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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 38, Number 4, Dec. 1973 

MODEL EXISTENCE THEOREMS FOR MODAL 
AND INTUITIONISTIC LOGICS 

MELVIN FITTING 

?1. Introduction. In classical logic a collection of sets of statements (or equiva- 
lently, a property of sets of statements) is called a consistency property if it meets 
certain simple closure conditions (a definition is given in ?2). The simplest example 
of a consistency property is the collection of all consistent sets in some formal sys- 
tem for classical logic. The Model Existence Theorem then says that any member of 
a consistency property is satisfiable in a countable domain. From this theorem 
many basic results of classical logic follow rather simply: completeness theorems, 
the compactness theorem, the Lowenheim-Skolem theorem, and the Craig inter- 
polation lemma among others. The central position of the theorem in classical 
logic is obvious. For the infinitary logic L,10, the Model Existence Theorem is even 
more basic as the compactness theorem is not available; [8] is largely based on it. 

In this paper we define appropriate notions of consistency properties for the 
first-order modal logics S4, T and K (without the Barcan formula) and for intuition- 
istic logic. Indeed we define two versions for intuitionistic logic, one deriving from 
the work of Gentzen, one from Beth; both have their uses. Model Existence 
Theorems are proved, from which the usual known basic results follow. We 
remark that Craig interpolation lemmas have been proved model theoretically for 
these logics by Gabbay ([5], [6]) using ultraproducts. The existence of both ultra- 
product and consistency property proofs of the same result is a common phenom- 
ena in classical and infinitary logic. We also present extremely simple tableau 
proof systems for S4, T, K and intuitionistic logics, systems whose completeness is 
an easy consequence of the Model Existence Theorems. Indeed, the existence of a 
'good' tableau proof system for a logic is equivalent to the existence of a 'useful' 
notion of consistency property for the logic (a vague but valid statement). Finally, 
various embedding theorems (classical in S5, intuitionistic in classical, classical in 
S4) are proved using classical consistency properties. 

We were not able to extend our methods to the modal logics B and S5. The 
symmetry of the accessibility relation of their Kripke models seems difficult to 
handle. Possibly an approach using "prefixed" formulas as in [4] will work, 
though we suspect the resulting Model Existence Theorems will be more difficult 
to apply. 

We use the uniform notation of [10] adapted to our needs. This enables us to 
take all connectives, quantifiers and modal operators as primitive. We first work 
with S4, then give modifications to treat T and K. Intuitionistic logic is discussed 
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614 MELVIN FITTING 

last. We begin, however, with a section on classical consistency properties, both 
for their own sake and to establish notation. 

?2. Classical consistency properties. We assume we are dealing with a first-order 
language Lc built up from countably many constants, variables and relation 
symbols. By L* we mean the language which results when the list of constants of 
Lc is enlarged by the addition of countably many new constant symbols. We take 
all of A , V, a, - , V, and 3 as primitive. We follow the convention that a state- 
ment is a formula with no free variables. Since we are assuming such a large set 
of primitives, a uniform treatment, as in [10] becomes advisable. We may use 
either unsigned or signed statements at this point. We find unsigned statements 
slightly simpler here, but signed statements will be essential for intuitionistic logic, 
and will be presented then. 

The collection of statements is divided into six groups: atomic statements, 
negations of atomic statements, conjunctives (ac), disjunctives (), universals (y) 
and existentials (8). Associated with each conjunctive or a statement are two 
components, a1 and a2. Likewise, with each disjunctive or P statement are associated 
its components, P3 and f2. The following chart defines these notions. 

a a1 a2 P P1 /2 

(X A Y) X Y (X V Y) X Y 

-(X V Y) X Y (X A Y) X Y 
(XD Y) X MY (X' Y) X Y 

X X 

Associated with each universal or y statement are its instances y(c) for each con- 
stant symbol c. Likewise for existential or 8 statements. 

y Y(c) 8 8(c) 

(Vx)A(x) A(c) (3x)A(x) A(c) 
- (3x)A(x) A (c) (Vx)A(x) A (c) 

Now we define the notion of classical consistency property. Let V be a collection 
of nonempty sets of statements of L*. V is a classical consistency property if, for 
each S E W, 

(1) if A is atomic, not both A E S and -A e S, 
(2) aE S > S u {a, a2} E W, 
(3) ,Be S o S u {fl1} e V or S U {,2} e 'e, 

(4) y E S > S u {y(c)} E V for each constant c of L*, 
(5) 8 E S > S u {8(c)} E V for some constant c of L*. 
MODEL EXISTENCE THEOREM FOR CLASSICAL LOGIC. Let S be a set of statements 

of Lc. If S belongs to some classical consistency property, S is satisfiable. 
It is here that we must observe that basically two definitions of classical con- 

sistency property have been proposed in the literature. The above, which we will 
temporarily call weak consistency, and one (see [10]) which substitutes for clause 
(5) the condition 
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MODAL AND INTUITIONISTIC LOGICS 615 

(5') 8 E S > S u {8(c)} E V for each constant c not appearing in S. 
Let us call sets r satisfying conditions (1)-(4) and (5') strong consistency proper- 
ties. For modal and intuitionistic logics we will need both notions, so we now discuss 
their relationship in the classical case, which carries over to the nonclassical. 

Let 6s be a strong consistency property. If we define V,, by S E V6'W if S E Vs and 
there are infinitely many constants of L* not appearing in S; it is easy to see that 
V, is a weak consistency property (and if S is a set of statements of L,, then S E es 
implies S E %'). 

Let us call a a substitution if c is a map from the set of constants of L* to itself. 
If X is a formula let a(X) be the result of applying a to each constant in X. Similarly 
a may be extended to sets of statements. Now, suppose W,, is a weak consistency 
property. Define Vs by S E (s if, for some substitution a, u(S) e V. Then As is a 
strong consistency property (and %W ' Vs). Thus these two notions are essentially 
equivalent. 

?3. Modal logic preliminaries. Let L, be the modal language corresponding 
to Lc, but including D1 and K among its primitives. Likewise let L* and L* corre- 
spond, i.e., L* has countably many more constants than LM. We continue the 
y, ,, 8 division and, following [4] add two more categories, necessaries (v) and 

possibles (v). These, together with their instances, are given in the following charts. 

V V0 7T 7T0 

EZX X OX X 

Cx OX F4ZX OX 

We will have much to do with Kripke models, but the only ones we need to 
consider here have the constants of L* as domain, each interpreted as naming 
itself. Consequently, to simplify notation we will suppress any mention of inter- 
pretation in our definition of Kripke models. 

DEFINITION. By a K model (see [9]) we mean an ordered quadruple <G, R, k, P> 
where 

(1) G is a nonempty set (of possible worlds), 
(2) R is a relation on G (of relative possibility or accessibility), 
(3) P is a function from G to nonempty sets of constants of L* satisfying the 

condition: for r, A E G, if r R A then P(r) c P(A) (P(r) is the set of "things" 
in the world r), 

(4) k is a relation between members of G and statements of L* (r k X means X 
is true in the world F) satisfying, for each r E G, 

(a) r k -X" r 
M 
x (i.e., not r k x), 

(b) r k a" Fo a, andr F a2, 

(c) rFkl<-*Fk81orr kf2, 
(d) r k yer F k y(c) for each c eP(r), 
(e) rF a 5- r k a(c) for some c E P(r), 
(f) r Fkv< Avoforevery AeGsuchthat rRA, 
(g) r k Ac A k 7 for some A E G such that r R A. 
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616 MELVIN FIMNG 

REMARK. In the above definition one each of (b) or (c), (d) or (e) and (f) or (g) 
is redundant. 

DEFINITION. <G, R, k, P> is a T model if R is reflexive, and an S4 model if R 
is reflexive and transitive. 

We note for future use that if G, R and P satisfy conditions (1), (2) and (3) and 
k is specified for atomic statements of L* then k can be extended in one and only 
one way to a relation, again denoted by 1, so that <G, R, 1, P> is a K-model. This 
may be shown by an induction on degree. 

DEFINITION. Let S be a set of statements of L*. We say S is K-satisfiable 
(T satisfiable, S4 satisfiable) if there is some K model (T model, S4 model) 
<G, R, k, P> and some r E G with every constant of S in P(r) such that r k x 
for every X E S. We say X is K valid (T valid, S4 valid) if { X} is not K satisfiable 
(T satisfiable, S4 satisfiable). 

?4. S4 consistency properties. We use S, for {v I v e S}. 
DEFINITION. Let W be a collection of sets of statements of L*. We call W an 

S4 consistency property if it is a classical consistency property and in addition, 
for each S E W, 

(6) v E S SU {vo} ems 

(7) 7 eS-SSU{o} }e-W. 
MODEL EXISTENCE THEOREM FOR S4. Let S be any set of statements of LM. If 

S belongs to some S4 consistency property, S is S4 satisfiable. 
The remainder of this section is devoted to a proof of the above theorem. First, 

we may define a notion of strong S4 consistency property by changing the appro- 
priate clause in the above definition from "it is a classical consistency property" 
to "it is a strong classical consistency property." Then, using the methods of ?3 
we may show the following: 

LEMMA. Any S4 consistency property may be extended to a strong S4 consistency 
property. 

LEMMA. Let W be a strong S4 consistency property. Let W' be the result of en- 
larging W be adding all unions of chains in le. Then W' is again a strong S4 consistency 
property. 

PROOF. The seven conditions of the definition must be verified for ?'. We 
check conditions (3) and (5') and leave the rest to the reader. 

We deal with condition (5') first. Suppose S E W%, 8 E 5, and c is a constant not 
appearing in S. Let S be UjSj where the Si constitute a chain in W. 8 E S, so 8 
belongs to each St from some point in the chain on. By discarding an initial seg- 
ment of the chain we may suppose 8 belongs to each member of the chain. Since c 
does not appear in S it is not in any St. Then St u {S(c)} Ei W for each i. And 
S u {S(c)} = UJ[S1 u {8(c)}], which is a chain union. Thus S u {S(c)} E 'l'. 

To verify condition (3), let us suppose S = UjS1 where the Si constitute a chain 
in K, and fi E S. As above we may assume P is in each S1. Now for each i, either 
Si u {P1} E W or Si U {P2} e W. Let -i be the set of those St such that St U {l} E W, 
and let .d consist of those Si such that St U {f2} e W. Both a and - are chains, 
and either S = Ua or S = Up depending on whether -W or . is cofinal with 
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MODAL AND INTUITIONISTIC LOGICS 617 

the chain. Say S = US.- Then S u {#,} is the union of the chain consisting of all 
Si u {P,} with Si e s/, thus S u {flj} E W'. Similarly if S = US 

From these lemmas we immediately get the following: 
THEOREM. Any S4 consistency property may be enlarged to a strong S4 con- 

sistency property which is closed under chain unions. 
DEFINITION. Let D be a set of statements and C be a nonempty set of con- 

stants, including at least all those occurring in D. We say D is downward saturated 
with respect to C if 

(1) if A is atomic, not both A E D and -A e D, 
(2) a E D -> a, E D and a2 e D, 
(3) f e D --> f1 E D or P2 E D, 
(4) y E D -> y(c) E D for each c E C, 
(5) 8 eD-DS8(c)eD forsome ceC, 
(6) v e D -o Ve D. 

KEY LEMMA. Let W be a strong S4 consistency property which is closed under 
chain unions. Let SO be a member of ? and CO be the set of constants of SO. Suppose 
{C1, C2, C3, * * } is a countable set of constants not in CO and let C = CO U {C1, C2, C3, * * }. 

Then So has an extension S in V, which is downward saturated with respect to C. 
PROOF. Let X0, X1, X2, * be an ordering of the set of all statements involving 

only constants of C. We define a sequence, SO, S,, 52,*** of members of W. 
SO is given. 
Suppose Sn has been defined, so that Sn e V, and only finitely many of 

{C1, C2, can } occur in Sn. We define an auxiliary finite sequence, s, n n 

as follows. 
Let s? = Sn. 
Suppose Sk has been defined for some k < n so that Sk E W and only finitely 

many of {C1, C2, C3, } occur in Sk. Consider the statement Xk. If Xk does not 
belong to sk, let Sk + = Sk. If it does, we have several possibilities. 

Case 1. Xk is atomic or negation of atomic. Let Sk+1 = s. 

Case 2. Xk is an a. Let 5k+1 = sk U {cl, a2}. 

Case 3. Xk is a ,B. Let S+ 1 = Sk U {1} if that is in W, otherwise let k+1= 

Sn U {f2}- 

Case 4. Xk is a y. Since V is closed under chain unions, Sk U {y(C) Ic E Co} U 
{y(c1), y(c2),* *, y(Cn)) belongs to W. Let it be snj. 

Case 5. Xk is a 8. Let ci be the first of C1, C2, C3,a.* not occurring in sky Let 
Sk+1 = Sk U {8(cI)}. 

Case 6. Xk is a v. Let Sk+1 = sk y {} 
Case 7. Xk is a 7r. Let Sk = sk 

In each case, Snk+1 E W, and Sk+1 involves only finitely many of {C1, C2, C3,* 

Now, let S,+,- = Sn . Thus the sequence SO, S1, S2, has been defined. Each 
S, E W,, and clearly So cS1 C S2 C Since e is closed under chain unions, 
S = UnSn is in W, and it is easy to see Sis downward saturated with respect to C. 
This concludes the proof. Now, finally, 

PROOF OF MODEL EXISTENCE THEOREM FOR S4. Let W be a strong S4 consistency 
property which is closed under chain unions. Let S be a set of statements of LM, 
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618 MELVIN FITING 

and suppose S E Tl. We use Z' to create an S4 model <G, R, 1, P> in which S is 
satisfiable. 

First, partition the constants of L* into countably many, countable, disjoint sets, 
C1, C2, C3, , so that all constants of LM are in C1. Let P, = C1 U C2 u ... U Cn. 
Now, let G consist of all ordered pairs, <F, Pn>, where r is a member of V which 
is downward saturated with respect to Pri. Let <F, Pn> R <l\, Pk> mean rP c A 
and Pn, C Pk. Next, let P(<r, Pn>) = Pn. Finally, if A is atomic, let <r, Pn> I A 
provided A E r. Then 1 can be extended so that <G, R, k, P> is an S4 model. We 
claim, for any statement X of L* and for any <r, Pn> c G, 

(*) Xe?rK<r, Pn>I=X 

This may be shown by an induction on the degree of X. It is immediate for atomic 
statements. Suppose now X is of degree k > 0 and (*) is known for statements of 
lower degree. We have several cases. 

If X is the negation of an atomic statement (*) is easily obtained using clause (1) 
of the definition of consistency property. 

Suppose X is a y. If X e r, since r is downward saturated with respect to Pn, 
y(c) e r for each C _ Pn. By the induction hypothesis, <rPn> k y(c) for each 
c E Pw, that, is, for each c E P(<r, Pn>). Then <r, Pn> I y. 

Suppose X is a a. If X E r, since r E V and V is a strong S4 consistency property, 
rv U {iO} e W. By the Key Lemma, rv u {ro} may be extended to a set downward 
saturated with respect to Pn +I , call it A\. Then <A, Pn + 1> e G, and <r,Pn> R 
<A, Pn,+>. Now ao e A so by the induction hypothesis, <L, Pn+1> k ao hence 
<F, Pn> h kT. 

The other cases are left to the reader. 
Now S E W. S may be extended to a set r downward saturated with respect to 

P2. <r, P2> E G, and by (*), X E S - <r, P2> k X, hence S is S4 satisfiable. 

?5. Applications. The basic uses of the S4 Model Existence Theorem are the 
same as those of the classical one. We summarize them. 

I. Completeness of axiom systems. The completeness of any of the usual S4 
axiom systems follows once it has been shown that the collection of all sets which 
are consistent in the sense of the axiom system constitutes an S4 consistency 
property. 

II. Completeness of tableau systems. The classical tableau proof system using 
unsigned statements given on pp. 20 and 53 of [10] may be extended to a remark- 
ably convenient proof system for first-order S4 by the addition of two rules: 

If v occurs on a branch, vo may be added to the end of the branch. 
If a occurs on a branch, ITo may be added to the end of the branch, but all state- 

ments on the branch which are not v statements (necessaries) must be crossed out 
first. 

Schematically these may be given as 

-~, -~- (but cross out all nonnecessaries). 
vO a y t 

REMARK. In applying the second of these rules it may happen that we encounter 
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MODAL AND INTUITIONISTIC LOGICS 619 

a statement occurrence common to several branches, and which must be crossed 
out on only one of these. As a practical device, delete it, then add fresh occurrences 
of it at the ends of the branches on which it is to remain undeleted. 

The correctness of this tableau system may be established in the usual tableau 
way. Also, if we call a finite set of statements of L* consistent provided no tableau 
for it closes, the collection of consistent sets constitutes an S4 consistency property, 
and completeness follows. 

III. Completeness of Gentzen systems. The completeness of Gentzen systems 
for S4, say those in the Appendix of [2], may be shown in the following way. Call 
a finite set of L* statements {X1, X2 ..., Xn, Y1, ... Yk} consistent if the 
sequent X1, X2, ., Xn V Y1, Y2,. ., Yk is not provable. The collection of con- 
sistent sets is an S4 consistency property and completeness follows. 

IV. Compactness Theorem. If we let V consist of those sets of statements of 
L* every finite subset of which is S4 satisfiable, le is an S4 consistency property. 
We thus have: If every finite subset of a set of LM statements is S4 satisfiable, so 
is the entire set. 

V. Lowenheim-Skolem Theorem. For this paragraph only let us allow S4 
models involving uncountably many constants. Let le be the collection of all 
subsets of L* which are S4 satisfiable, allowing these uncountable models. V is 
an S4 consistency property. Then the S4 Model Existence Theorem and its proof 
give a Lowenheim-Skolem Theorem for S4. 

VI. Craig Interpolation Lemma. If S is a finite set of statements, in the interests 
of simple notation we will sometimes use S to denote the conjunction of the 
members of S, grouped arbitrarily. 

Let us say the statement X - Y has an interpolant if (1) - X is S4 valid, or 
(2) Y is S4 valid, or (3) there is a statement Z all of whose constant and relation 
symbols are common to X and Y, such that both X v Z and Z v Y are S4 
valid. 

Now suppose we let V consist of those finite sets S of L* which can be par- 
titioned into two disjoint subsets, S1 and S2, so that S1D S2 has no interpolant. 
V is an S4 consistency property. We leave the verification of most of the clauses 
to the reader and discuss only the iT case. 

Suppose S e - and e c S. We show S, U {ro} e W. Since S e -6l, S can be par- 
titioned into S1 and S2 so that S1 D -2 has no interpolant. ia is in one of S1 or 
S2, let us say S1; the proof if 7 e S2 is similar. To make the notation reflect that V 
is in S1, we henceforth write S1 as S' U {ia} where ia is not in S'. Thus we have that 
(S' A 7T) D S2 has no interpolant. 

Now, if S, u {70} did not belong to le, (S', A 7To) S2S would have an inter- 
polant. There are three possibilities. 

Case 1. -(S', A rT) is S4 valid. Then so is S', To. Hence also DlSJ'D 
Li - 7'o. But, in S4, DS'V S', and [-I 7TO _ T, so we have S', ' . From 
this we get S' D , so finally, (SI A 7T) is S4 valid, contradicting the fact that 
(S' A 7 D S2 has no interpolant. 

Case 2. S2V is S4 valid. But S2 S2v, so S2 is also S4 valid, again a con- 
tradiction. 

Case 3. There is a statement I of all whose constant and relation symbols 
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620 MELVIN FITTING 

are common to (Stv A 7T) and S2V, such that both of the following are S4 
valid: 

(1) (Siv A ,o) D L 

(2) I D S2V. 
From (1) we obtain the S4 validity of 

SlV D P'70), lSl D I7I'la ), 

(Li1Siv A Ha-D -r0o) PI (St A ?T) v OL 
From (2) we obtain the S4 validity of 

S2V-DHI, DS2D v ELI, S2-SKI, I- S2. 

Thus (St A -g) O S2 has an interpolant (>I, again a contradiction. We conclude 
Sv U {TO} e C 

Now the Craig Interpolation Lemma for S4 follows easily. Suppose X - Y 
is a statement of LM which is S4 valid. Then {X, Y} is not S4 satisfiable. By the 
Model Existence Theorem for S4, {X, Y} 0 W, so X = Y must have an inter- 
polant. 

?6. The logics T and K. I. By Svo we mean {vo I v E S}. Now, by a T consistency 
property we mean a collection V satisfying all the conditions for an S4 consistency 
property, except that (7) is replaced by 

(7') if v E Sle then S,0 U {-o} Aid 
The proof of the S4 Model Existence Theorem adapts to T simply by replacing 
S, by SO at appropriate points in the argument. Thus we have 

MODEL EXISTENCE THEOREM FOR T. If S is a set of statements of LM which 
belongs to some T consistency property, then S is T satisfiable. 

The applications of this theorem are akin to those of ?5 and are left to the reader. 
We remark, however, that the following constitutes a complete tableau system 
for T: Add to the classical system of [10] the following two rules: 

If v occurs on a branch, i'0 may be added to the end of the branch. 
If v occurs on a branch, ?T may be added to the end of the branch, but all 

statements on the branch which are not v statements must be deleted, and any 
statement of the form v must be replaced by vo. 

II. By a K consistency property we mean a collection V satisfying all the con- 
ditions for a Tconsistency property except possibly (6) if v E S E V then S u {vo} E W. 
Again the work of ?4 easily adapts to show the following: 

MODEL EXISTENCE THEOREM FOR K. If S is a set of statements of LM which 
belongs to some K consistency property, then S is K satisfiable. 

A tableau system for K results very simply if from the above tableau system for 
T we delete the rule: If v occurs on a branch, vo may be added to the end of the 
branch. We leave the basic applications of this Model Existence Theorem to the 
reader. 

?7. Intuitionistic logic preliminaries. Recall L, is the classical language with 
A, V, a, V and 3 primitive. L* has countably many more constants. We will 
use Kripke intuitionistic logic models, but we will only consider those whose 
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MODAL AND INTUITIONISTIC LOGICS 621 

domains consist of constants of L* and so no notion of interpretation will be men- 
tioned. 

DEFINITION. By an intuitionistic model (see [9] and [3]) we mean an ordered 
quadruple <G, R, k, P> where 

(1) G is a nonempty set, 
(2) R is a transitive, reflexive relation on G, 
(3) P is a function from G to nonempty sets of constants of L* satisfying the 

condition P R A -? P(P) c P(A), 
(4) k is a relation between members of G and statements of L* satisfying, for 

each P E G, 
(a) P k A, P R Al 1= A, for atomic, 
(b) P k (X A Y) -Pk Xand rP Y, 
(c) rP(Xv Y)+-PkXorrP Y, 
(d) P1= -- X+-> for each A c G such that P R A, not A h X, 
(e) rP (X- Y) for each A E G such that P R A, if A k X then A k Y, 
(f) rP h (Vx)A(x) for each A e G such that P R A, A 1h A(c) for each c E P(A), 
(g) rP h (]x)A(x) -P 1 A(c) for some c E P(P). 

As for modal logics, h is completely determined if its behavior is known for 
atomic statements, but that may be arbitrarily specified. 

Important observation. Condition (a) actually holds for all statements, not just 
atomic ones; proof is by induction on degree. 

Note that rP 1 X is not the same as P M X. It thus becomes useful to introduce 
signed statements as in [3]. 

DEFINITION. By a signed statement we mean TX or FX where X is a statement 
of L*. We use rP h TX as synonymous with rP h X, and rP 1 FX with rP X. 

If S is a set of signed statements we say S is intuitionistically satisfiable if there 
is some intuitionistic model, <G, R, h, P>, and some P e G with every constant 
of S in P(r), such that rP Z for each Z e S. (This was called realizability in [3].) 
We say a set S of unsigned statements is intuitionistically satisfiable if {TX I X e S} 
is intuitionistically satisfiable. Finally we say X is intuitionistically valid if {FX} 
is not intuitionistically satisfiable. 

For some of our work it is convenient to continue using uniform notation, but 
it must be modified to apply to signed statements. The following charts (see [10]) 
do this. 

a( j (a1 a?2 p 1 p2 

T(X A Y) TX TY T(X v Y) TX TY 
F(X v Y) FX FY F(X A Y) FX FY 

(*)F(X Y) TX FY T(X ' Y) FX TY 
(*)F X TX TX T X FX FX 

y y(c) 8 8(c) 

T(Vx)A(x) TA(c) T(]x)A(x) TA(c) 
F(3x)A(x) FA(c) (*) F(Vx)A(x) FA(c) 
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622 MELVIN FITTING 

The starred signed statements, F X, F(X D Y) and F(Vx)A(x) are called 
special. All other signed statements are regular. 

?8. Intuitionistic logic consistency properties. Unlike the logics discussed so far, 
there is no unique "natural" notion of consistency property for intuitionistic 
logic, rather there are several, since stricter or more liberal versions of some of 
the closure conditions are possible. The two extremes are what we deal with; 
arising from work of Beth and Gentzen. 

We use ST for {TX I TX E S}. 
DEFINITION. By a Beth (intuitionistic) consistency property we mean a collec- 

tion W of sets of signed statements of L* such that, for each S E W, 

(1) if A is atomic, not both TA E S and FA E S, 
(2a) if a is regular, aE S S u {a1, a2} em 

(2b) if a is special, a E S ST U {al, a2} c, 
(3) /eS-?Su{flj}e 62or Su{32}e C', 

(4) y E S -? S u {y(c)} E W for each constant c, 
(5a) if 5 is regular, 5 E S - S u {8(c)} E l for some constant c, 
(5b) if 5 is special, 5 E S ST U {8(c)} E l for some constant c. 

It is possible to adapt the work of ?4 along the lines of ??3, 4 and 5 of Chapter 5 
of [3] to produce a direct proof of an intuitionistic model existence theorem for 
this notion of consistency property. We do not take this route however. Instead 
we introduce a second notion of intuitionistic consistency property and work with 
it directly, and thus with the above indirectly. For this, uniform notation is no 
longer useful. 

DEFINITION. Let W be a collection of sets of signed statements of L*. We call 
W a Gentzen (intuitionistic) consistency property if, for each S E W, 

(1) if A is atomic, not both TA E S and FA E S, 
(2) T(X A Y)eS-+Su{TX,TY}erf, 
(3) F(X A Y)eS-+STu{FX}e 'orSTu{FY}e ', 
(4) T(Xv Y)eS+Su{TX}e K orSu{TY}e6, 
(5) F(X v Y) E S- ST u {FX} Ale and ST u {FY} ecl, 
(6) T Xe S- ST u {FX} c l, 
(7) Fig XeS-STu{TX}ecl, 
(8) T(X Y) E S ST u {FX}e9 or S u {TY}e l, 
(9) F(XD Y) E S STu {TX, FY} E V, 

(10) T(Vx)A(x) E S S u {TA(c)} E K for every constant c, 
(1 1) F(Vx)A(x) E S ST u {FA(c)} E K for some constant c, 
(12) T(]x)A(x) E S S u {TA(c)} E W for some constant c, 
(13) F(3x)A(x) E S ST u {FA(c)} E W2 for every constant c. 

LEMMA. Let I be a Beth consistency property. Let ' consist of those sets S of 
signed statements such that for some S* EX, ST% S and SF C SF (SFP 
{FX I FX E S}). Then 9 is a Gentzen consistency property. 

COROLLARY. Every Beth consistency property may be extended to a Gentzen 
consistency property. 

LEMMA. A Gentzen consistency property may be extended to a strong Gentzen 
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MODAL AND INTUITIONISTIC LOGICS 623 

consistency property (that is, one meeting the above conditions, but with (11) and 
(12) replaced by 

( 1') F(Vx)A(x) e S ST U {FA(c)} E 'I for each constant c not appearing in S, 
(12') T(]x)A(x) E S S U {TA(c)} E 1& for each constant c not appearing in S). 
LEMMA. Any strong Gentzen consistency property can be extended to a strong 

Gentzen consistency property closed under chain unions. 
DEFINITION. Let D E ro (a Gentzen consistency property) and let C be a non- 

empty set of constants, including at least all those occurring in D. We say D is 
T-saturated with respect to C if 

(1) if A is atomic, not both TA E D and FA E D, 
(2) T(X A Y) E D TX E D and TY E D, 
(3) T(X v Y)eD-D TXD orTYeD, 
(4) T(XD Y) E D and D u {TY} E 62 TY E D, 
(5) T(Vx)A(x) E D TA(c) E D for each c E C, 
(6) T(]x)A(x) E D TA(c) E D for some c E C. 
KEY LEMMA. Let V be a strong Gentzen consistency property which is closed 

under chain unions. Let SO E V and let CO be the set of constants of SO. Suppose 
{Cab c2, c3, } is a countable set of constants none of which appear in CO, and let 
C = CO U {C1, c2, c3,... }I Then SO has an extension S in V which is T-saturated 
with respect to C. 

MODEL EXISTENCE THEOREM FOR INTUITIONISTIC LOGIC. Let S be a set of signed 
statements of Lc. If S belongs to either a Beth or a Gentzen consistency property, S 
is intuitionistically satisfiable. 

PROOF. By the preceding, it suffices to show this for the special case S E W 
where & is a strong Gentzen consistency property closed under chain unions. 
Partition the constants of L* into countably many countable, disjoint sets, 
C1, C2, C3,*** so that all constants of Lc are in C,. Set P, = C1 u C2 .J u Cn. 
Let G consist of all ordered pairs Kr, Pn> where F is a member of W which is 
T-saturated with respect to Pn. Let <F, P.> R <A, Pk> mean rT C I and P. c Pk. 

Next, let P(<r, P.>) = P,. Finally, if A is atomic, let <F, P.> k A if TA E F. This 
determines an intuitionistic model KG, R, k, P>. We claim, for each <Fr, P.,> E G 
and each statement X of L*, 

(*) TX r <TPP> kX, 
FX C r <r5 Pn> bV x. 

(*) is shown by induction on the degree of X. 
Case 1. X is atomic. Then (*) is valid by definition of k and clause (1) of the 

definition of Gentzen consistency property. 
Now suppose (*) is known for statements of degree less than k > 0, and X is 

of degree k. Suppose first that X is (A A B). 
Case 2. TXe r, i.e., T(A A B) c r. Since r is T-saturated with respect to 

Pn, TA E r and TB E1 r. By the induction hypothesis, <r, Pn> k A and KF, Pn> I B, 
so <rPn> k(A A B). 

Case 3. FXe r, i.e., F(A A B) E 1. Thej either IT u {FA} E 'Cor rT U {FB} E aV, 
say the former. By the Key Lemma, rT U {FA} may be extended to some A E c' which 
is T-saturated with respect to Pn,1. <A, Pn+1> E G, and <r, Pn> R <A, P,+1>. 
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624 MELVIN FITrING 

Moreover, by the induction hypothesis, since FA E A, <L, , P,+1> V A. It follows 
that <1r, Pn> M A, so <F, P,> I (A A B). 

We leave the remaining cases to the reader. 
We conclude this section with the remark that this work can be adapted to 

minimal logic by defining -X as X :D f, and then postulating no special con- 
ditions on f. We do not carry out the details. 

?9. Basic applications. I. Completeness of axiom systems. If we choose some 
standard axiom system for intuitionistic logic and let W' consist of those finite 
sets {TX1, ... TXn, FY1, , FYk} such that (t A Xi A ... A Xj) D (f V 

Y1 v *v Yk) is not provable (where t is a constant-free theorem and f is its 
negation), W is a Beth consistency property. Now completeness follows. 

II. Completeness of tableau systems. The classical tableau system of [10] 
using signed statements needs only a few simple changes to become an intuitionistic 
system. The rules 

P1 | 2 y(c) for any constant c 

remain the same. To the a and 8 rules a proviso is added 

a S 
a1' 8(c) for any unused c, proviso 
a2 proviso 

where the proviso is: If the signed statement to which the rule is applied is special, 
all F-signed statements on the branch must be crossed out before the result of the 
rule is added to the end of the branch. (An intuitive explanation of this proviso 
is given in [3].) 

If we let W consist of those finite sets S of signed statements such that no tableau 
for S closes, W is a Beth consistency property, and completeness follows easily. 
This is the basic tableau system of [3]. The alternate tableau system of ?4 of Chapter 
6 has a similar completeness proof, using Gentzen consistency properties. We leave 
this to the reader. 

III. Completeness of Gentzen systems. Let W consist of those finite sets 
{TX1,.**, TXn, FY} such that X1, * , XX -* Y is not provable in the Gentzen 
system LJ of [7]. Then le is a Gentzen consistency property, and completeness of 
LJ follows. 

Likewise let W consist of those finite sets {TX1,. , TX,, FY1, , FYk} such 
that Xi1, ... Xn F Y1, ..., Yk is not provable in Beth's system given on p. 449 of 
[1]. W is a Beth consistency property, and again completeness follows. 

IV. Compactness Theorem. Let W' consist of those sets of signed statements 
of L* every finite subset of which is intuitionistically satisfiable. W' is a Beth con- 
sistency property. Thus 

(1) if S is a set of signed statements of Lc, every finite subset of which is in- 
tuitionistically satisfiable, then S itself is intuitionistically satisfiable. 

And also the weaker result 
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MODAL AND INTUITIONISTIC LOGICS 625 

(2) If S is a set of (unsigned) statements of Lc, and if every finite subset of S 
is intuitionistically satisfiable, S itself is intuitionistically satisfiable. 

V. Lowenheim-Skolem Theorem. As in paragraph IV, signed and unsigned 
versions of a Lowenheim-Skolem Theorem for intuitionistic logic are provable, 
using the method of V of ?5. 

VI. Craig Interpolation Lemma. Let S1 and S2 be disjoint sets of signed state- 
ments of L* with no F-signed statements in S, and at most one in S2. We say 
<S1, S2> has an interpolant if (1) S. is intuitionistically unsatisfiable, or (2) S2 
is intuitionistically unsatisfiable, or (3) there is a statement X all of whose constants 
and relation symbols are common to S. and S2 such that both S, U {FX} and 
S2 u {TX} are intuitionistically unsatisfiable. Let V consist of all finite sets S 
which can be partitioned into disjoint subsets S, and S2 so that <S,, S2> has no 
interpolant. Then W is a Gentzen consistency property. We verify a few cases. 

Case 1. F(A v B) e S E W. Suppose ST U {FA} 0 W. We derive a contradiction. 
Since S E W, S can be partitioned into S1 and S2 (with F(A V B) E S2) so that 
<S,, S2> has no interpolant. Since ST U {FA} 0 W, <S1T, S2T U {FA}> has an inter- 
polant. If S1T is unsatisfiable, so is S.. Likewise if S2T u {FA} is unsatisfiable, so 
is S2. Finally, if X is an interpolant for <S1T, S2T U {FA}> it also is for <S,, S2>. 

Case 2. T - A e S e- W. Suppose ST u {FA} ' W. Since S e W, S can be par- 
titioned into S, and S2 so that <S,, S2> has no interpolant. Now we have two sub- 
cases. 

2a. T - A e S,. Since ST U {FA} 0 W, <S2T, S1T u {FA}> has an interpolant. If 
S2T is unsatisfiable, so is S2. If S1T U {FA} is unsatisfiable so is S,. Finally, if X is 
an interpolant, then - X is an interpolant for <S., S2>. In any event, <SL, S2> has 
an interpolant. 

2b. T - A e S2. Again since ST U {FA} 0 W, <S1T, S2T U {FA}> has an inter- 
polant. If S1T is unsatisfiable, so is SI. If S2T U {FA} is unsatisfiable, so is S2. 
Finally, if X is an interpolant, then X is again an interpolant for <S1, S2>. 

The remaining cases are left to the reader. 

?10. Embedding theorems. There are several interesting translations between 
S4, S5, classical and intuitionistic logics. In this section we show that classical 
consistency properties may be used to give simple model-theoretic proofs of several 
of them. 

THEOREM. If A is a statement of Lc without universal quantifiers, A is classically 
valid if and only if - -A is intuitionistically valid. 

PROOF. If - A is intuitionistically valid, A is valid classically. This may be 
shown model-theoretically by observing that the one-world intuitionistic models 
are (isomorphically) the classical models. 

If S is a set of statements of L*, let -..-S = { I X Xe S}. Let W consist of 
all sets S of statements of L* in which no universal quantifiers occur, and such 
that - S is intuitionistically satisfiable. We claim le is a classical consistency 
property. 

Suppose - (X A Y) e S e W. Then S is intuitionistically satisfiable, say in 

This content downloaded from 47.18.24.249 on Wed, 27 Aug 2014 14:24:16 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


626 MELVIN FITTING 

the world 1 of the intuitionistic model <G, R, k, P >. Then I F - (X A Y). But 
?.%-(X A Y) :D ( - X v - Y) is intuitionistically valid, so 
1Fk h ( ( xv - , XvY). It follows that there is some A E G with 1 R A such 
that Al (- - - X v - Y), so Al k - - X or Al k - - - Y. But since all 
members of - - S hold at F, they also hold at A. Thus either - - S U {- - - X} or 

- S u {- - - Y} is intuitionistically satisfiable, so S u - {X} E V or 
Su{-{ Y}e) . 

Suppose - (3x)A(x) E S E V and c is some constant. Say - - S is satisfied at F 
in the intuitionistic model <G, R, k, P>. We may suppose c e P(A) for some 
A E G with r R A, for if it does not we may choose some d E P(F) and add c to 
P(A) for each A E G with F R A, specifying that c is to "behave like" d. Thus, 
suppose F R A and c E P(A). All members of - - S are true at A, so 
A k , , . (3x)A(x). It follows that A k - - - A(c). Then - ~ S u {- - A(c)} is 
intuitionistically satisfiable, so S U { A(c)} E W. 

We leave the remaining cases to the reader. Now, if - - A is not intuitionistically 
valid, { A} must be intuitionistically satisfiable, hence so is {'- -A}. Then 
{ , A} E -l, - A is classically satisfiable, A is not classically valid. 

LEMMA. Let X be a statement of L*. If each atomic subformnula of X is immediately 
preceded by , and if X has no occurrences of v or 3, then X is stable; that is 
- - X D X is intuitionistically valid. 

PROOF. By induction on the degree of X. 
DEFINITION. Let X' be the result of inserting -~ before every atomic sub- 

formula of X. 
THEOREM. If A is a statement of Lc without any occurrences of v or 3, A is 

classically valid if and only if A' is intuitionistically valid. 
PROOF. If A' is intuitionistically valid, A is valid classically, again by taking 

one-world models into account. 
For sets S of L* statements, define S' = {X' I X E S}. Let le consist of all sets 

S of L* statements in which v and 3 do not occur, such that S' is intuitionistically 
satisfiable. We claim l is a classical consistency property. 

Suppose - (Vx)A(x) E S E6'K. S' is intuitionistically satisfiable, say at the world 
1 in the intuitionistic model <G, R, k, P>. Now - -(3y)[- (Vx) - - F(x) D-F(y)] 
is intuitionistically valid, so, since A' is stable, -%(3y)[-.(Vx)A'(x) D- A'(y)] 
is also intuitionistically valid, hence true at ]. Then, for some A E G with ] R A\, 
A k (3y)[ - (Vx)A'(x) D A'(y)], so for some c E P (A), A k - (Vx)A'(x) D A'(c). 
But all members of S', being true at F are also true at A, hence A k - (Vx)A'(x). 
Then A k - A'(c), S' U { . A'(c)} is intuitionistically satisfiable, S u {- A(c)} E T. 

We leave the other cases to the reader. Now, if A' is not intuitionistically valid, 
neither is - -A', since A' is stable. Then { A'} must be intuitionistically satisfiable, 
so, as above, A is not classically valid. 

Let X' be the result of inserting D-1 before every subformula of X. 
THEOREM. For any statement A of Lc, A is classically valid if and only if A' is 

SS valid (SS Kripke models are those in which R is an equivalence relation). 
PROOF. If AO is S5 valid, A is classically valid. This follows since the one-world 

S5 models are essentially the classical models. 
Let SO = {X' i X E S}. Let V consist of all L* sets S such that SO is S5 satisfiable. 
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le is a classical consistency property. Now, if A' is not S5 valid, (-A)' must be 
S5 satisfiable, and the theorem follows. 

Let X* be the result of inserting D0 before every subformula of X. 
THEOREM. For any statement A of Lc, A is classically valid if and only if A* is 

S4 valid. 
The proof of this is basically the same as that of the previous theorem. Demon- 

strating that l = {S I S* is S4 satisfiable} is a classical consistency property is 
more difficult. We observe that 

[-(X A Y)]* D 0[(-X)* v (- Y)*] and 0(3x){[(3y)A(y)]* D [A(x)]*} 
are S4 valid. These will assist in such a demonstration, but we leave details to the 
reader. 

We conclude with the remark that it is possible to use S4 and intuitionistic 
consistency properties to show the X to X' translation is an embedding of in- 
tuitionistic logic in S4, but it is much simpler to use Kripke S4 and intuitionistic 
logic models directly to obtain this result. 
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