
Negation As Refutation

Melvin Fitting
MLFLC@CUNYVM.CUNY.EDU

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

Depts. Computer Science, Philosophy, Mathematics
Graduate Center (CUNY), 33 West 42nd Street, NYC, NY 10036 ∗

Abstract

A refutation mechanism is introduced into logic programming, dual to the usual proof mech-
anism; then negation is treated via refutation. A four-valued logic is appropriate for the seman-
tics: true, false, neither, both. Inconsistent programs are allowed, but inconsistencies remain
localized. The four-valued logic is a well-known one, due to Belnap, and is the simplest exam-
ple of Ginsberg’s bilattice notion. An efficient implementation based on semantic tableaux is
sketched; it reduces to SLD resolution when negations are not involved. The resulting system
can give reasonable answers to queries that involve both negation and free variables. Also it
gives the same results as Prolog when there are no negations. Finally, an implementation in
Prolog is given.

1 Introduction

The most common treatment of negation in logic programming is negation-as-failure. This leads
to problems that are now familiar: meanings of programs become difficult to specify; program
operators need not reach fixed points in ω steps; queries involving free variables may not behave
in expected ways. Consequently alternative notions of negation have been proposed, ranging from
simple ideas like delaying evaluation of negative queries containing free variables, to systems built
on Intuitionistic Logic. In this paper we propose yet another approach, negation-as-refutation. We
believe this avoids the problems just mentioned: there is a simple semantics; the underlying logical
structure is of independent interest; and an efficient SLD-like implementation exists. Indeed, we
have written such an implementation, under the name Q-Log. (The reason for this name will be
explained below.)

Accepting negation-as-refutation forces a rethinking of fundamentals. Classical logic program-
ming is two-valued: statements have as values true or false. But one can argue that even in a setting
without negations, this is too simple. Some queries to some programs may lead to infinite regress,
∗Research partly supported by NSF Grant CCR-8702307 and PSC-CUNY Grant 6-67295.

1

t

k

false true

T

⊥

Melvin Fitting — Negation As Refutation 2

Figure 1: The Logic FOUR

and so a value of ⊥ (undefined) is reasonable to consider. In fact, this leads to an interesting and
coherent semantics which has been developed rather fully in [4], [5], [10] and [11].

Now, a query Q can succeed or fail, but can not do both, so negation-as-failure is inherently
consistent. If we introduce a refutation mechanism that stands apart from a provability mechanism,
it is possible that some query Q may be both provable and refutable. Consequently we are forced to
introduce a fourth truth value, >, or overdefined. Thus our semantics will be based on a four-valued
logic, hence the name Q-Log, with the Q representing Quad, to suggest four.

2 Belnap’s Logic

Belnap introduced exactly the logic we need in [2]; see also [16]. We call it FOUR. More recently,
Ginsberg introduced the notion of bilattice, with Belnap’s logic as the simplest example [7], [8].
In [6] we showed that a satisfactory logic programming semantics could be developed using any
bilattice that met certain natural interlacing conditions. FOUR meets these conditions and, it
turns out, will serve us well here.

We present a brief sketch of results about FOUR that are, in fact, general bilattice theorems.
This will serve to lay the semantical foundation for Q-Log.

Following Ginsberg, the truth values of FOUR are displayed in Figure 1 in a double Hasse
diagram. A move from left to right may be thought of as an increase in the degree of truth or a
decrease in the degree of falseness. Thus ⊥ is less false than false, and > is more true than false.
We write x ≤t y if y is to the right of (or identical with) x, so ⊥ ≤t false, for instance. A move
upward represents an increase in information or knowledge; we use ≤k to symbolize this ordering.
Both false and true represent more knowledge than ⊥, which essentially is complete absence of
information, so ⊥ ≤k false and ⊥ ≤k true. And so on.

Melvin Fitting — Negation As Refutation 3

Both orderings, ≤t and ≤k, give FOUR the structure of a complete lattice. We will use the
notation ∧ and ∨ for finite meet and join in the ≤t ordering, and

∧
and

∨
for arbitrary meet and

join. In the ≤k ordering we will denote finite meet and join by ⊗ and ⊕, arbitrary meet and join
by
∏

and
∑

. The two lattice orderings are closely interconnected. The knowledge operations, ⊗
and ⊕ are monotone with respect to the truth ordering ≤t, and the truth operations ∧ and ∨ are
monotone with respect to the knowledge ordering ≤k. This is called the interlacing condition in [6].
Further, all possible distributive laws hold. For instance, x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z). Ginsberg
calls this a distributive bilattice.

One can also define a natural negation operation. Think of members of FOUR as sets of
ordinary truth values: ⊥ is the empty set, > is the set consisting of both true and false, while the
members of FOUR denoted true and false are singleton sets of the corresponding classical truth
values. Now the negation operation on FOUR is obvious: apply classical negation to every member
of the set version. This gives us ¬⊥ = ⊥, ¬false = true, ¬true = false and ¬> = >. It is easy to
verify that ∧ and ∨ are dual with respect to ¬; that is, the usual DeMorgan laws hold. Likewise for∧

and
∨

. On the other hand, each of ⊗, ⊕,
∏

and
∑

is self dual. For instance, ¬(a⊗ b) = ¬a⊗¬b.
The ≤t operations are natural generalizations of the familiar classical ones. For instance, if

∧, ∨ and ¬ are restricted to true and false, we get the usual two value truth table behavior.
If they are restricted to true, false and ⊥ the behavior is that of Kleene’s strong three valued
logic [9]. The ≤k operations are less familiar, but have natural interpretations. ⊗ represents a
consensus operation; take the most information consistent with the two inputs. For instance, if we
get both true and false in response to a question, the consensus is ⊥, no information. And indeed,
true ⊗ false = ⊥. Likewise ⊕ amounts to accepting whatever one is told. For instance, if we get
both true and false as answers, and we decide to accept both as equally valid answers, then we
have too much information, and in fact, true⊕ false = >.

3 Logic Programming Syntax

We sketch a logic programming language Q-Log which is intended to use FOUR as its space of
truth values. What we describe here is a restricted version of what was presented for general
interlaced bilattices in [6]. A program will be a finite set of clauses. A clause will be an expression
of the form H ← B, where H, the head, is an atomic formula and B, the body, is any formula
built up from atomic formulas using the connectives ¬, ∧, ∨, ⊗ and ⊕. We allow free variables,
including those that are free in clause bodies but not in clause heads. We do not allow explicit
quantification.

4 Fixpoint Semantics

In classical logic programming semantics, degree of truth is basic, [15], [1]. In effect, false is the
default value; an atomic formula takes on true as its value only if it is forced to do so. This amounts
to using the ≤t ordering. This can be made more precise and a full treatment can be found in [6].
We wish to shift the emphasis to the information content instead. Informally, an atomic formula
will lack a classical truth value (more precisely, it will have the value ⊥) unless one is forced on it.

Melvin Fitting — Negation As Refutation 4

As observed in [6], this shift admits a more satisfactory treatment of negation than the classical
one, essentially because negation is monotone with respect to ≤k but not with respect to ≤t.

There are several consequences of this shift in emphasis from truth to knowledge, consequences
that combine to make the workings of Q-Log quite smooth. In the classical approach, if one has two
clauses with the same head, A← B and A← C, this is taken to be equivalent to a truth-functional
disjunction. Informally, the two together act like A ← B ∨ C. But here we think of clauses as
contributing to the information we have, rather than to the degree of truth, and so we take A← B
and A← C together as acting like A← B ⊕ C. Likewise, in the classical approach, free variables in
clause bodies are thought of as existentially quantified, which corresponds to using the

∨
operation

in FOUR. We will use the ≤k analog instead, and interpret free variables in clause bodies using
the

∑
operation. Incidentally, this has one rather remarkable consequence. We noted above that∑

was its own dual with respect to ¬. Since we will be able to implement
∑

using unification, we
will also be able to implement ¬∑ using unification. In other words, unification will serve well in
the presence of free variables, even if negative queries arise.

Now a fixpoint semantics for Q-Log is easily sketched. One associates with a program P an
operator ΦP , mapping interpretations to interpretations. (An interpretation is a function assigning
truth values in FOUR to ground atomic formulas.) For an interpretation v, ΦP (v) is determined
as follows. Calculate truth values for ground instances of clause bodies using v to supply values at
the atomic level; assign the resulting values to the corresponding ground instances of clause heads;
that assignment determines a new valuation, which we take to be ΦP (v). In evaluating bodies,
we think of separate clauses with the same head as being combined using

∑
, as mentioned above.

Interpretations can be given an ordering ≤k, induced by the corresponding ordering in FOUR:
v1 ≤k v2 provided, for each ground atomic formula A, v1(A) ≤k v2(A). One can show ΦP is
monotone with respect to this ordering. The space of interpretations is a complete lattice under
this ordering, and so ΦP has a smallest fixed point, which provides a semantical meaning for the
program P ([14]).

The semantical approach sketched above is developed more fully and more generally in [6]. In
the special case we are considering here, with FOUR as the truth value space, and with programs
restricted as described above, an additional very important result holds. For every program P the
operator ΦP must be continuous. This implies that one must be able to fully approximate to the
least fixed point of ΦP in ω steps. This contrasts to the usual situation in logic programming based
on ≤t, where programs yielding non-continuous operators are easy to write, and closure ordinals
can be very high.

Finally we note that Q-Log has a paraconsistency property [3] in the sense that inconsistencies
don’t make a program useless. If some query A evaluates to > with respect to a program P (using
the least fixed point of ΦP), other queries may still behave in reasonable ways. Inconsistencies
remain isolated, unlike in classical logic.

5 Semantic Tableaux

Having sketched the denotational semantics of Q-Log, we turn to the operational one. We need a
suitable proof procedure, and we will use Smullyan’s semantic tableaux to help provide the basic

Melvin Fitting — Negation As Refutation 5

machinery [13]. This is not essential — resolution could also be used. Semantic tableaux provide a
mechanism that is easy to explain, though, and one that turns out to be quite efficient in practice.

In one version of Smullyan’s system, as presented in [13], one works with signed formulas, of
the form TX or FX, where X is a formula. Intuitively, TX is read as “X is true”, and FX as
“X is false.” Classically, this use of signs is dispensable; one could replace TX by X, and FX by
¬X. But their use has a certain aesthetic appeal, as well as making possible the simplification of
some proofs about the system. Tableaux are refutation arguments, like resolution. To prove X,
one begins with FX and derives a contradiction. Intuitively this says X can not be false, hence it
must always be true. Our immediate problem is to fit this two-valued paradigm to a four valued
setting.

The most obvious thing is to introduce four signs, corresponding to the four truth values of
FOUR. For our purposes, however, this is quite the wrong thing. We have been thinking of ⊥
operationally as representing the lack of an answer. It is methodologically wrong to introduce into
our proof procedure a symbol which, in effect, would represent the ‘answer’ of no answer. Similar
remarks apply to > too. In fact, we are thinking of classical two valued logic as being ‘behind’
FOUR, and this has been reflected in our informal discussions all along: the values of FOUR are
thought of as representing an answer of true only, or false only, or neither, or both. We want our
tableau proof procedure to embody this underlying two valuedness.

There is one other informal point to be made before we get down to details. If we receive
an answer of true to a query, we do not know, on the basis of this information alone, that the
appropriate truth value is just true. Later on we might discover that an answer of false is also
possible, and so the real truth value is >. In short, the best we can expect from an answer to a
query is a lower bound on the possibilities: at least true (true or >), rather than exactly true; at
least false (false or >) rather than exactly false.

Now, remembering that tableaux are refutation arguments, an appropriate reading of the signs
T and F is forced on us. We will intuitively read FX as saying X is either false or ⊥, and we will
read TX as saying X is either true or ⊥. Then, if we arrive at a contradiction by starting with
FX, it follows that X is either true or >, that is, at least true. Similarly a contradiction deriving
from TX will mean X is at least false. If contradictions follow from both TX and FX, it tells us
X is >, and if contradictions follow from neither, X is ⊥.

In the Smullyan two-valued system, proofs are trees, and there are rules for growing them. We
consider the rules for conjunction as an example. If TX ∧Y occurs on a branch, both TX and TY
may be added to the end. The intuitive justification for this is: X ∧ Y is true if and only if both
X and Y are true. Likewise if FX ∧ Y occurs on a branch, the end of the branch may be split,
and FX added to one fork and FY to the other. Again the justification is simple: X ∧ Y is false
if and only if either X is false or Y is false. As it turns out, these rules are still correct using the
four-valued interpretation given above. It is easy to check that, in FOUR, X ∧ Y is either true or
⊥ if and only if both X and Y are either true or ⊥, hence the T rule; there is a similar justification
of the rule for FX ∧ Y .

As a matter of fact, every one of Smullyan’s (propositional) branch extension rules continues
to hold under our four-valued reading. And in addition, we can also develop rules to cover ⊕ and
⊗ as well. It can be checked that X ⊕ Y is true or ⊥ if and only if both X and Y are true or ⊥.

Melvin Fitting — Negation As Refutation 6

Table 1: The Conjunctive and Disjunctive Cases

α α1 α2

TX ∧ Y TX TY
FX ∨ Y FX FY
TX ⊕ Y TX TY
FX ⊕ Y FX FY

β β1 β2

FX ∧ Y FX FY
TX ∨ Y TX TY
TX ⊗ Y TX TY
FX ⊗ Y FX FY

Likewise X⊕Y is false or ⊥ if and only if both X and Y are false or ⊥. That is, both TX⊕Y and
FX ⊕ Y will have non-branching rules. Similarly both TX ⊗ Y and FX ⊗ Y will have branching
rules.

Smullyan introduced a system of uniform notation in order to condense several similar-appearing
rules into a single one [12], [13]. We extend his classification to cover the ≤k operations. Two
categories of formulas are defined, α signed formulas (which behave conjunctively) and β signed
formulas, which behave disjunctively. For each α, two components, α1 and α2, and for each β, two
components, β1 and β2 are defined. All this is given in Table 1.

Now the tableau branch extension rules for the binary connectives are simply these: a branch
containing an α may be extended with α1 and α2; a branch containing a β may be split, with one
fork containing β1 and the other β2. The negation rules are trivial: a branch containing F¬X may
be extended with TX; and a branch containing T¬X may be extended with FX.

A tableau construction has as its goal the production of contradictions. In Smullyan’s system,
a branch is closed if it contains TX and FX for some formula X. Since this intuitively says X is
both true and false, the information on the branch is contradictory, and work on the branch can
be discontinued. In our four-valued version, this closure rule must be dropped. Under our reading,
TX and FX are jointly possible: X has the value ⊥. In fact, in a reasonable sense there are no
tautologies in FOUR. Even a formula like p ∨ ¬p is not always true. For instance, if p is ⊥ then
p ∨ ¬p is also ⊥. This behavior is inherited from the Kleene three-valued logic. Consequently, we
must introduce extra machinery if we are ever to produce closed tableaux.

From now on we add to the language for Q-Log two propositional constants, true and false.
These can appear in formulas constituting clause bodies in programs. These constants are intended
to denote the corresponding truth values of FOUR. And now we have straightforward closure rules:
a tableau branch is closed if it contains either T false or F true. If every branch of a tableau is closed,
the tableau itself is called closed. Informally, a closed tableau for FX establishes that X is at least
true; a closed tableau for TX establishes that X is at least false. This can, of course, be made into
a formal result about the tableau system.

One further observation before we return to logic programming issues. In Smullyan’s original
system, whenever a propositional rule was applied on a branch the formula to which it was applied
could be removed; this did not affect completeness. The same applies here. Further, we have
dropped Smullyan’s closure rule, and this is the only rule that allows any interaction between
formulas. The closure rules we have added in its place only involve single formulas. Only the

Melvin Fitting — Negation As Refutation 7

α-rule adds multiple formulas to a branch. It follows that, in our present four-valued setting, this
rule can be replaced by the non-deterministic rule: if α occurs on a branch, either α1 or α2 can
be added. Since we can also remove formulas to which rules have been applied, the whole tableau
structure simplifies considerably: branches need never contain more than a single formula. Of
course the price to be paid is the necessity to backtrack and try a tableau involving α2 in the event
that one involving α1 fails to close. This kind of backtracking is typical of logic programming,
though, and suggests a reasonable place for the introduction of some parallelism.

From now on we will assume all four-valued tableaux are constructed in accordance with all
the simplifications introduced above, and so branches consist of single formulas. In implementation
terms, this means a tableau can be represented as a list of signed formulas, where each signed
formula corresponds to a (degenerate) branch.

Finally, we must assign a role in the tableau construction process to the logic program P whose
operational semantics we are supposed to be describing. In fact, we think of P as providing a
straightforward set of tableau rewriting rules. Suppose we have a tableau Θ, which are thinking
of as a list of signed formulas, as mentioned above. Suppose one of the formulas in Θ is TA, and
there is a clause in P of the form A ← B. Then the occurrence of TA in Θ can be replaced by
an occurrence of TB. Similarly, if Θ contains FA, this can be replaced by FB. More generally, if
Θ contains TA1 (or FA1), P has a clause A2 ← B, and θ is an mgu of A1 and A2, then TA1 (or
FA1) may be replaced by TB (FB) in Θ, and θ applied to all formulas in the result. We call this
the P replacement rule.

Using the list representation of tableaux, as above, closure is dealt with rather easily. Formulas
of the forms T false or F true can be removed from the list. And an empty list represents a closed
tableau, and hence a successful argument. Represented this way the similarity to SLD resolution
is apparent. If the initial tableau consists of the list [FX], a resulting closed tableau, or empty list,
constitutes a proof of X. A closed tableau produced by starting with [TX] amounts to a refutation
of X.

6 Basic Results

Theorem 1 Let P be a program, and A be a ground atomic formula. A has a truth value of true
or > in the least fixed point of ΦP if and only if A has a proof, allowing the P replacement rule.
A has a truth value of false or > in the least fixed point of ΦP if and only if A has a refutation,
allowing the P replacement rule.

This says our denotational and operational semantics for Q-Log agree well. There is still the
problem of familiarity, though. We are using a four-valued logic — how will ‘ordinary’ Horn clause
logic programs behave, since one tends to think of them in classical two-valued terms. A pure Horn
clause program corresponds to one in our language that allows only the connective ∧ in clause
bodies, and that allows true but not false. We must allow true in order to have a counterpart of
A←, which we represent as A← true.

Theorem 2 Let P be a program in which clause bodies may not contain ⊕, ⊗, ¬, ∨ or false, so
that P has a classical semantics, given by the TP operator. A ground atomic formula A has the

Melvin Fitting — Negation As Refutation 8

value true in the least fixed point of TP if and only if A has the value true in the least fixed point
of ΦP .

On the other hand, when negations are present our treatment will be different than that of,
say, Prolog. Most notably, we interpret free variables in clause bodies that are not also in heads
using

∑
rather than

∨
, and

∑
is its own dual under ¬. This means that unification is appropriate

for queries with free variables whether negations are involved or not. But one must remember
that it is the information content of clauses, rather than their truth content, that is fundamental.
We illustrate things with a very simple example, one that is familiar in the logic programming
literature. Consider the following program, E, for the even numbers:

even(0) ← true.
even(s(X)) ← ¬even(X).

We will ask the query ¬even(A), that is, we will attempt to construct a closed tableau starting
with [F ¬even(A)]. The construction is as follows, ignoring useless paths and backtracking.

[F ¬even(A)]
[T even(A)] using a negation rule
[T ¬even(X)] E-replacement rule, A = s(X)
[F even(X)] using a negation rule
[F true] E-replacement rule, X = 0
[] closure rule

A closed tableau results, yielding the answer substitution, A = s(0). The reader may wish to try
the slightly more complicated query, even(s(X)).

7 The Guard Connective

We have found it useful to introduce into Q-Log a connective that has no direct classical counterpart,
a guard connective. In classical logic programming there is a standard way to collapse multiple
clauses for the same relation into a single, more complicated, expression. As one step of this
conversion one turns p(a) ← q into p(X) ← (X = a) ∧ q. If this revised clause is used in Prolog,
which has negation-as-failure, the ∧ connective does not behave quite like a classical conjunction.
To succeed with, say, p(X) one must succeed with both components of the conjunction. But to
fail with p(X), because of Prolog’s left-right evaluation scheme, either one fails with the unification
X = a, or one succeeds with it, but fails with q. Thus, whether one is attempting to succeed or
to fail, one does not try to succeed or fail with q until first succeeding with X = a. The equality
behaves less like a component of a conjunction than it does like a guard for q. Observations like
these have led us to introduce a four-valued guard connective into Q-Log, and we close with a short
discussion of its properties.

We use the notation p : q to symbolize the guard connective; read it p guards q. The four-valued
truth table is very simple. If p is either ⊥ or false, p : q is ⊥ (if we cannot pass the guard, we get

Melvin Fitting — Negation As Refutation 9

Table 2: The Guard Connective Cases

β β1 β2

FX : Y FX FY
TX : Y FX TY

no information). If p is either true or > the value of p : q is the value of q. The guard connective
has several interesting properties. It is monotone with respect to the ≤k ordering but not with
respect to the ≤t one. A number of useful four-valued identities hold. For instance, the guard
connective is associative, and p : (q : r) = (p ⊗ q) : r. Distributivity laws hold; if ◦ is any of
∧, ∨, ⊗ or ⊕ then p : (q ◦ r) = (p : q) ◦ (p : r). Of possible left distributive laws, we do have
(p ◦ q) : r = (p : r) ◦ (q : r) for ◦ either ⊗ or ⊕. The other two left distributive laws fail, though
we do have (p ∧ q) : r = (p : r) ⊗ (q : r) and (p ∨ q) : r = (p : r) ⊕ (q : r). Finally we also have
p : ¬q = ¬(p : q).

Tableau rules for the guard connective are easy. Both the T and the F signed cases act dis-
junctively, so we merely add two more lines to the β table; the extra lines are given in Table 2.

Finally the guard connective does play its intended role, allowing several clauses of Q-Log for
the same relation to be combined into one. As an example, the program for the even numbers given
earlier is equivalent to the following (assuming reasonable behavior of equality).

even(X) ← (X = 0 : true) ⊕ (X = s(Y) : ¬even(Y))

8 Conclusion

The Q-Log system has been implemented in Prolog after making the usual compromises: unification
without an occurs check, and a deterministic order of query evaluation. The implementation is given
below. It is extremely simple, and behaves well on queries with free variables in the presence of
negation. Send an E-mail request to the author if you would like a copy of the implementation to
experiment with.

/* Q-Log,
a logic programming language based on the
bilattice FOUR, and implemented using an SLD
generalization based on semantic tableaux.

Melvin Fitting
October 20, 1988

*/

/* Axioms are written using the syntax:

Melvin Fitting — Negation As Refutation 10

<head> if <body>. <head> is atomic, and
<body> is any formula built up from atoms,
including constants true and false, using
neg (prefix), and, or, otimes and oplus
(all infix). The guard connective, :, is
also allowed in <body>. In addition,
there is a built-in binary predicate, eq.
eq(X, Y) is turned into Prolog’s X = Y.
neg eq(X, Y) is turned into Prolog’s
X \= Y. A <body> must always be present.

Axioms are stored in the form of Prolog
facts: axiom(---).

To enter a program, issue the Prolog query:
program. This will cause prompts for QLog
clauses, will read them, and will store them
as indicated above. To conclude entering a
program, enter end.

To ask a QLog program a query Q, issue the
Prolog query: query(Q). The query need not
be atomic.

To clear a program, issue the Prolog query:
reset.

*/

/* Propositional operators are: and, or, neg,
oplus and otimes. And, Or, oplus and otimes
are left associative. Also there are signs,
t and f, not accessible to the user.

*/

?-op(100, fy, neg).
?-op(110, yfx, and).
?-op(110, yfx, or).
?-op(110, yfx, oplus).
?-op(110, yfx, otimes).
?-op(140, fx, [t,f]).
?-op(135, xfx, if).

Melvin Fitting — Negation As Refutation 11

?-op(132, yfx, ’:’).

/* Define the propositional formula types.
*/

conjunctive(t _ and _).
conjunctive(f _ or _).
conjunctive(t _ oplus _).
conjunctive(f _ oplus _).

disjunctive(t _ or _).
disjunctive(f _ and _).
disjunctive(t _ otimes _).
disjunctive(f _ otimes _).
disjunctive(t _ : _).
disjunctive(f _ : _).

negative(t neg _).
negative(f neg _).

atomicfmla(X) :-
not conjunctive(X),
not disjunctive(X),
not negative(X).

/* components(F, One, Two) :-
signed formula F has One and Two
as its components.

*/

components(t X and Y, t X, t Y).
components(f X or Y, f X, f Y).
components(t X oplus Y, t X, t Y).
components(f X oplus Y, f X, f Y).

components(f X and Y, f X, f Y).
components(t X or Y, t X, t Y).
components(t X otimes Y, t X, t Y).
components(f X otimes Y, f X, f Y).

components(f X : Y, f X, f Y).
components(t X : Y, f X, t Y).

Melvin Fitting — Negation As Refutation 12

/* component(F, One) :-
signed formula F has One
as its only component.

*/

component(t neg X, f X).
component(f neg X, t X).

/* closes(Tableau) :- Tableau can be continued
to closure, allowing recursive calls via
the program.

*/

closes([]).

closes([f true|Rest]) :-
closes(Rest).

closes([t false|Rest]) :-
closes(Rest).

closes([f eq(X, Y)|Rest]) :-
X=Y,
closes(Rest).

closes([t eq(X, Y)|Rest]) :-
X\=Y,
closes(Rest).

closes([Negation | Rest]) :-
negative(Negation),
component(Negation, Positive),
closes([Positive | Rest]).

closes([Alpha | Rest]) :-
conjunctive(Alpha),
components(Alpha, Alphaone, Alphatwo),

(closes([Alphaone | Rest]);
closes([Alphatwo | Rest])).

closes([Beta | Rest]) :-

Melvin Fitting — Negation As Refutation 13

disjunctive(Beta),
components(Beta, Betaone, Betatwo),
closes([Betaone, Betatwo | Rest]).

closes([A | Rest]) :-
atomicfmla(A),
A =.. [Sign, Head],
Head \= eq(_,_),
axiom(if(Head, Body)),
B =.. [Sign, Body],
closes([B | Rest]).

/* And now, the program, execute instructions.
*/

program :-
write(’Enter axioms one at a time, ’),
write(’in the form’), nl,
write(’P if Q.’), nl,
write(’"end." to terminate.’), nl,
read_program.

read_program :-
write(’Enter a clause.’), nl,
read(X),
X \== ’end’,
assertz(axiom(X)), !,
read_program.

read_program :-
nl, nl, nl, nl, nl,
write(’To ask questions, ’)
write(’issue queries of the form’), nl,
write(’query(X).’), nl,
write(’To start over, type’), nl,
write(’reset.’), nl.

query(X) :- closes([f X]),
write(’Q-Log Yes’), nl.

query(X) :- write(’Q-Log No’), nl, fail.

reset :-

REFERENCES 14

retract(axiom(_)), fail.
reset :-

write(’Done.’), nl.

References

[1] K. R. Apt and M. H. van Emden, Contributions to the theory of logic programming, JACM,
pp 841–862, vol 29 (1982).

[2] N. D. Belnap, Jr. A Useful four-valued logic, in Modern Uses of Multiple-Valued Logic, J.
Michael Dunn and G. Epstein editors, pp 8–37, D. Reidel (1977).

[3] H. A. Blair, V. S. Subrahmanian, Paraconsistent logic programming, Proc. of the 7th Con-
ference on Foundations of Software Technology and Theoretical Computer Science, Springer
Lecture Notes in Computer Science, vol 287.

[4] M. C. Fitting, A Kripke/Kleene semantics for logic programs, Journal of Logic Programming,
pp 295–312 (1985).

[5] M. C. Fitting, Partial models and logic programming, Theoretical Computer Science, pp 229–
255, vol 48 (1986).

[6] M. C. Fitting, Bilattices and the semantics of logic programming, forthcoming in Journal of
Logic Programming.

[7] M. L. Ginsberg, Multi-valued logics, Proc. AAAI-86, fifth national conference on artificial
intelligence, pp 243–247, Morgan Kaufmann Publishers (1986).

[8] M. L. Ginsberg, Multivalued Logics: A Uniform Approach to Inference in Artificial Intelligence,
Computational Intelligence, vol 4, no. 3.

[9] S. C. Kleene, Introduction to Methmathematics, Van Nostrand (1950).

[10] K. Kunen, Negation in logic programming, J. Logic Programming, pp 289–308 (1987).

[11] K. Kunen, Signed data dependencies in logic programs, forthcoming in Journal of Logic Pro-
gramming.

[12] R. M. Smullyan, A Unifying principle in quantification theory, Proc. Nat. Acad. of Sci., June
1963.

[13] R. M. Smullyan, First Order Logic, Springer-Verlag, 1968.

[14] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Math-
ematics, vol 5, pp 285–309 (1955).

[15] M. van Emden and R. A. Kowalski, The Semantics of predicate logic as a programming lan-
guage, JACM, pp 733–742, vol 23 (1976).

REFERENCES 15

[16] A. Visser, Four valued semantics and the liar, Journal of Philosophical Logic, pp 181–212, vol
13 (1984).

