. In the saturated semantics, with a program
containing P« Qv 11Q, whether or not P has a truth value depends on whether or
not Q does. The second semantics we consider, called the strong model set semantics,
differs from the first on precisely this point. Qv —1Q has a truth value of true,
whether or not Q has a truth value. The third semantics, called the weak model set
semantics, is like the strong model set semantics but the domain-closure assumption,
which had been made in the first two semantics, is dropped. The domain-closure
assumption essentially says there is a fixed domain that variables range over,
consisting of things that have names in the language. It is a common experience in
logic that restricting things to a single domain gives rise to uncomputability problems.
Here, dropping the domain-closure assumption has remarkable consequences: all
programs now give rise to continuous operators. This is not the case with the first
two semantics. Note, for instance, the example given in [1] showing their T-operator

Partial models and logic programming 231

need not be downward continuous. Downward continuity of the T-operator corre-
sponds to continuity of our saturated semantics operator via Proposition 8.10 below.

In fact, for the weak model set semantics we provide a corresponding proof
procedure, based on Smullyan-style semantic tableaus, and we prove completeness
and soundness. From the proof procedure it is evident that we have negation by
refutation rather than negation by failure. The tableau system we give has a nice
duality between proof and disproof procedures. We plan to investigate this system
further elsewhere.

We begin with several background sections on logical and algebraic machinery
before we get to the semantics proper in Section 7.

2. Logic background

We find it simplifies things to use Smullyan’s device of signed formula, prefixing
a formula with T or F to indicate its intended truth value, instead of introducing a
valuation function mapping formulas to truth values. Also we find it natural to use
model sets, Hintikka style, rather than models themselves. A model set can be thought
of as the set of all (signed) statements of some language that are true in a particular
model. Then a partial model will simply be some subset of a model set that meets
certain natural closure conditions. The definition, however, will be a direct one and
we will not talk about models themselves. All this is a matter of personal taste, not
theoretical necessity.

Definition. A language is determined by specifying its constant, function, and
relation symbols. We assume = is a relation symbol of every language. We generally
use L to stand for a language. Terms are built up from constant symbols and
variables (which are common to all our languages), using function symbols in the
usual way. Atomic formulas are expressions of the form R(¢,,...,t,) where R is
an n-place relation symbol and 1,, ..., ¢, are terms. (We usually write ¢, = ¢, instead
of =(t,, t,) though.) We also allow truth and falsehood constants, T and 1, as
atomic formulas. Finally, formulas are built up from atomic formulas in the usual
way allowing all of A, v, 71, D, ¥, and 3. W€ call a formula a statement if it contains
no free variables. If ¢ is a formula with free variables among x,, .. ., x,,, we indicate
this by writing ¢(x,, ..., x,), and we write ¢(t,, ..., t,) for the result of substituting
the terms ¢, ..., t, for free occurrences of x;,..., X, in ¢.

Definition. A signed formula of L is TX or FX where X is a formula of L and T
and F are two new symbols, intuitively representing truth and falsehood.

In order not to have to consider a multiplicity of similar cases in definitions and
proofs, we use notational grouping conventions of Smullyan. We sketch briefly here;
a full discussion is in [10].

232 M. Fitting

Definition. Signed nonatomic formulas are grouped into four categories: a (conjunc-
tive), B (disjunctive), y (universal) and & (existential). These categories and their
components (for a and B) or instances (for y and &) are specified in Table 1(a)-(d).

Table 1

TXAY TX TY
FXvY FX FY
FX>Y TX FY
FX TX TX

(a)

v v(1)

T(Vx)e(x) Te(2)
F(3x)e(x) Fe(t)

()

Negation is treated somewhat redundantly. We are not after efficiency here—only
theoretical convenience. In the definition below, and throughout the paper, “=>"

B B B

TXvY TX TY

FXAY FX FY

TX>Y FX TY

T-X FX FX
(®)

B 5(1)

TAx)p(x) Te(t)

F(Vx)p(x)

Fo(t)

(d)

is used in the metalanguage to stand for “implies”.

Definition. Let S be a set of signed statements of L. S is consistent if not both
TX e Sand FX € S for any statement X, FT ¢ Sand TL ¢ S; S is atomically consistent
if not both TX € S and FX € S for an atomic statement X, FT¢S and TLg S. S is
L-complete if either TX € S or FX € S for each statement X of L; S is L-atomically
complete if either TX € S or FX € S for each atomic statement X of L other than

T and 1.
S is L-downward saturated if
e TTeS and FLeS,
e geS=>a;€S and a,€ S,
* BeS=>pB,eS or B,ES,
e ye S=y(t)e S for every closed term ¢ of L
* §€ S=58(t)e S for some closed term ¢ of L.
S is L-upward saturated if
e TTeSand FLe S,
* ¢;eS and a,e S=>aes,
* BeSorp,eS=>peS,

¢

* y(t)e S for every closed term ¢ of L=>y€ S,

* 5(t)e S for some closed term t of L=>68¢€ S.

Partial models and logic programming 233

S is L-saturated if S is both L-downward and upward saturated. Finally, S is an
L-model set if S is consistent, L-complete and L-saturated.

As we use it, consistent means ‘obviously’ consistent: there is no syntactic contra-
diction directly present. No notion of derivation is involved. This notion of con-
sistency, when combined with the other notions, does correspond to more familiar
usage. We sketch the main facts we need; more detailed proofs can be found in [3].

It is easy to see that the intersection of a family of L-upward saturated sets is
again L-upward saturated. Also, the set of all signed statements of L is L-upward
saturated. It follows that any set S of signed statements of L has a smallest L-upward
saturated extension; intersect all L-upward saturated sets that extend S.

Definition. The smallest L-upward saturated extension of S is called the upward
saturated closure of S, and is denoted by SY.

If S is consistent, SV is easily shown to be consistent. More generally, if S is
atomically consistent and L-downward saturated, S, and hence SU, will be consistent.
Likewise, if S is L-downward saturated, S¥ will be L-downward saturated. We thus
have the following fundamental facts.

Proposition 2.1. Any L-downward saturated, (atomically) consistent set S has a
smallest upward saturated extension SV which is consistent and L-saturated. In par-
ticular, any consistent set of signed atomic statements has a unique smallest consistent
L-saturated extension.)

L-saturated, consistent sets will provide us with one notion of partial model once
equality has been taken into account. If S is such a set, think of S as saying X is
true if TX €S, X is false if FX € S, and assigning no truth value to X if TX £ S
and FX £ S. According to the definition of L-saturated, S will make Pv Q false
only if it makes both P and Q false; S will make Pv Q true only if it makes one
of P or Q true. Consequently, if S assigns no truth value to P and to Q, Pv Q will
have none either. In particular, not every L-saturated, consistent set will make
Pv P true, though none can make it false.

In [5], a three-valued logic was introduced, with the third truth value intended
to represent undefined or unknown. L-saturated, consistent sets correspond exactly
to Kleene’s logic. If we have an L-saturated, consistent set S and we use it to define
a three-valued mapping which maps a statement X to the truth value that S assigns
to X, and to ‘undefined’ if S assigns no value to X, then we have a Kleene three-valued
truth function. Conversely, each Kleene three-valued truth function determines an
L-saturated, consistent set.

Next we turn to model sets. It is straightforward to show that any L-upward
saturated set that is atomically L-complete is simply L-complete. Combining this
with earlier results we have the following proposition.

234 ' M. Fitting

Proposition 2.2. If S is L-downward saturated, (atomically) consistent, and atomically
L-complete, then S° is an L-model set.

The following éasy consequence is sometimes called Hintikka’s Lemma, and plays
a key role in tableau completeness proofs.

Proposition 2.3. Any consistent, L-downward saturated set is a subset of some L-model
set.

Proof. Let S be a consistent, L-downward saturated set. For each atomic L-statement
A other than T and L, with neither TA nor FA in §, arbitrarily add one. The result
is still consistent, L-downward saturated, and is complete at the atomic level. Take
its upward saturated closure. This is an L-model set. [

Notice that, though a consistent, L-downward saturated set S has a unique upward
saturated closure, it will not have a unique L-model set extension in general because
of the arbitrariness involved in making S complete on the atomic level in the proof
above.

Finally, we wish to give equality special handling.

Definition. We say a set S of signed statements has the substitution property provided
Tt=uecS, Zc S=27Z'e S where Z' is like Z except for containing occurrences of
the closed term u at zero or more places where Z contains occurrences of the closed
term t. We say S has the atomic substitution property if the condition above is true
for Z signed atomic.

We say a set S is L-normal if

(1) Tt=te S for all closed terms ¢ of L,

(2) S has the substitution property.

The' definition of normality postulates-reflexivity of equality but not transitivity
or symmetry, but it is easy to show that these follow. For instance, suppose S is
L-normal and Tt = u € S. By definition of normality, Tt =t € S. Now, replacing one
t-occurrence in Tt =1t by u we get Tu =t € S. Transitivity is similar.

To avoid redundancy, if S is an L-saturated set that is L-normal we will simply
call it an L-normal saturated set. Similarly, for L-normal model set.

Proposition 2.4. Let S be consistent, L-downward saturated, and let S contain all
signed statements of the form Tt=t for closed terms t of L, and have the atomic
substitution property. Then SU is an L-normal saturated set. Further, if S is atomically
L-complete, then SV is an L-normal model set.

«f

Partial models and logic programming 235

The following combines this proposition with Proposition 2.3.

Proposition 2.5. Let S be consistent, L-downward saturated, contain all signed state-
ments of the form Tt=t for closed terms t of L, and have the atomic substitution
property. Then S is a subset of some L-normal model set.

The connection with conventional models is straightforward, though we make no
direct use of it. A signed statement TX is said to be true in a model if X is true;
FX is true if X is false.

Proposition 2.6. Any L-normal model set is satisfiable in some classical model in which
the interpretation of the relation symbol = is the equality relation.

3. Free treatment of equality

The conditions for equality in the previous section provide a foundation on which
special equality conditions can be placed. We impose a free interpretation of equality,
as is common in logic programming work: different terms of L are assumed to be
semantically distinct. But when we abandon the domain-closure condition later on,
we will have to deal with languages that extend L, and for terms of such a language
we do not want to make so strong an assumption. The following pushes freedom
of L terms as far as prudence allows.

Definition. For two languages L and K we write L< K if L and K have the same
relation and function symbols, and every constant symbol of L also occurs in K,
though K may contain more constant symbols.

Definition. Let L=< K and let S be a set of signed statements of K. We say S is free
over L if:

(1) Fec=d €S for distinct constant symbols ¢ and d of L;

(2) Ff(t,...,t,)=ceS for function symbol f and constant symbol ¢ of L, and
closed terms ¢,,...,t, of K;

(3) Ff(ty, ..., t,)=g(u,,...,u,)eS for distinct function symbols f and g of L,
and closed terms t,, ..., t,, u;,..., u, of K;

(4) Ft;=u;e S for some i=Ff(t,,...,t,)=f(u,,...,u,)eS for a function
symbol f of L and closed terms ¢,,..., t,, u;,...,u, of K.

The definition above embodies the notion that symbols of L are to be interpreted
freely within the possibly larger language K. If K =1, i.e., if S is a set of signed
L-statements, things can be said much more simply. It is easily shown by structural
induction that, for a set § of signed L-statements that is free over L, we have
Ft=ue S for distinct closed terms ¢ and u of L. Since Tt=t is in normal sets,
for closed terms ¢, the following proposition is easily established.

236 M. Fitting

Definition. Let F; be {Tt=1|t is a closed term of L}u {Ft=u|t and u are distinct
closed terms of L}.

Proposition 3.1. Let S be a set of signed L-statements. S is L-normal and free over L
ifand only if F, < S.

4. Closure notions

An interpretation in classical logic is an assignment of truth values to atomic
statements. We will not allow assignment to atomic statements involving =; this is
to have the free interpretation. But more importantly, we will allow interpretations
to be partial functions even when = is not involved. Not every atomic statement
need get a truth value. As usual, instead of working with maps to truth values, we
work with sets of signed statements. The key fact then is that atomic completeness
is not required of an interpretation.

Definition. A partial L-interpretation is a consistent set of signed atomic statements
of L, none involving =, T, or L.

The problem is, what about nonatomic statements. We present three ways of
extending partial L-interpretations to cover all statements. Each has a certain
intuitive plausibility, but makes different assumptions about the behavior of state-
ments lacking a truth value. The definitions are actually given as closure notions
for partial L-interpretations.

Definition. Let I be a partial L-interpretation. By the saturated closure of I, denoted
I’*, we mean

(Y{U| U is L-normal, L-upward saturated, free over L, and I < U}.

The collection of all signed statements of L is L-normal, L-upward saturated,
free over L, and extends I Consequently, the set being intersected in the definition
above is nonempty, and the definition is' meaningful. In fact, the intersection will
also be consistent. This follows most easily from Proposition 4.1 below.

Now we can think of I as assigning truth values to a nonatomic statement X of
L according to whether TX € I** or FX € I'*. For any partial L-interpretation I, I**
will never say that a logically valid statement of L is false, but it need not assign
truth in every valid case. For instance, if P is atomic and neither TP nor FP is in
I, TPv P will not be in I**. A more detailed study of this notion can be found
in [3].

The definition above parallels the other two closure notions presented below, but
it will be convenient to have an alternate characterization of I**". The following is
easily shown using Proposition 3.1.

l

Partial models and logic programming 237

Proposition 4.1. I***=(I U F;)".

The previous closure notion is based on the Kleene three-valued logic from [5].
The next one is based on the supervaluation notion from [12].

Definition. Again, let I be a partial L-interpretation. By the strong model set closure
of I, denoted I''"™"%, we mean

(N {M|M is an L-normal model set, free over L, and I< M}.

For any partial L-interpretation I (which cannot mention =), I U F; is consistent,
trivially L-downward saturated (its members are signed atomic), has the atomic
substitution property (because the only statements of the form Tz =u it contains
are those for which ¢t and u are identical), and contains all statements T¢=1t. So,
by Proposition 2.5, there is at least one L-normal model set extending it. Such a
model set is free over L by Proposition 3.1. Thus the intersection in the definition
above is nonempty, and the definition of I**°" is meaningful.

For a statement X of L, since TX v X is in every L-model set, I*"°"¢ will assign
to X v X “true”, though it is easy to produce examples in which I*"°"8 assigns X
itself no truth value. In this semantics, valid statements will be true, though still
not every statement will get a truth value.

The notion above makes the domain closure assumption explicitly: only the
language L is involved. The following definition abandons this.

Definition. Again let I be a partial L-interpretation. By the weak model set closure
of I, denoted I'****, we mean

() {M]|for some language K, L<K,

M is a K-normal model set, free over L, and I < M}.

We established that the family being intersected to form I**°"® was nonempty.
Members of that family also satisfy the conditions above, so I*** is a well-defined
notion. The following statements are easy consequences of the definitions.

Proposition 4.2. For partial L-interpretations I and J:

(1) I** < I°"°"® (because every L-model set is L-upward saturated);

(2) I"***< I°"°"8 (because every L-model set is a K-model set for some language
K with L=< K, namely for K =L);

(3) Icd=>IcJ™,

(4) I c J:Istrong c Jstrong;

(5) I< =TI c Jveek,

238 M. Fitting

The use of both saturated and strong model set closure leads to noncomputable
relations (II] relations, in fact). This can be shown by an argument similar to that
used in [3], embedding w-elementary formal systems. But we will see that the use
of weak closure does not.

5. Lattice background

In the semantical treatment of conventional logic programming, complete lattices
are involved. This is not the case here. When one is dealing with subsets of the
Herbrand base, consistency issues are trivial; any subset is consistent. But we have
negative as well as positive information; F-signed statements as well as T-signed
ones. And while the intersection of two consistent sets of signed statements (such
as partial L-interpretations) must be consistent, this need not be the case for union.
So a complete lattice is too strong a notion. On the other hand, a complete partial
ordering is too weak. The just right structure we need is that of complete semi-lattice.

Definition. A complete semi-lattice is a structure (D, <) which is a partial ordering
that is closed under arbitrary infs, and under sups of directed subsets. A subset S
of D is directed if any two members of S have a common upper bound in S.

Just as in a complete lattice, monotone maps in a complete semi-lattice have
smallest fixed points, though they may not have largest ones. We still have the usual
generalization of induction: if F is monotone and F(c¢)<c, then the least fixed
point of F is <c. And, as in a complete lattice, one can approximate to the least
fixed point of a monotone map F from below by starting with the least member of
D and repeatedly applying F, continuing the sequence of approximations into the
transfinite if F is not continuous. A monotone map may have several maximal
fixed points, and it must have a unique largest fixed point that is compatible with
every fixed point, where compatible means having a common upper bound. Such
a fixed point has been called intrinsic in [6] or optimal is [8].

Proofs of the results stated above can be found in [3, 4, 8].

6. Program syntax

We abandon Horn clauses as such because we wish to use the full machinery of
classical logic in explicit form. We do this in the obvious way.

Definition. A definition is an expression of the form

R(xy,....,x)« @(x1,...,%n),
where R is a relation symbol other than =; ¢ is a formula (possibly T or 1), and
X, ..., X, are variables. The definition displayed is of R.
A program is a finite set of definitions no two of which are of the same relation.

Partial models and logic programming 239

We could relax the requirement that no two definitions in a program can be of
the same relation, but we gain nothing (except possibly convenience). The semantical
behavior we would want to ascribe to, say,

R<¢p, Rey
would be identical to that of
Reopvi

We choose to keep things syntactically simple.

Definition. If every definition in a program P involves only relation symbols and
formulas of the language L, we say P is an L-program.

For example, the following is an L-program in a language L containing constant
symbol 0, function symbol s, relation symbols even, odd, and =.

even(x) <« x=0v (Iy)odd(y) A x =s(y)]
odd(x) « (Iy)[even(y) A x =s(y)].

Another example, in the same language, is

even(x)« x=0v (Iy)[odd(y) A x =s(y)]
odd(x) « (Vy)[even(y) > (x =y)].

Although Horn clause programs are not programs in the present sense, they
correspond to some of our programs via Clark’s completed data base translation
[2]. We briefly sketch the translation. Suppose P is a Horn clause program. First,
each clause of P, say R(t,,...,t,)< B,,..., B, is replaced by

R(xy,..., %)« @y, yI)Xi=HA - AXy=t, AByA- A B,]

where x,, ..., X, are new variables, and y,, ..., y, are all the variables of ¢,,..., t,,
B,,..., B,. Then, all rewritten clauses with the same conclusion, say R« D,,
..., R« D, are replaced by the single expression R« D,v---v D,. Also, if R
is an n-place relation symbol of L not occurring in the head of any axiom of P,
add the expression R(x,,..., x,)< L. The result is a program in our sense.

Definition. If P is a conventional Horn clause program, D(P) is the translation of
P into a program in the present sense, according to the translation procedure above.
7. Program semantics

We associate a ‘meaning’ with a program P in three different ways, corresponding

to the three closure notions introduced in Section 4. The general techniques are
similar in the three cases, and they are treated together.

240 M. Fitting

Definition. (P(L), <) is the space of all partial L-interpretations, ordered by subset.

(P(L), <) is not a complete lattice, but it is a complete semi-lattice as in Section
5, so a monotone map will have a least fixed point. We create a different monotone
map for each of the three closure notions discussed in Section 4 but the definitions
can be given simultaneously.

Definition. Let P be an L-program. Let C stand for any of the closure operators
sat, weak, or strong. For each choice of C an operator [C]p: P(L)> P(L) is defined
as follows. Let Ie P(L). [C]p(I) is the smallest set such that, for an atomic
L-statement R(t,,...,t,) (with R not =), if there is a definition R(x,,..., X,)<
¢(xy,...,x,) in P, then

TR(ty,...,1,)€[Clp(I) provided To(t,,...,t,)elS,

FR(t,,...,t,)€[C)p(I) provided Fo(t,,...,t,)elIC.

In other words, the output of [C]p(I) ‘says’ that an atomic statement R is true
(or false) if the program P ‘says’ that R depends on a statement ¢ and the input
I ‘says’ ¢ is true (or false) in the C-semantical sense.

It is straightforward to verify that each of [sat]p, [strong]p and [weak], map
P(L)to P(L), and all are monotone by Proposition 4.2(3)-(5). Then all have smallest
fixed points. Proposition 4.2(1) gives us that [sat]p(I) < [strong]p(I), and it easily
follows that the smallest fixed point of [sat]p < the smallest fixed point of [strong]p.
Similarly, the smallest fixed point of [weak], < the smallest fixed point of [strong] s,
using Proposition 4.2(2).

In fact, for all these results it is enough that P(L) be a complete partial ordering.
The stronger fact that it is a complete semi-lattice guarantees us so-called optimal
fixed points as well [8]. These and other fixed points can be used to account for
differences between programs such as P < P and P « P, which give rise to identical
least fixed points but which do not seem equivalent intuitively. In [3], we investigated
this issue for the saturated semantics. We do not consider it here.

Examples. First, suppose P is the following program, where ‘test’ and A are state-
ments

test< Av A,

It is easy to see that the saturated semantics assigns neither ‘test’ nor A a truth
value. That is, the least fixed point of [sat]s is . On the other hand, both the strong
and the weak model set semantics give ‘test’ the value true, though neither assigns
a truth value to A.

Partial models and logic programming 241

Next, a more elaborate example. For convenience we write s”(¢) fors(s(...(¢)...))
where there are n applications of s, and we refer to s"(0) as the number n. L is the
smallest language in which the following is a program. Let P be

even(x) < [x=0v (Iy)(even(y) r x =5*(y))]
odd(x) < —even(x)

test(x) < even(x) v odd(x)

alll « (Vx)[even(x) v odd(x)]

all2 « (Vx)[even(x) v —even(x)].

Loosely speaking, all three partial model semantics say each even number is even
but not odd, and each odd number is odd but not even. Consequently, all three
semantics assign true to test(s"(0)), for every n. Further, because of the domain
closure condition, both the saturated and the strong model set semantics assign true
to alll and to all2, though the presence of the definition for alll means the operators
[sat]» and [strong]p are not continuous. On the other hand, even though the weak
model set semantics does make every number satisfy either even(x) or odd(x), it
does not ‘know’ that these are the only objects because it does not assume the
domain closure condition. Consequently, the weak model set semantics assigns no
truth value to alll. But the weak model set semantics assigns to all2 the value true,
simply because (Vx)[even(x) v meven(x)] is universally valid.

8. Connections

We have provided three semantics for extensions of Horn clause programming,
and there is the conventional semantics as well. Now we establish some relationships
between these semantics. We begin by stating the main result of this section, a
conservativeness result.

Definition. Let P be an L-program, and let C be one of our three closure notions.
The success set for P in the C-semantics is the set of atomic L-statements A such
that TA is in the least fixed point of [C]p.

Theorem 8.1. Let P be a conventional Horn clause program, and so D(P) is a program
in our sense. The success set for D(P) is the same in the saturated, strong model set
and weak model set semantics, and coincides with the minimal model for P in the
standard Van Emden, Kowalski, Apt semantics.

This theorem follows from results proved below, relating the various semantics
two at a time. We begin by showing that, for certain programs, T-signed output
only depends on T-signed input.

242 M. Fitting

Definition. A formula X is positive if it contains no negation or implication symbols
(the falsehood constant L is allowed). A program P is positive if every definition
in P has a body consisting of a positive formula.

Lemma 8.2. Suppose A and B are L-saturated sets of signed statements, and every
T-signed atomic statement in A is also in B. Then every T-signed positive statement
in A is also in B.

Proof. By structural induction on statements. Suppose, for instance, that X v Y is
positive, TX v Y € A, and the resuit is known for simpler statements. Since TX v Y €
A, which is downward saturated, TX € A or TY € A. Each of X and Y is positive,
so, by the induction hypothesis, TX € B or TY € B, and by upward saturation,
TX v Y € B. The other cases are similar. [

Definition. For a partial L-interpretation I, let I"={TX|TX e I}.

Proposition 8.3. Let P be a positive L-program. Then:
(1) [sat]p(I") and [sat]p(I) have the same T-signed members;
(2) [strong]p(I") and [strong],(I) have the same T-signed members;
(3) [weaklp(I'") and [weak]p(I) have the same T-signed members.

Proof. We show part (3); the other parts have similar, and easier, proofs. Half is
by monotonicity; since I'" < I, [weak]p(I") < [weak]p(I).

Now suppose A is an atomic L-statement, TAc[weak]p(I), but TAg
[weak]p(I'"). We derive a contradiction.

Since TA € [weak]» (I), there is a substitution instance A < X of some P-definition
and TX e I'"**. And since TA ¢ [weak]p(I"), TX & (I'")***. Since P is a positive
program, X is a positive statement.

Since TX £ (I')"***, for some language K with L< K, there is a K-normal model
set M, free over L, with I* < M but TX ¢ M. Define a set B to be

I"U{FY]|Y is an atomic K-statement not involving =, T, or L, and
TY I} U Fg. '

B is consistent, atomically K-complete, and trivially has the atomic substitution
property. Then BV is a K-normal model set. Also it is easy to see BY is free over
L, and I < BY. Further, every T-signed atomic statement of B" must be in B and
hence in M. It follows from Lemma 8.2 that TX ¢ BY. But this is impossible since
TXeI™ O

Next we show that the strong model set semantics and the saturated semantics
assign the same success set to a positive program. This is a consequence of the
following proposition.

Partial models and logic programming 243

Proposition 8.4. Let P be a positive program. For a partial L-interpretation I, [sat]»(I)
and [strong]p(I) both have the same T-signed members.

Proof. The argument is similar to that for Proposition 8.3. As was remarked in
Section 7, [sat]p (J) = [strong]p (J) for any J, which gives half the result. Conversely,
suppose TA € [strong]p(I); we show TA e [sat]p(I).

Since TA € [strong]p(I) there is a substitution instance of an,axiom in P, A« X,
with TX € I*""&. Since P is a positive program, X is a positive statement. Now,
define a set B to be

I"U{FY|Y is an atomic L-statement not involving =, T, or L, and TY ¢ I'}.

B is also a partial L-interpretation, I< B, and I''=B".

Now, every T-signed atomic L-statement in BU F, isin BtUF, =I"uF,cIyu
F,. Then, by Lemma 8.2, every T-signed positive statement of L in (Bu F;)" is in
(Iv F)". And, by Proposition 4.1, (I U F;)V = I**. Further, since Bu F; is atomi-
cally L-complete, (BuU F;)V is an L-model set by Proposition 2.2. It is L-normal
by Proposition 2.4, and free over L by Proposition 3.1. Then, since TX € I*™"8 it
follows that TX € (Bu F,)", hence, TX € I'*, and TA€[sat]p(I). O

Corollary 8.5. The success set for a positive program is the same in the strong model
and the saturated semantics.

Proof. As was pointed out in Section 5, the ‘usual’ \;slay of approximating the least
fixed point of a monotonic operator applies in a complete semi-lattice as well as in
a complete lattice. For a monotone map @ on (P(L), <), define an ordinally indexed
sequence as follows:

D=0, D*'=d(P%),

@* =) @ for limit ordinals A.

a<A

Then the least fixed point of @ is the limit of the @ sequence as a increases, and
the limit is actually attained at some (closure) ordinal, after which the sequence
remains constant. Consequently, if we prové that, for a positive program P and for
each ordinal a, ([sat]p)® and ([strong],)* have the same T-signed members, it will
establish the theorem. This done by induction on a. The « =0 case is trivial, as is
the limit ordinal case. And the successor ordinal case easily follows from Propositions
83 and 8.4. (O

Next we turn to the relationship between the strong and the weak model set
semantics.

244 M. Fitting

Definition. The existential formulas of L are the members of the smallest set S of
L-formulas such that:

(1) all signed atomic L-formulas are in S;

) a;,a,€S=>acsS;

(3) B1,B,eS=>BeS,;

(4) 8(x)eS=>d€S.

The idea is that in an existential formula all existential quantifiers are in ‘positive’
locations and all universal quantifiers are in ‘negative’ locations. Then all quantifiers
act like existential ones.

It follows from the definition that the set of existential formulas of L meets
conditions (2)-(4) in ‘iff’-form.

Lemma 8.6. Suppose I and J are partial L-interpretations with I = J, and L< K. Let
IY be the L-upward saturated closure of I, but let J be the K-upward saturated closure
of J. Then, if Z is a signed existential statement of L, Ze I'=>Z e J".

Proof. By structural induction on Z. We consider one case. Suppose Z is some
signed, existential L-statement of type 8, and the result is known for statements
simpler than Z Suppose ZelIY, ie., 6cI". By L-downward saturation of I,
8(t) e I" for some closed L-term t. Since 8 is existential, so is 8(t); so 8(t)e JV by
the induction hypothesis. Since L< K, ¢ is also a closed K-term, hence eJY by
K-upward saturation. [

Lemma 8.7. Let I be a partial L-interpretation. Every signed, existential L-statement
ofIstrong is in Iweak.

Proof. Suppose Z is a signed, existential L-statement, but Z & I****. Then, for some
language K with L= K, there is a K-normal model set M, free over L, with IcM,
but Zg M.

Let B be the collection of all signed, atomic L-statements that are in M. B is
atomically L-complete, so if BY is the L-upward saturated closure of B, BV is an
L-model set. It is easy to see that BV is L-normal (B has the atomic substitution
property), is free over L, and Ic B". .

Let MY be the K-upward saturated closure of M. Trivially, MV = M. Then by
Lemma 8.6, since Z ¢ M, it follows that Z.¢ BY and hence Z g I*™". [J

Definition. A program P is existential if, for any definition X « B in P, the signed
formula TB is existential.

Proposition 8.8. Suppose P is an existential L-program and I is a partial L-interpreta-
tion. Then [weak]p(I) and [stronglp(I) have the same T-signed members.

Proof. Half is by the general fact that [weak]p(I) < [strong]p (I). Conversely, sup-
pose TAe[strong]p(I). Then there is some substitution instance A< X of a

Partial models and logic programming 245

definition in P, with TX € I**°"%, Since P is an existential program, TX is an
existential statement, hence TX € I''*** by Lemma 8.7. Then TA € [weak]p(I). O

Corollary 8.9. The success set for a positive, existential program is the same in the
strong model set and the weak model set semantics.

Proof. Like that of Corollary 8.5. O

By combining Corollary 8.5 and Corollary 8.9, all three partial model semantics
assign the same success set to a positive, existential program. If P is a conventional
Horn clause program, D(P) will be positive and existential. The final items needed
to finish the proof of Theorem 8.1 are straightforward and are stated below, with
proof omitted. The T{ and T| notation is from [1].

Proposition 8.10. Let P be a conventional Horn clause program, and let T be the
corresponding operator. Then, for each ordinal «,

(1) Tta ={A|TA<[sat]pr (@)}

(2) Tla=U-{A|FA€[sat]p) (@)}, where U is the Herbrand base.
It follows that the success set for D(P) in the saturated semantics is the smallest fixed
point of the T-operator for P.

9. Tableaus

For the rest of the paper we concentrate on the weak model set semantics.
Specifically, we define a proof procedure based on semantic tableaus allowing
‘recursive’ calls, and we prove its soundness and completeness relative to the weak
model set semantics. An easy consequence is the continuity of the [weak], operator.

As background for Section 10 we sketch the tableau system for classical first-order
logic, as given in [10]. Then we present extra rules to deal with equality. The semantic
tableau method is essentially equivalent to that of Gentzen sequents, though we
find the tableau style more natural in the present setting. A discussion of the
relationship between tableaus and Gentzen systems for classical logic may be found
in [10, Chapter XI].

Definition. For a given language L, we mean by L* the language that results from
L when a designated, countable set of new constant symbols is added to L. Then,
L=< L* of course. The constant symbols of L* that are not in L are referred to as
parameters.

246 M. Fitting

Tableau proofs of statements of L will be trees labelled with signed statements
from the larger language L*.

Branch extension rules

a B
e /N
a B B2
X for any closed term ¢ of L¥,
y(1)
) . .
% for a parameter t hitherto unused in the tree.

Definitions. A branch of a tableau is closed if it has TX and FX on it for some
statement X, or if it has TL or FT on it. A branch is open, or unclosed, if it is not
closed. A tableau is closed if every branch is closed.

A tableau for a signed statement Z of L is defined as follows:

(1) the one branch tree with a single node labelled Z is a tableau for Z;

(2) if we have a tableau for Z, nondeterministically choose an unclosed branch,
choose a signed statement on it, and extend the branch by applying the appropriate
branch extension rule. The result is another tableau for Z.

If X is a statement of L, a proof of X is a closed tableau for FX. A disproof of
X is a closed tableau for TX.)

Informally, identify a tableau branch with the conjunction of the signed statements
on it, and a tableau with the disjunction of its branches. Then one may think of a
tableau as a constraint on a model. Tableau proofs are refutation arguments. To
prove X, start with FX and generate a closed tableau (which is a constraint no
model can satisfy). Then, informally at least, X could not have been false in any
model, i.e., X is valid. This can be made the basis of a formal soundness proof.

A version of the completeness theorem for tableaus can be stated as follows: a
statement X of L has a proof provided TX is in every L*-model set.

Next we add general branch extension rules for equality.

Reflexivity rule: In a tableau for some éigned L statement, Tt =t can be added
to the end of any branch, for any closed term ¢ of L*.

Substitution rule: Let Z be a signed statement of L* and let Z’ be like Z except
that zero or more occurrences of the closed term ¢ in Z have been replaced by
occurrences of the closed term u. If Tt=u and Z occur on a branch, Z’' may be
added to the end of it.

We did not assume symmetry or transitivity rules, but it is easy to see that they
follow as derived rules. That is, if T¢=u occurs on a branch, the rules above will
allow us to add Tu =t to the branch. Similarly, for transitivity.

Partial models and logic programming 247

Definition. We say we have a normal proof (or disproof) of X if we have constructed
a closed tableau for FX (or TX) allowing the two additional equality rules above.

Completeness can be given the following form: A statement X of L has a normal
proof provided TX is in every L*-normal model set.

10. Recursive tableau calls

Now we present our additions to the tableau machinery to deal with programs.
Let L be a fixed language, and let P be an L-program. We define the notions of
P-tableau, P-proof, and P-disproof. To begin with, all the tableau terminology given
in Section 9 carries over to the P-case. Thus, a closed normal P-tableau for FX
constitutes a P-proof of X, and so on. The only addition is that we have some extra
branch closure and extension rules for P-tableaus.

First, we add closure and extension rules to take care of the free interpretation
we are giving equality.

Free interpretation rules: A P-tableau branch is closed if it contains:

(1) Tc=d for distinct constant symbols ¢ and d of L;

(2) Tf(t,...,t,)=c for a function symbol f and a constant symbol ¢ of L;

(3) Tf(t,..., t,)=g(uy,..., u,) for distinct function symbols f and g of L.

A branch containing Tf(t,, ..., t,) =f(uy,..., u,) may be extended by adding
Tt; = u; to the end, for any i=1,2,..., n

Finally, we present the rules that take program P -specifically into account.

Recursive program rules: Let R(t,,...,t,) be an atomic statement of L.

(1) A branch of a P-tableau is closed if it contains FR(t,,...,t,), there is a
definition R(x,,...,x,)< ¢(x;,...,x,) in P, and ¢(¢,...,t,) has a P-tableau
proof.

(2) A branch of a P-tableau is closed if it contains TR(t,,..., t,), there is a
definition R(x,,...,x,)< ¢(x;,...,x,) in P, and ¢(¢,...,t,) has a P-tableau
disproof.

Definition. For a program P and an L-statement Z, we say a query of P with Z
succeeds if Z has a P-tableau proof, and a query of P with Z fails if Z has a P-tableau
disproof. (Z need not be atomic, though, in the interests of simplicity, atomic queries
are all we will consider here.)

It will follow from the soundness result in Section 11 that no query can both
succeed and fail. It is possible, however, for a query to do neither. Partial models
are essential.

Example. P is the program

even(x) « x=0v (3y)odd(y) a x =s(y)]
odd(x) < (Vy)[even(y) > (x=y)].

248 M. Fitting

We show that a query of P with even(s(0)) fails. That is, even(s(0)) has a P-tableau
disproof; there is a closed P-tableau beginning with Teven(s(0)). Now, the only
applicable rule is recursive program rule (2). To close the tableau we need a closed
P-tableau for Ts(0) =0v (3y)[odd(y) A s(0) =s(y)]. Such a tableau begins as follows.
The numbers are not part of the tableau, but are for reference only.

Ts(0)=0v (3y)[odd(y) as(0)=s(»)] (1)

Ts(0)=0" (2) T(3y)lodd(y) rs(0)=s(y)] (3)
Todd(p) As(0) =s(p) (4)
Todd(p) (5)
Ts(0) =s(p) (6)
TO=p (7)
Todd(0) (8)

Reasons: (2) and (3) are from (1) by the B-branch extension rule; (4) is from (3)
by the 8-rule (p is a parameter); (5) and (6) are from (4) by a; (7) is from (6) by
a free interpretation rule; (8) is from (5) and (7) by the substitution rule, tacitly
making use of symmetry.

The left branch is closed because of (2) and free interpretation rule (2). By
recursive program rule (2) applied to (8), the right branch, and hence the tableau,
would be closed if we had a P-tableau disproof of (Vy)[even(y) > (0= y)]. Such
a P-tableau follows.

T(Vy)[even(y) > (0=y)] (9)

Teven(0) > (0=0) (10)

Feven(0) (11) T(0=0) (12)
F(0=0) (13)
T(0=0) (14)

Reasons: (10) is from (9) by the y-rule; (11) and (12) are from (10) by 8; (13) is
from (12), and (14) is by the reflexivity rule. The right branch is closed because of
(13) and (14). Finally, the left branch would be closed if we had a closed P-tableau
for FO=0v (3y)[odd(y) A 0=s(y)]. But a tableau for this quickly closes using the
a-rule and the reflexive rule.

11. Tableau maps

We introduce a nonrecursive tableau system meant to capture a single application
of the weak semantic operator [weak]p associated with program P. We use it in the
next section to derive the soundness and completeness of the P-tableau system of

Partial models and logic programming 249

Section 10 relative to the least fixed point semantics of [weak]p. Continuity of
[weak]p will be another byproduct.
Let L be a language that is fixed for this section.

Definition. For an L-program P and a partial L-interpretation I, by a P-I-tableau
we mean a tableau meeting the conditions for a P-tableau as given in Section 10,
except that recursive program rules (1) and (2) are replaced by

(1) a branch of a P-I-tableau is closed if it contains FR(¢,,...,¢,), where
TR(t,, ..., t,)el;

(2') a branch of a P-I-tableau is closed if it contains TR(¢,,...,t,), where
FR(t,,...,t,)elL

We can use P-I-tableaus to define yet another mapping on (P(L), <), the space
of partial L-interpretations, in a straightforward way. We call it the tableau mapping.

Definition. [tab]p: P(L)-> P(L) is defined as follows. Let I € P(L). Then,

[tablp(I)={TR(ty,..., t,)| R(xy, ..., x,) < @(x1,...,X,) is in P and
there is a closed P-I-tableau
for Fo(t,,..., t.)}

u {FR(ty,...,t,)]R(xy,..., %)« @(x,,...,x,) is in P and
there is a closed P-I-tableau
for Te(t,,...,t,)}.

The primary result of this section is easily stated.

Theorem 11.1. [weak]p =[tab]p.

The proof is broken into two arguments, a soundness and a completeness half.
We begin with soundness. Note that in the definition below, an extra language K
is brought in. This is to take care of the §-rule. Informally, if & is true in a model,
some instance must be true, but that instance may not have a name in the original
language.

Definition. Let I be a partial L-interpretation and let S be a set of signed statements
of L*. Call S I-satisfiable if there is a language K with L<K, and a K-normal
model set M, free over L, with U S< M. Call a branch of a tableau I-satisfiable
if the set of signed statements on it is I-satisfiable. And call a tableau I-satisfiable
if some branch is.

250 M. Fitting

Lemma 11.2. The result of applying any branch extension rule to an I-satisfiable
P-I-tableau yields another I-satisfiable P-I-tableau.

Proof. The a- and B-rules are trivial. We consider the 8-rule in detail and leave
the other rules to the reader.

Suppose we have a P-I-tableau with an I-satisfiable branch & having 8 on it, and
we add 8(c) to the end of 9, where c is a parameter hitherto unused in the tableau.
Let S be the set of signed statements on 9. Then the situation is this. S is I-satisfiable,
8 € 8, and cis a parameter not occurring in S; we must show S U {8(c¢)} is I-satisfiable.

Since S is I-satisfiable, there is some K-normal model set M, with L< K, M free
over L, and with Tu S < M. It is possible that c is a constant symbol of K and so
already has a ‘role’ in M. If so, we remove it as outlined in the next paragraph. If
not, we skip this step and go on from the paragraph following the next.

Choose a constant symbol d not of K and let K be the language like K, but
with ¢ removed and d added. Since ¢ was a parameter, hence not in L, we still
have L=< K". Likewise let M be the set of signed statements that results from the
replacement of all occurrences of ¢ in M by occurrences of d. Trivially, M" is
K'-normal and free over L. Finally, ¢ did not occur in S, and ¢ was a parameter
and so could not occur in I, so the replacement of ¢ by d leaves I and S unchanged.
Then IuS<c M.

From now on we may assume the following: & € S, there is a K '-normal model
set M' with L< K", free over L, with TuS< M',and cis a parameter not occurring
in S and not in the language K'. We still must show Su {8(c)} is I-satisfiable.

Since € S< M" and M is a model set, for some closed term ¢ of K7, we have
8(t)e M. Let K™ be the language like K*, but with ¢ added as an extra constant
symbol. Trivially, L< K'". Let M'" be the result of enlarging M by adding every
signed statement obtained by replacing zero or more occurrences of ¢ by occurrences
of ¢ in any signed statement of M". It is not hard to see that M'" is a K'"-normal
model set, and that M'" is also free over L. Certainly, TuS< M, but also
8(c)e M™ too. Thus Su{5(c)} is I-satisfiable. [1

Lemma 11.3. A closed P-I-tableau is not I-satisfiable.
Proof. Straightforward. [J
Proposition 11.4 (soundness). [tab]p(I) < [weak]p(T).

Proof. Let I be a partial L-interpretation, and suppose FR(¢,, ..., t,) €[tab]»(I),
but TR(t,, ..., t,)€[weak]p(I); we derive a contradiction. (The F-signed case is
similar.)

Say the definition for R in P is R(x,, ..., x,)< ¢(x,,..., x,). Then, by the first
supposition, there is a closed P-I-tableau for Fo(z,,. .., t,). By the second supposi-
tion, Te(ty,..., t,) & I, so there is some K-normal model set M with L<K,

Partial models and logic programming 251

free over L, with I < M, but Te(t,,...,t,)€ M. Since M is a model set, and hence
complete, Fo(t,,...,t,)€ M. Then {Fo(t,,...,t,)} is I-satisfiable.

A P-I-tableau for Fo(t,, ..., t,) begins with the one branch, one node tree, whose
node is labelled Fe(t,,..., t,). By the previous paragraph, this is an I-satisfiable
tableau, so, by Lemma 11.2, every subsequent tableau will also be I-satisfiable. Then
the existence of a closed P-I-tableau for Fo(t,, ..., t,) contradicts Lemma 11.3. O

Proposition 11.5 (completeness). [weak]p(I) < [tab]y(I).

Proof. Let I be a partial L-interpretation, and suppose TR(t;, ..., t,) £ [tab]p(I).
We show TR(t,,...,t,) & [weak]s(I). (Again the F-signed case is similar.)

Say the definition for R in Pis R(x,,..., X,) < ¢{(x,, ..., X,). Then the supposition
is, there is no closed P-I-tableau for Fe(t,,..., t,). Now, tableau construction is
inherently nondeterministic, but there are many systematic, deterministic routines
one can follow for constructing tableaus, which will ensure that any applicable
branch extension rule will eventually be applied (a fair procedure, in other words).
One simple such systematic procedure is given in [10] for the classical tableau case,
and can easily be adapted to the present setting. We omit details.

So, construct a sequence of tableaus for Fe(t,,...,t,) following a systematic
procedure under which every applicable rule is eventually applied. The procedure
can never terminate, for it can only do so by producing a closed tableau for
Fo(ty,...,t,). Thus an infinite tableau, and hence an infinite branch, is being
generated (Ko6nig’s Lemma is used here).

Let S be the set of signed statements on one such infinite branch §. S will be
consistent and because of the systematic construction, S will be L*-downward
saturated, will contain all Tz =t for closed terms t of L*, and will have the atomic
(indeed the full) substitution property.

Let S' be the result of adding to S all signed statements of L* of the form Ft = u,
where Tt = u is not in S. Trivially, S is still consistent, and is L*-downward saturated
since only signed atomic statements have been added.

Suppose ¢ and d are distinct constant symbols of L. Then Tc=d cannot be in
S, or else branch % would have closed at some finite stage using a free interpretation
rule. Then, Fc=d € S*. Similar considerations show that any L*-model set that
extends S" will be free over L.

Also the atomic substitution property still holds for S' by the following reasoning.
Suppose Tt=uc S" and Z'¢ S', where Z’ results from Z by the replacement of
some occurrences of ¢ by occurrences of u; we show Z ¢ S'. Since S resulted from
the addition of F-signed statements to S, Tt = u € S. If Z is T-signed, the conclusion
follows using the fact that S had the (atomic) substitution property. Now suppose
ZisFY,and Z'isFY'.Since Z'¢ S"", TY' € S. Using symmetry, Tu = t € S. But then,
by substitutivity (of ¢ for u), TY € S, hence Zg S".

Now, let I/S" be the collection of all the substitutional variants of members of
I that S™ allows. More precisely, I/S" is the smallest set of signed atomic statements

252 M. Fitting

such that (i) IcI/S", and (ii) Ze1/S", Tt=ue S' Z'is the result of replacing
an occurrence of ¢ in Z by an occurrence of u=Z'cI/S".

We are interested in the set S*U I/, and will establish some basic facts concern-
ing it.

StuI/S is trivially L*-downward saturated since S* was, and I/S" contains
only signed atomic statements. Also S* U I/S" has the atomic substitution property
by the following argument. Suppose Tt=ue S'UI/S". Then, in fact, Tt=uec S*
since members of I cannot contain the equality symbol. Then a substitution replacing
an occurrence of ¢ by u in an atomic member of S* will produce a member of S*
since it has the atomic substitution property, and replacement in a member of I/S"
produces another member of I/S" by definition. The final trivial result is that any
L*-model set that extends S"U I/ S will be free over L since this is the case for
extensions of S'.

It remains for us to show that S*u I/S" is consistent, which requires some work.
Suppose we do not have consistency, say TA(d,,...,d,), FA(d,,...,d,)eS U
I/S". We derive a contradiction. Since S’ was consistent, it must be that one or
both of TA(d,,...,d,), FA(d,,...,d,) is in I/S'. We will treat the case that both
are; the other cases are similar, but easier.

So, suppose TA(d,, ..., d,), FA(d,, ..., d,) e I/S". Then there must be a signed
atomic statement TA(7,, ..., 7,) € I and a sequence of equality statements, Tt, = u,,
Tt,=u,,..., Tt = u,, all in S, such that by starting with TA(r,, ..., 7,) and succes-
sively replacing occurrences of t; by u,, &, by u,, ..., t by u,, we wind up with
TA(d,,...,d,). Also there must be FA(m,,...,n,)el and To,=w,, Tv,=
Wy, ..., To,=w, €S such that successively replacing v, by w; starting with
FA(ny,..., n,) yields FA(d,,...,d,). We will show that 7, and 7, are iden-
tical, ..., 7, and 7, are identical, which implies I is inconsistent. This is impossible
since I was a partial L-interpretation, which must be consistent.

Consider 7, and 7,. By starting with 7, and successively replacing ¢, by u,, ..., t
by w4, 7, can be turned into d,. Then starting with d, and working backward,
replacing u; by #, ..., u; by t,, d; can be turned into ;. Similarly, by replacing w,,
by Up,..., w; by v, d, can be turned into 7,. But Tt;=u; € S, hence is on branch
9, and hence Tu; =t is on ¥ (since the tableau construction was systematic and
symmetry is a derived rule). Also, Td,=d, is on . Then, using the substitution
rule, Try =7, must be on ¥ too. But 7, and 7, are closed terms of L since they
occur in L If 7, and 7, were distinct, the frée interpretation rules for equality would
have allowed us to close branch 9. Consequently, 7, is identical to 7,. Similarly
for 7, and 7,, and so on. It follows that I is inconsistent, and we have a contradiction.
Conclusion: STUI/S" is consistent.

So SuU I is a subset of a consistent set S"U I/S" having the atomic substitution
property, L*-downward saturated, and with Tt =t present for all closed L*-terms
t. By Proposition 2.5 this set can be further extended to an L*-normal model set
M, which must be free over L. Since every branch in a tableau goes through the
origin, which is labelled Fe(t,,...,t,), it follows that Fe(t,,..., t,)€ S, and so

Partial models and logic programming 253

Fe(t,,...,t,)e M. Then Te(t,,...,t,)€ M,M is L*-normal, free over L, and
L<L* so To(t,...,t,) & I" But then TR(t,,...,t,) €[weak]p(I). O

12. Continuity, soundness and correctness

Let L be a language and let P be an L-program, fixed for this section. We return
to the recursive P-tableau system of Section 10, and the fixed point semantics of
[weak]p.

Proposition 12.1. [weak]; is continuous.

Proof. Continuity is often defined as meaning preserving directed unions but, given
monotonicity, it is well known to be equivalent to the following finiteness property:
for a signed atomic statement Z, Z e [weak]p(I)=Z e[weak]p(1,) for some finite
I, < I By the results of Section 11 it is enough to show a similar result for the
operator [tab] . But this is simple. If Z € [tab],(I) it is because a closed P-I-tableau
exists for the signed statement ¢ that program P associates with Z. A closed tableau,
being finite, only uses a finite part of I, say I,. Then we have a closed P-I,-tableau
for ¢, so Z e [tab]p(l,). O

Proposition 12.2 (completeness). Let A be an atomic statement of L. If TA is in the
least fixed point of [weak]p, then a query of P with A succeeds. If FA is in the Ieast
fixed point of [weak]p, then a query of P with A fails.

Proof. Let I be the partial L-interpretation consisting of all TA where a query of
P with A succeeds, and all FA where a query of P with A fails. It is easy to see
that [tab]p(I) < I, so [weak]p(I) < I, and hence the least fixed point of [weak], is
asubset of I [

Proposition 12.3 (soundness). Again, let A be an atomic statement of L. If a query
of P with A succeeds, then TA is in the least fixed point of [weak]p. If a query of P
with A fails, then FA is in the least fixed point of [weak]p.

Proof. For a query of P with A to succeed (or fail) there must exist a closed
P-tableau T, for FA (or for TA). That tableau will, through the recursive program
rules, require the existence of other closed P-tableaus, these may call on others,
and so on. We can think of these as being arranged in a tree of tableaus. At the
origin is the P-tableau T,. The children of a node containing T, are the closed
P-tableaus needed (via the recursive program rules) to ensure closure of T,,. At the
leaves are P-tableaus making no recursive calls. By the depth of such a tree we
mean the length of a maximal branch. By the depth of a query that succeeds or fails
we mean the minimal depth of a tree of tableaus establishing success or failure of
that query.

254 M. Fitting

Now the soundness argument is by induction on depth. Let M be the smallest
fixed point of [weak]p. For each n, let D, be the set of all TB where a query of P
with B succeeds with depth <n, together with all FB where a query of P with B
fails with depth <n. We need that D, = M for all n.

It is easy to see that D, =@ (only atomic queries are being considered, so at least
one recursive call is required). It is equally easy to see that D, =[tab]p(D;). Then
the induction argument is simple: D, M. And if D, < M, then

Dy, =[tab]p (D) =[weak]p(D;) < [weak]p(M)=M. O

13. Directions for future work

The tableau-based logic programming language outlined above is attractive in
theory. Whether or not it is practical to implement is another story. The need for
a theorem prover for full first-order logic with equality is an obvious block. On the
other hand, it may be possible to identify syntactically restricted subsystems of the
tableau-based system that are efficient to implement and that still properly extend
pure Horn clause programming. We have made a small beginning on this.

Further, the tableau-based system involves both proof and dual disproof notions.
This forces an implementation to have both a unification algorithm and a dualized
version of it. (This assumes that suitable variables have been introduced into the
language whose values in queries are being sought.) If a tableau branch contains
Ft=u, and t and u unify, the branch closes. Dually, if a branch contains Tt =u,
the branch closes if ¢ and u can be made un-unifiable (call it disunifying ¢ and u).
Often, this can be done in many ways. For instance, perhaps ¢t and u can be made
into distinct constant symbols or can be made to begin with distinct function symbols.
Combinatorially, this multiplicity of ways is not good. On the other hand, different
ways of disunifying ¢ and u are independent of each other, which suggests that an
implementation involving parallelism can be of considerable utility here, unlike
with the unification part.

Finally, on the theoretical level, the connection between conventional finite failure
and tableau-based failure remains open. Likewise, the relationship with the intuition-
istic-logic-based generalization of [9] is not clear. It is possible that the well-known
relationships between classical and intuitignistic logics will have some bearing here.

References

[1] K.R. Apt and M.H. Van Emden, Contributions to the theory of logic programming, J. Assoc. Comput.
Mach. 29 (1982) 841-862.

[2] K.L. Clark, Negation as failure, in: H. Gallaire and J. Minker eds., Logic and Data Bases (Plenum,
New York, 1978) 293-322.

[3] M.C. Fitting, A Kripke/Kleene semantics for logic programs, J. Logic Programming (1985) 295-312.

[4] J.H. Gallier, On the existence of optimal fixpoints, Math. Systems Theory 13 (1980) 209-217.

o

Partial models and logic programming 255

[5] S.C. Kleene, Introduction to Metamathematics (Van Nostrand, New York, 1952).
[6] S. Kripke, Outline of a theory of truth, J. Philosophy 72 (1975) 690-716.
[7]1 J. Lassez and M. Maher, Optimal fixedpoints of logic programs, Theoret. Comput. Sci. 39 (1985)
15-25.
[8] Z. Manna and A. Shamir, The theoretical aspect of the optimal fixed point, SIAM J. Computing 5
(1976) 414-426.
[9] L.T. McCarthy, Fixed point semantics and tableau proof procedures for a clausal intuitionistic
logic, Tech. Rept. LRP-TR-18, Rutgers University.
v [10] R.M. Smullyan, First Order Logic (Springer, Berlin, 1968).
[11] M.H. Van Emden and R. Kowalski, The semantics of predicate logic as a programming language,
J. Assoc. Comput. Mach. 23 (1976) 733-742.
[12] B. Van Fraassen, Singular terms, truth-value gaps, and free logic, J. Philosophy 63 (1966) 481-485.

A3

