
Modality and Databases

Melvin Fitting

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

e-mail: fitting@alpha.lehman.cuny.edu
web page: comet.lehman.cuny.edu/fitting

Abstract. Two things are done in this paper. First, a modal logic in
which one can quantify over both objects and concepts is presented; a
semantics and a tableau system are given. It is a natural modal logic, ex-
tending standard versions, and capable of addressing several well-known
philosophical difficulties successfully. Second, this modal logic is used to
introduce a rather different way of looking at relational databases. The
idea is to treat records as possible worlds, record entries as objects, and
attributes as concepts, in the modal sense. This makes possible an in-
tuitively satisfactory relational database theory. It can be extended, by
the introduction of higher types, to deal with multiple-valued attributes
and more complex things, though this is further than we take it here.

1 Introduction

A few years ago my colleague, Richard Mendelsohn, and I finished work on our
book, “First-Order Modal Logic,” [2]. In it, non-rigidity was given an extensive
examination, and formal treatments of definite descriptions, designation, exis-
tence, and other issues were developed. I next attempted an extension to higher-
order modal logic. After several false starts (or rather, unsatisfactory finishes)
this was done, and a book-length manuscript is on my web page inviting com-
ments, [1]. Carrying out this extension, in turn, led me to rethink the first-order
case. There were two consequences. First, I came to realize that the approach in
our book could be extended, without leaving the first-order level, to produce a
quite interesting logic with a natural semantics and a tableau proof procedure.
And second, I realized that this modal logic provided a natural alternative set-
ting for relational databases, which are usually treated using first-order classical
logic. In this paper I want to sketch both the modal logic and its application to
databases.

In a full treatment of first-order modal logic, one must be able to discourse
about two kinds of things: individual objects and individual concepts. “George
Washington” and “Millard Fillmore” denote individual objects, while “the Pres-
ident of the United States” denotes an individual concept, which in turn denotes
various individuals at different times. Or again, at the time I am writing this
the year is 2000. This particular year is an individual object. “The current year”
is an individual concept, and will not always denote 2000. In [2] we had quan-
tifiers ranging over individual objects, and constant symbols with values that



2 Melvin Fitting

were individual concepts. That was a good combination to elucidate a number
of well-known philosophical problems, but it is not a full picture. In this paper
the formal system presented will have quantifiers over individual objects, and
also a second kind of quantifier ranging over individual concepts. Likewise there
will be two kinds of constant symbols. The system of [2] can be embedded in the
present one. (Of course this is only approximate. In our book we had function
symbols, and we do not have them here. There are other differences as well, but
the embedability claim is essentially correct.) I’ll begin with a presentation of
the logic, and then consider its applications to databases.

In a sense, using the modal logic of this paper to supply a semantics for rela-
tional databases does not give us anything new. We are able to treat things that,
previously, had been treated using classical first-order logic. The modal point of
view is substantially different, and hence interesting, but does not expand our
concept of relational database. The real significance lies in what comes next,
just after the conclusion of this paper. The modal logic presented here is the
first-order fragment of a higher-order modal logic, with both extensional and in-
tensional objects at each level. When such a logic is applied to database theory,
we get a natural setting within which to model multiple-valued relations, rela-
tions having a field whose values are sets of attributes, and more complex things
yet. Think of the present paper, then, as providing a different point of view on
what is generally understood, and as signaling the approach of an extension,
which can be glimpsed down the road.

2 Syntax

The syntax of this version of first-order modal logic is a little more complex than
usual, and so some care must be taken in its presentation.

There are infinitely many variables and constants, in each of two categories:
individual objects and individual concepts. I’ll use lowercase Latin letters x, y,
z as object variables, and lowercase Greek letters α, β, γ as concept variables.
(Based on the notion that the ancient Greeks were the theoreticians, while the
Romans were the engineers.) The Greek letter %, with or without subscripts,
represents a variable of either kind. For constants, I’ll use lowercase Latin letters
such as a, b, c for both kinds, and leave it to context to sort things out.

Definition 1 (Term). A constant symbol or a variable is a term. It is an ob-
ject term if it is an individual object variable or constant symbol. Similarly for
concept terms.

If t is a concept term, ↓t is an object term. It is called a relativized term.

The idea is, if t is a concept term, ↓t is intended to designate the object
denoted by t, in a particular context. Sometimes I’ll refer to ↓ as the evaluate at
operator.

Since there are two kinds of variables and constants, assigning an arity to
relation symbols is not sufficient. By a type I mean a finite sequence of o’s and c’s,
such as 〈c, o, c〉. Think of an o as marking an object position and a c as marking



Modality and Databases 3

a concept position. There are infinitely many relation symbols of each type. In
particular there is an equality symbol, =, of type 〈o, o〉. That is, equality is a
relation on individual objects. One could also introduce a notion of equality for
individual concepts, but it will not be needed here. I allow the empty sequence
〈〉 as a type. It corresponds to what are sometimes called propositional letters,
taking no arguments.

Definition 2 (Formula). The set of formulas, and their free variables, is de-
fined as follows.

1. If P is a relation symbol of type 〈〉, it is an atomic formula, and has no free
variables.

2. Suppose R is a relation symbol of type 〈n1, n2, . . . , nk〉 and t1, t2, . . . , tk is
a sequence of terms such that ti is an individual object term if ni = o and
is an individual concept term if ni = c. Then R(t1, t2, . . . , tk) is an atomic
formula. Its free variables are the variable occurrences that appear in it.

3. if X is a formula, so are ¬X, 2X, and 3X. Free variable occurrences are
those of X.

4. If X and Y are formulas, so are (X∧Y ), (X∨Y ), and (X ⊃ Y ). Free variable
occurrences are those of X together with those of Y .

5. If X is a formula and % is a variable (of either kind), (∀%)X and (∃%)X are
formulas. Free variable occurrences are those of X, except for occurrences of
%.

6. If X is a formula, % is a variable (again of either kind), and t is a term of the
same kind as %, 〈λ%.X〉(t) is a formula. Free variable occurrences are those
of X, except for occurrences of %, together with those of t.

As usual, parentheses will be omitted from formulas to improve readability.
Also = (x, y) will be written as x = y. And finally, a formula like

〈λ%1.〈λ%2.〈λ%3.X〉(t3)〉(t2)〉(t1)

will be abbreviated by the simpler expression

〈λ%1, %2, %3.X〉(t1, t2, t3)

and similarly for other formulas involving iterated abstractions.

3 Semantics

I will only formulate an S5 logic—the ideas carry over directly to other logics,
but S5 is simplest, the ideas are clearest when stated for it, and it is all that is
actually needed for databases.

Frames essentially disappear, since we are dealing with S5. A model has a
set of possible worlds, but we can take every world to be accessible from every
other, and so no explicit accessibility relation is needed.



4 Melvin Fitting

The usual constant/varying domain dichotomy is easily ignored. For first-
order modal logics generally, a constant domain semantics can simulate a varying
domain version, through the use of an explicit existence predicate and the rela-
tivization of quantifiers to it. Here I’ll take object domains to be constant—not
world dependent—which makes things much simpler.

Since the language has two kinds of terms, we can expect models to have
two domains—two sorts, in other words. There will be a domain of individual
objects, and a domain of individual concepts. Concepts will be functions, from
possible worlds to individual objects. It is not reasonable, or desirable, to insist
that all such functions be present. After all, if there are countably many possible
worlds, there would be a continuum of such concept functions even if the set of
individual objects is finite, and this probably cannot be captured by a proof
procedure. But anyway, the notion of an individual concept presupposes a kind
of coherency for that individual concept—not all functions would be acceptable
intuitively. I simply take the notion of individual concept as basic; I do not try
to analyize any coherency condition. It is allowed that some, not necessarily all,
functions can serve as individual concepts.

Definition 3 (Model). A model is a structure M = 〈G,Do,Dc, I〉, where:

1. G is a non-empty set, of possible worlds;
2. Do is a non-empty set, of individual objects;
3. Dc is a non-empty set of functions from G to Do, called individual concepts;
4. I is a mapping that assigns:

(a) to each individual object constant symbol some member of Do;
(b) to each individual concept constant symbol some member of Dc;
(c) to each relation symbol of type 〈〉 a mapping from G to {false, true};
(d) to each relation symbol of type 〈n1, n2, . . . , nk〉 a mapping from G to

the power set of Dn1 ×Dn2 × · · · × Dnk . It is required that I(=) be the
constant mapping that is identically the equality relation on Do.

Some preliminary machinery is needed before truth in a model can be char-
acterized.

Definition 4 (Valuation). A valuation v in a model M is a mapping that
assigns to each individual object variable some member of Do, and to each indi-
vidual concept variable some member of Dc.

Definition 5 (Value At). Let M = 〈G,Do,Dc, I〉 be a model, and v be a
valuation in it. A mapping (v ∗ I) is defined, assigning a meaning to each term,
at each possible world. Let Γ ∈ G.

1. If % is a variable, (v ∗ I)(%, Γ ) = v(%).
2. If c is a constant symbol, (v ∗ I)(c, Γ ) = I(c).
3. If ↓t is a relativized term, (v ∗ I)(↓t, Γ ) = (v ∗ I)(t)(Γ ).



Modality and Databases 5

Item 3 is especially significant. If ↓t is a relativized term, t must be a constant
or variable of concept type, and so (v ∗ I)(t) has been defined for it in parts 1
and 2, and is a function from worlds to objects. Thus (v ∗ I)(t)(Γ ) is a member
of Do.

Now the main notion, which is symbolized byM, Γ °v Φ, and is read: formula
Φ is true in modelM, at possible world Γ , with respect to valuation v. To make
reading easier, the following special notation is used. Let %1, . . . , %k be variables
of any type, and let d1, . . . , dk be members of Do ∪ Dc, with di ∈ Do if the
variable %i is of object type, and di ∈ Dc if %i is of concept type. Then

M, Γ °v Φ[%1/d1, . . . , %k/dk]

abbreviates: M, Γ °v′ Φ where v′ is the valuation that is like v on all variables
except %1, . . . , %k, and v′(%1) = d1, . . . , v′(%k) = dk.

Here is the central definition. For simplicity, take ∨, ⊃, ∃, and 3 as defined
symbols, in the usual way.

Definition 6 (Truth in a Model). Let M = 〈G,Do,Dc, I〉 be a model, and
v be a valuation in it.

1. If P is of type 〈〉, M, Γ °v P iff I(P )(Γ ) = true.
2. If R(t1, . . . , tk) is atomic, M, Γ °v R(t1, . . . , tk) iff
〈(v ∗ I)(t1, Γ ), . . . , (v ∗ I)(tk, Γ )〉 ∈ I(R)(Γ ).

3. M, Γ °v ¬Φ iff M, Γ 6°v Φ.
4. M, Γ °v Φ ∧ Ψ iff M, Γ °v Φ and M, Γ °v Ψ .
5. M, Γ °v (∀x)Φ iff M, Γ °v Φ[x/d] for all d ∈ Do.
6. M, Γ °v (∀α)Φ iff M, Γ °v Φ[α/d] for all d ∈ Dc.
7. M, Γ °v 2Φ iff M, ∆ °v Φ for all ∆ ∈ G.
8. M, Γ °v 〈λ%.Φ〉(t) if M, Γ °v Φ[%/d], where d = (v ∗ I)(t, Γ ).

Definition 7 (Validity). A closed formula X is valid in a model if it is true
at every world of it.

A notion of consequence is a little more complicated because, in modal set-
tings, it essentially breaks in two. These are sometimes called local and global
consequence notions. For a set S of formulas, do we want X to be true at every
world at which members of S are true (local consequence), or do we want X to
be valid in every model in which members of S are valid (global consequence).
These have quite different flavors. Fortunately, for S5, the situation is somewhat
simpler than it is for other modal logics since, to say X is valid in a model is
just to say 2X is true at some world of it. So, if we have a notion of local con-
sequence, we can define a corresponding global consequence notion simply by
introducing necessity symbols throughout. So, local consequence is all we need
here.

Definition 8 (Consequence). A closed formula X is a consequence of a set S
of closed formulas if, in every model, X is true at each world at which all the
members of S are true.



6 Melvin Fitting

4 Rigidity

An individual concept term t can vary from world to world in what it designates.
Call t rigid in a model if it is constant in that model, designating the same object
at each world. This is a notion that plays an important role in philosophy. For
instance Kripke [3], among others, asserts that names are rigid designators. The
notion of rigidity can be captured by a formula. Assume c is an individual concept
constant symbol in the following.

〈λx.2(x =↓c)〉(↓c) (1)

It is quite straightforward to show that (1) is valid in a model if and only if the
interpretation of c is rigid in that model. In [2] this, in turn, was shown to be
equivalent to the vanishing of the de re/de dicto distinction, though this will not
be needed here.

One can also speak of relativized notions of rigidity. Let us say the interpre-
tation of c is rigid on a particular subset G0 of the collection G of possible worlds
of a model provided it designates the same object throughout G0. And let us say
c is rigid relative to d in a model provided the interpretation of c is rigid on any
subset of worlds on which the interpretation of d is rigid. (Of course, this notion
applies to individual concept terms that are variables as well. I’m using constant
symbols just as a matter of convenience.) The notion of c being rigid relative to
d is captured by formula (2).

〈λx, y.2[x =↓d ⊃ y =↓c]〉(↓d, ↓c) (2)

One can also consider more complicated situations. Formula (3) asserts that
c is rigid relative to the rigidity of d and e jointly.

〈λx, y, z.2[(x =↓d ∧ y =↓e) ⊃ z =↓c]〉(↓d, ↓e, ↓c) (3)

Finally, one can even say that all individual concepts are rigid relative to
c. This is done in formula (4). Individual concept quantification is obviously
essential here.

(∀α)〈λx, y.2[x =↓c ⊃ y =↓α]〉(↓c, ↓α) (4)

5 Databases With a Single Relation

In this section we begin taking a look at relational databases. What we consider
is quite basic, and can be found in any textbook on databases—[4] is a good
source. Relational databases are commonly reasoned about using classical first-
order logic. I want to show that modal logic is also a natural tool for this purpose.
For now, only a single relation will be considered—this will be extended later.



Modality and Databases 7

The record is the basic unit of a relational database, yet it is not a first-class
object in the sense that it is not something we can get as an answer to a query.
We could get a record number, perhaps, but not a record. We will take the
records of a relational database to be the possible worlds of a Kripke model. In
any standard modal language possible worlds, in fact, cannot be directly spoken
of. The accessibility relation will be the usual S5 one, though there could be
circumstances where something more complex might be appropriate.

Entries that fill fields of a relational database generally can be of several data
types. To keep things simple, let’s say there is just one data type used for this
purpose. (In examples I’ll use strings.) Looking at this in terms of modal logic,
these field entries will be the individual objects of a Kripke model.

Next come the attributes themselves. If the database is one listing family
relationships, say, and there is an attribute recording “father-of,” it has a value
that varies from record to record, but in every case that value is what we have
taken to be an individual object. In other words, attributes are simply individual
concepts.

The next question is, what about things like functional dependencies, keys,
and so on? Let’s begin with the notion of functional dependency. Say we have
a relational database in which there are two attributes, call them c and d, and
c is functionally dependent on d. Then, if we are at an arbitrary possible world
(record) at which c and d have particular values, at any other world at which
d has the value it has in this one, c must also have the same value it has in
this one. This can be expressed by requiring validity of the following formula, in
which we assume c and d of the Kripke model also occur as individual concept
constants of the language, and designate themselves.

〈λx, y.2[x =↓d ⊃ y =↓c]〉(↓d, ↓c)
But this is just formula (2), and says c is rigid relative to d. In this case, a
functional dependency can be expressed by a relative rigidity assertion.

More complicated functional dependencies also correspond to relative rigidity
formulas. For instance, if c is functionally dependent on {d, e}, this is expressed
by (3).

Next, what about the notion of keys? As usually treated, to say an attribute
c is a key is to say there cannot be two records that agree on the value of c.
We cannot quite say that, since records cannot directly be spoken of. What we
can say is that two possible worlds agreeing on the value of c must agree on the
values of all attributes. More formally, this is expressed by the validity of the
following formula.

(∀α)〈λx, y.2[x =↓c ⊃ y =↓α]〉(↓c, ↓α)

Note that this is our earlier formula (4).
Now, what does the design of a relation schema look like from the present

modal point of view? We must specify the domain for atomic values of the re-
lation schema. Semantically, that amounts to specifying the set Do of a modal



8 Melvin Fitting

model. Proof-theoretically, it amounts to saying what the individual object con-
stant symbols of the formal language are. (I’ll generally assume that constant
symbols of the language can also occur in models, and designate themselves.)

Next, we must specify what the attributes for the relation schema are. This
amounts to specifying the set Dc of a model, or the set of individual concept
constant symbols of a language.

Finally, we must impose some constraints, such as requiring that some at-
tribute or set of attributes be a key, or that various functional dependencies
must hold. This corresponds to taking appropriate relative rigidity formulas as
axioms.

6 A Simple Example

In this section I’ll show how a simple, standard, example translates into modal
language both semantically and proof-theoretically. Consider the relation schema
with five attributes: NAME, SSN, BIRTHDATE, JOBNUMBER, and JOBTITLE. It will be
assumed that SSN is the primary key, and JOBNUMBER is functionally dependent
on JOBTITLE.

We set up a formal language with “NAME,” “SSN,” “BIRTHDATE,” “JOBNUMBER,”
and “JOBTITLE” as individual concept constant symbols. Then we adopt the fol-
lowing two constraint axioms.

1. 2(∀α)〈λx, y.2[x =↓SSN ⊃ y =↓α]〉(↓SSN, ↓α)
2. 2〈λx, y.2[x =↓JOBTITLE ⊃ y =↓JOBNUMBER]〉(↓JOBTITLE, ↓JOBNUMBER)

Table 1 displays a particular relation instance of this relation schema.

NAME SSN BIRTHDATE JOBNUMBER JOBTITLE

Adam 1 01/06/-4004 1 Gardener

Eve 2 01/08/-4004 2 Explorer

Cain 3 10/21/-4004 1 Gardener

Abel 4 11/05/-4003 2 Shepherd

Seth 5 02/04/-3983 2 Explorer

Table 1. The relation PERSONS

To represent this relation instance as a modal axiomatic theory, we add the
following to the constraint axioms above; we call them instance axioms.

3. 3[(↓NAME = Adam) ∧ (↓SSN = 1) ∧ (↓BIRTHDATE = 01/06/-4004) ∧
(↓JOBNUMBER = 1) ∧ (↓JOBTITLE = Gardener)]

4. 3[(↓NAME = Eve) ∧ (↓SSN = 2) ∧ (↓BIRTHDATE = 01/08/-4004) ∧
(↓JOBNUMBER = 2) ∧ (↓JOBTITLE = Explorer)]

5. 3[(↓NAME = Cain) ∧ (↓SSN = 3) ∧ (↓BIRTHDATE = 10/03/-4004) ∧
(↓JOBNUMBER = 1) ∧ (↓JOBTITLE = Gardener)]



Modality and Databases 9

6. 3[(↓NAME = Abel) ∧ (↓SSN = 4) ∧ (↓BIRTHDATE = 08/05/-4003) ∧
(↓JOBNUMBER = 2) ∧ (↓JOBTITLE = Shepherd)]

7. 3[(↓NAME = Seth) ∧ (↓SSN = 5) ∧ (↓BIRTHDATE = 02/04/-3983) ∧
(↓JOBNUMBER = 2) ∧ (↓JOBTITLE = Explorer)]

This, of course, assumes individual object constant symbols, “01/06/-4004,”
“Adam,” and so on have been added to the language. I’ll also assume these sym-
bols are intended to designate distinct objects. This gives us a (long) list of
axioms.

8. ¬(1 = 2), ¬(Adam = Eve), etc.

Corresponding to this, semantically, we have the following S5 model. There
are five possible worlds, one for each of the five rows of Table 1; call them
Γ1, Γ2, Γ3, Γ4, and Γ5. Do = {Adam, 1, 01/06/-4004, . . . }. Dc = {N̂AME, ŜSN,
̂BIRTHDATE, ̂JOBNUMBER, ̂JOBTITLE}, where N̂AME is the function that maps Γ1

to Adam, Γ2 to Eve, and so on. I(Adam) = Adam, . . . , I(NAME) = N̂AME, and so on.
Finally, here are some sample queries, in modal language. First, who are the

explorers? This corresponds to the following, in which appropriate keys (social
security numbers) are desired.

〈λx.3[(↓SSN = x) ∧ (↓JOBTITLE = Explorer)]〉 (5)

Suppose we abbreviate formula (5) by Q. Then, on the one hand, Q(z) is true
in the modal model we constructed just in case z is 2 or 5. On the other hand,
Q(z) is provable in the axiom system we constructed just in case z is 2 or 5.

Here is a second sample query: is there more than one gardener?

(∃x)(∃y){3[(↓SSN = x) ∧ (↓JOBTITLE = Gardener)] ∧
3[(↓SSN = y) ∧ (↓JOBTITLE = Gardener)] ∧
¬(x = y)}

(6)

Formula (6) is derivable from our axioms, and true in our model.

7 Connections

In the example of the previous section we saw that being a consequence of certain
axioms and being true in a particular model could coincide. Now we examine to
what extent this is generally the case.

Suppose we have a relation schema R and a corresponding set of constraints
concerning keys and functional dependencies. Associated with R is a set of con-
straint axioms, which I’ll denote axiom(R), consisting of formulas like (2), (3),
and (4). I’ll omit an exact definition—axioms 1 and 2 of the example in the pre-
vious section is a sufficient guide. Note that these axioms are either quantifier
free, or else involve just universal quantifiers, and 2 is the only modal operator.



10 Melvin Fitting

Next, suppose we have a relation instance r of the relation schema R—a
particular set of tuples. Associated with this is a set of instance axioms, all of
which are quantifier free. Again I omit an exact definition, but axioms 3–7 of the
previous section illustrate the notion sufficiently. Finally there are distinctness
axioms, as in axiom 8 of the previous section. By axiom(r) I mean the collection
of these instance axioms and distinctness axioms, together with the members of
axiom(R). Clearly, to say r is an instance of R and satisfies the constraints, is
just to say axiom(r) is a consistent set of model axioms.

Next, we want a designated modal model to correspond to relation instance
r. Again, the example of the previous section serves as a guide. We want the
model, denote it by model(r), meeting the following conditions. The collection
of possible worlds G is the collection of tuples in r. The domain Do of individual
objects is just the collection of table entries in r. The domain Dc of individual
concepts is the collection of attributes of relation schema R. The interpretation
I maps each table entry (as a constant of the modal language) to itself (as a
member of Do). And I maps each attribute ATT to the function whose value at
tuple (possible world) Γ is the entry in the tuple Γ corresponding to ATT. The
only relation symbol is =, which is interpreted as equality on Do.

Question: what are the connections between axiom(r) and model(r)? I don’t
know the most general answer to this, but here is something that accounts for
what was seen in the previous section. Note that the queries considered there,
formulas (5) and (6), were either quantifier free or involved existential quantifiers
of individual object type only. This is significant.

Definition 9. Call a closed modal formula simple existential if it is of the form

(∃x1) · · · (∃xn)3Φ

where Φ is quantifier and modality free, and contains only = as a relation symbol.

Proposition 10. For a relation instance r and a simple existential sentence X,
X is a consequence of axiom(r) if and only if X is true in model(r).

I’ll postpone a proof of this to Section 12.3.

8 Partial Concepts

We have taken individual concepts to be total functions on the set of possible
worlds of a modal model. But there are many circumstances where a more general
notion is desirable. “The King of France,” for instance, designates an individual
at many points in history, but not at all of them. Fortunately, it is straightforward
to allow partiality.

Definition 3, of modal model, is changed as follows. From now on Dc will be a
non-empty set of functions, each from some subset of G to Do, where that subset
can be proper. If Γ is not in the domain of some individual concept f , we will
write f(Γ ) = ⊥, where ⊥ is an arbitrary item not a member of Do. Definition 5,



Modality and Databases 11

value at, can be used with no change in wording, but notice that the scope of
part 3 has been extended. If ↓t is a relativized term, and Γ is not in the domain
of (v ∗ I)(t), then (v ∗ I)(↓t, Γ ) = (v ∗ I)(t)(Γ ) = ⊥.

Now Definition 6, truth in a model, must also be modified. I’ll follow the
pretty obvious general principle that one cannot ascribe properties to what is
designated by a non-designating term. In the Definition, item 2 is changed to
read as follows.

2. If R(t1, . . . , tk) is atomic,
(a) if any of (v∗I)(t1, Γ ), . . . , (v∗I)(tk, Γ ) is ⊥ thenM, Γ 6°v R(t1, . . . , tk);
(b) otherwise M, Γ °v R(t1, . . . , tk) iff 〈(v ∗ I)(t1, Γ ), . . . , (v ∗ I)(tk, Γ )〉 ∈
I(R)(Γ ).

Also item 8 must be changed.

8. For an abstract 〈λ%.Φ〉(t),
(a) if (v ∗ I)(t, Γ ) = ⊥, M, Γ 6°v 〈λ%.Φ〉(t);
(b) otherwiseM, Γ °v 〈λ%.Φ〉(t) ifM, Γ °v Φ[%/d], where d = (v ∗ I)(t, Γ ).

Notice that, with the definitions modified in this way, ↓t =↓t is true at a
world of a model if and only if the term t “designates” at that world. This
makes possible the following piece of machinery.

Definition 11 (Designation Formula). D abbreviates the abstract 〈λα. ↓
α =↓α〉.

Clearly M, Γ °v D(t) iff (v ∗ I)(t, Γ ) 6= ⊥, where M = 〈G,Do,Dc, I〉. Thus D
really does express the notion of designation.

Now our earlier notions of rigidity and relative rigidity must be modified. We
say c is rigid if it designates the same thing in all worlds in which it designates
at all. This means formula (1) must be replaced with the following, if we want
to express a notion of rigidity allowing for partial concepts.

D(c) ⊃ 〈λx.2[D(c) ⊃ (x =↓c)]〉(↓c) (7)

Likewise, c being rigid relative to d must be modified. It should now say: if d
designates in two worlds, and designates the same thing, then if c also designates
in those worlds, it must designate the same thing at both. This means formula
(2) must be replaced with the following.

(D(c) ∧D(d)) ⊃ 〈λx, y.2[(D(c) ∧D(d) ∧ x =↓d) ⊃ (y =↓c)]〉(↓d, ↓c) (8)

Similar changes must be made to the other notions from Section 4. In par-
ticular, (4), expressing that every attribute is rigid relative to c, gets expressed
as follows.

(∀α){(D(c) ∧D(α)) ⊃ 〈λx, y.2[(D(c) ∧D(α) ∧ x =↓c) ⊃ (y =↓α)]〉(↓c, ↓α)}
(9)



12 Melvin Fitting

9 Relational Databases More Generally

A relational database generally has more than one relation involved. Now that
partial individual concepts are available, this is easy to handle. Suppose we add
to the database containing the relation given in Table 1 a second relation, given
in Table 2.

JOBNUMBER WHERE

1 Home

2 Away

Table 2. The relation LOCATION

We allowed, in our modal language, relation symbols of type 〈〉. Let us in-
troduce two specific ones, PERSONS and LOCATION, intended to distinguish the
two relations we now have. The idea is, we will have two kinds of possible
worlds, those at which LOCATION is true and those at which PERSONS is true.
The first kind of world should correspond to a row of the LOCATION table, and
so JOBNUMBER and WHERE should be defined, but nothing else. Similarly for the
second kind. This gives us the following new kinds of constraint axioms.

1. 2{PERSONS ⊃ [D(JOBNUMBER) ∧ ¬D(WHERE) ∧D(NAME) ∧D(SSN)
∧D(BIRTHDATE) ∧D(JOBTITLE)]}

2. 2{LOCATION ⊃ [D(JOBNUMBER) ∧D(WHERE) ∧ ¬D(NAME) ∧ ¬D(SSN)
∧¬D(BIRTHDATE) ∧ ¬D(JOBTITLE)]}

We still want the functional dependencies we had before, but these need to
be modified to take partiality of intensional concepts into account. We also want
a new dependency saying WHERE is functionally dependent on JOBNUMBER. These
take the following form.

3. 2(∀α){(D(SSN) ∧ D(α)) ⊃ 〈λx, y.2[(D(SSN) ∧ D(α) ∧ x =↓SSN) ⊃ (y =↓
α)]〉(↓SSN, ↓α)}

4. 2{(D(JOBNUMBER) ∧D(JOBTITLE)) ⊃
〈λx, y.2[(D(JOBNUMBER) ∧D(JOBTITLE) ∧ x =↓JOBTITLE) ⊃
(y =↓JOBNUMBER)]〉(↓JOBTITLE, ↓JOBNUMBER)}

5. 2{(D(JOBNUMBER) ∧D(WHERE)) ⊃
〈λx, y.2[(D(JOBNUMBER) ∧D(WHERE) ∧ x =↓WHERE) ⊃
(y =↓JOBNUMBER)]〉(↓WHERE, ↓JOBNUMBER)}

Next we need the instance axioms. These are quite straightforward.

6. 3[LOCATION ∧ (↓JOBNUMBER = 1) ∧ (↓WHERE = Home)]
7. 3[LOCATION ∧ (↓JOBNUMBER = 2) ∧ (↓WHERE = Away)]



Modality and Databases 13

8. 3[PERSONS∧ (↓NAME = Adam)∧ (↓SSN = 1)∧ (↓BIRTHDATE = 01/06/-4004)∧
(↓JOBNUMBER = 1) ∧ (↓JOBTITLE = Gardener)]

9. 3[PERSONS ∧ (↓NAME = Eve) ∧ (↓SSN = 2) ∧ (↓BIRTHDATE = 01/08/-4004) ∧
(↓JOBNUMBER = 2) ∧ (↓JOBTITLE = Explorer)]

10. 3[PERSONS∧ (↓NAME = Cain)∧ (↓SSN = 3)∧ (↓BIRTHDATE = 10/03/-4004)∧
(↓JOBNUMBER = 1) ∧ (↓JOBTITLE = Gardener)]

11. 3[PERSONS∧ (↓NAME = Abel)∧ (↓SSN = 4)∧ (↓BIRTHDATE = 08/05/-4003)∧
(↓JOBNUMBER = 2) ∧ (↓JOBTITLE = Shepherd)]

12. 3[PERSONS∧ (↓NAME = Seth)∧ (↓SSN = 5)∧ (↓BIRTHDATE = 02/04/-3983)∧
(↓JOBNUMBER = 2) ∧ (↓JOBTITLE = Explorer)]

Finally we assume that all our object constant symbols are distinct.

13. ¬(1 = 2), ¬(Home = Away), ¬(Adam = Eve), etc.

10 Tableaus

Since consequence issues are important, a sound and complete proof procedure
can be useful. Fortunately, standard tableau methods using prefixed formulas
adapt quite naturally.

Proofs, and derivations, will be of closed formulas. As usual, in order to han-
dle existential quantifiers, parameters will be introduced. We can think of these
as being additional constant symbols, added to the language for the purpose
of proof construction. Since we have two kinds of quantifiers, object and con-
cept, we will have two kinds of parameters as well. I’ll use po, qo, etc. as object
parameters, and pc, qc, etc. as concept parameters.

A prefix for S5 is simply a positive integer, which we can intuitively think
of as the name of a possible world in some model. Unlike in more conventional
treatments of modal logic, we must allow not only formulas, but also certain
terms to have prefixes. For example, if c is an individual concept constant symbol,
its designation in a model will vary from world to world. Think of c with prefix
n as the individual object that c designates at the world named by n. To keep
notation simple, I’ll violate the literal meaning of the word “prefix,” and display
them as subscripts. Thus cn is an example of a prefixed concept constant symbol.
In our proofs, individual concept constants and individual concept parameters
may have prefixes.

A little more formally, by an extended formula I mean one that may con-
tain parameters, and in which individual concept constants and parameters may
have prefixes. A prefixed concept constant or parameter is considered to be an
individual object term. All proofs will be of closed formulas, but closed extended
formulas will appear in proofs.

A prefixed formula is a closed extended formula, with a prefix, and here we
actually write them as prefixes. Thus, if X is a closed, extended formula, and n
is a positive integer, nX is a prefixed formula.

As usual, a tableau proof of a sentence X is a tree with 1¬X at the root,
and meeting certain other conditions which we will specify. Think of the initial



14 Melvin Fitting

prefixed formula as intuitively asserting there is a world of a model, denoted
by 1, at which X is not true. The tableau is constructed using various branch
extension rules. In them σ is an arbitrary prefix.

Conjunctive Rules

σX ∧ Y
σX
σ Y

σ ¬(X ∨ Y )
σ ¬X
σ ¬Y

σ ¬(X ⊃ Y )
σX
σ ¬Y

Double Negation Rule

σ ¬¬X
σX

Disjunctive Rules

σX ∨ Y
σX σ Y

σ ¬(X ∧ Y )
σ ¬X σ ¬Y

σX ⊃ Y
σ ¬X σ Y

Necessity Rules For any positive integer n that already occurs on the branch,

σ2X
nX

σ ¬3X
n¬X

Possibility Rules If the positive integer n is new to the branch,

σ3X
nX

σ ¬2X
n¬X

Concept Existential Rules In the following, pc is an individual concept pa-
rameter that is new to the tableau branch.

σ (∃α)Φ(α)
σ Φ(pc)

σ ¬(∀α)Φ(α)
σ ¬Φ(pc)

Object Existential Rules In the following, po is an individual object param-
eter that is new to the tableau branch.

σ (∃x)Φ(x)
σ Φ(po)

σ ¬(∀x)Φ(x)
σ ¬Φ(po)

Concept Universal Rules In the following, τ is any individual concept con-
stant symbol or parameter.

σ (∀α)Φ(α)
σ Φ(τ)

σ ¬(∃α)Φ(α)
σ ¬Φ(τ)

Object Universal Rules In the following, τ is any individual object constant
symbol or parameter, or a prefixed individual concept constant symbol or param-
eter.

σ (∀x)Φ(x)
σ Φ(τ)

σ ¬(∃x)Φ(x)
σ ¬Φ(τ)



Modality and Databases 15

Concept Abstract Rules In the following, τ is an individual concept constant
symbol or parameter.

σ 〈λα.Φ(α)〉(τ)
σ Φ(τ)

σ ¬〈λα.Φ(α)〉(τ)
σ ¬Φ(τ)

Object Abstract Rules In the following, τ is an individual object constant
symbol, parameter, or a prefixed individual concept constant symbol or parame-
ter.

σ 〈λx.Φ(x)〉(τ)
σ Φ(τ)

σ ¬〈λx.Φ(x)〉(τ)
σ ¬Φ(τ)

Before giving the next set of abstract rules, recall that we are allowing indi-
vidual concepts to be partial functions in models. If τ is an individual concept
constant symbol or parameter, what is the status of ↓τ? If we are at a world in
the domain of the individual concept named by τ , ↓τ should be the individual
object designated by that concept at that world, and otherwise it should be ⊥.
Now, if we know 〈λx.Φ(x)〉(↓τ) is true at a world, it must be that ↓τ is not
⊥ at that world, since an abstract applied to ⊥ is false. In such a case we can
introduce a name for the object designated by τ at the world; we do this by
prefixing (subscripting) τ . On the other hand, if we know 〈λx.Φ(x)〉(↓τ) is false,
it could be that τ does not designate, or it could be that it does, but designates
something making Φ false. In such cases we need other information to conclude
whether or not ↓τ is ⊥. This gives us the motivation for the following rules.

Mixed Abstract Rules In the two rules following, τ is an individual concept
constant symbol or parameter.

σ 〈λx.Φ(x)〉(↓τ)
σ Φ(τσ)

In addition, if τσ already occurs on the tableau branch, the following rule may
be applied.

σ ¬〈λx.Φ(x)〉(↓τ)
σ ¬Φ(τσ)

Rules similar to these apply to atomic formulas as well.

Atomic Rules In the two rules following, τ is an individual concept constant
symbol or parameter, R is a relation symbol, and . . . represents a sequence of
terms.

σ R(. . . , ↓τ, . . . )
σ R(. . . , τσ, . . . )

And, if τσ already occurs on the tableau branch, the following rule may be
applied.

σ ¬R(. . . , ↓τ, . . . )
σ ¬R(. . . , τσ, . . . )



16 Melvin Fitting

Finally, we have the rules for equality. The first one corresponds to the se-
mantic fact that equality is interpreted the same at every world; if individual
objects are equal at some world, they are equal at every world.

Equality Transfer Rule If τ1 and τ2 are individual object constant symbols
or parameters, or prefixed individual concept constant symbols or parameters,
and if σ′ is a prefix that already occurs on the branch

σ (τ1 = τ2)
σ′ (τ1 = τ2)

Reflexivity Rule If τ is an individual object constant symbol, parameter, or
a prefixed individual concept constant symbol or parameter, and the prefix σ
already occurs on the branch,

σ (τ = τ)

Substitutivity Rule If τ1 and τ2 are individual object constant symbols or
parameters, or prefixed individual concept constant symbols or parameters

σ Φ(τ1)
σ′ (τ1 = τ2)
σ Φ(τ2)

This concludes the presentation of the branch extension rules.

Definition 12 (Closed). A tableau branch is closed if it contains σX and
σ ¬X for some X. A tableau is closed if every branch is closed.

Definition 13 (Proof and Derivation). A sentence Φ (without parameters)
is provable if there is a closed tableau beginning with 1¬Φ. Likewise, Φ has a
derivation from a set S of sentences if there is a closed tableau beginning with
1¬Φ, in which 1X can be added to any branch at any point, for any X that is
a member of S.

This concludes the description of the tableau system.

11 A Derivation Example

The example given here is a derivation of

¬3[LOCATION ∧ (↓JOBNUMBER = 1) ∧ (↓WHERE = Away)] (10)

from the axioms of Section 9. It establishes that 3[LOCATION ∧ (↓JOBNUMBER =
1) ∧ (↓WHERE = Away)] cannot be inserted into the database, because it violates
an integrity constraint. Before presenting the derivation itself, here is a derived
rule that will shorten the presentation.



Modality and Databases 17

Derived Rule Suppose τ is an individual concept constant symbol or param-
eter.

σ ↓τ = a
σD(τ) ⊃ Φ

σ Φ

Think of this as abbreviating the following tableau construction.

σ ↓τ = a 1.
σD(τ) ⊃ Φ 2.
σ τσ = a 3.

�
� @

@
σ ¬D(τ) 4. σ Φ 5.
σ ¬〈λx. ↓x =↓x〉(τ) 6.
σ ¬(↓τ =↓τ) 7.
σ ¬(τσ = τσ) 8.
σ (τσ = τσ) 9.

Explanation: 3 is from 1 by an atomic rule; 4 and 5 are from 2 by a disjunctive
rule; 6 is 4 unabbreviated; 7 is from 6 by a concept abstract rule; 8 is from
7 by an atomic rule, making use of the fact that τσ occurs in 3; 9 is by the
reflexivity rule. The left branch is closed, and the right branch gives the effect
of the conclusion of the derived rule.

Now, the derivation of formula (10) is in Figure 1. The explanation of Figure 1
is as follows: 2 is from 1 by the double negation rule; 3 is from 2 by a possibility
rule; 4, 5, and 6 are from 3 by repeated uses of a conjunction rule; 7 introduces
axiom 5 of Section 9; 8 is from 7 by a necessity rule; 9 is from 5, 6, and 8 by
repeated uses of the derived rule above; 10 is from 9 by a mixed abstract rule;
11 is from 10 by an object abstract rule; 12 is axiom 7 of Section 9; 13 is from 12
by a possibility rule; 14, 15, and 16 are from 13 by repeated conjunction rules;
17 is from 11 by a necessity rule; 18 is from 15, 16, and 17 by the derived rule
above (slightly modified); 19 and 20 are from 18 by a disjunctive rule; 21 is from
16 by an atomic rule, as are 22 from 20, 23 from 19, 24 from 5, 25 from 6, and
26 from 15; 27 is from 25 by an equality transfer rule, as is 28 from 24; 29 is
from 23 and 27 by a substitutivity rule, as are 30 from 22 and 28, 31 from 27
and 29, and 32 from 26 and 30; 33 is by the reflexivity rule; 34 is by axiom 13
of Section 9; and 35 is from 34 by an equality transfer rule.

As another, and simpler, example, you might try giving a derivation of the
following, essentially establishing that Eve is someone who works Away.

〈λx, y.(∃z){3[PERSONS ∧ (↓NAME = x) ∧ (↓JOBNUMBER = z)]
∧3[LOCATION ∧ (↓JOBNUMBER = z) ∧ (↓WHERE = y)]}〉(Eve, Away)

(11)



18 Melvin Fitting

12 Completeness et. al.

In this section I’ll sketch soundness and completeness arguments for the tableau
system, as well as give a proof for Proposition 10. Nothing is given in much
detail, because proofs are straightforward adaptations of what are, by now, fairly
standard arguments.

12.1 Soundness

Soundness is by the usual tableau method. One defines a notion of satisfiability
for prefixed formulas—a set S is satisfiable if there is a modelM, a mapping m
assigning to each prefix σ a possible world m(σ) of M, and a formula Φ is true
at world m(σ) ofM whenever σ Φ ∈ S. A tableau is called satisfiable if the set of
prefixed formulas on one of its branches is satisfiable. Then one shows that each
tableau rule preserves tableau satisfiability. This requires a case by case check.

Now, if there is a closed tableau for 1¬X, then X must be valid. For, other-
wise, there would be some model in which X was false at some world. It follows
that the set {1¬X} is satisfiable, so we begin with a satisfiable tableau. Then
we can only get satisfiable tableaus, and since we had a closed tableau for 1¬X
we have the impossible situation of having a closed, satisfiable tableau.

12.2 Completeness

Suppose X is a sentence that has no tableau proof—it must be shown that X
is not valid. Again the methodology is standard. Also, while the proof sketch
below is just for tableau provability, and not derivability, the argument extends
directly. I’m giving the simpler version, for simplicity.

Begin by constructing a tableau for 1¬X, and do so systematically, in such
a way that all tableau rules are fairly applied. That is, during the tableau con-
struction, any rule that could eventually be applied is. There are many such
fair tableau construction procedures—I’ll leave the details to you. The result is
a tableau that does not close—say it has an open branch θ (König’s lemma is
needed to guarantee such a branch exists, if the tableau construction is infinite).

Now, construct a model as follows.

1. The set G of possible worlds is the set of prefixes that occur on branch θ.
2. The domain Do of objects is the set consisting of: all individual object con-

stant symbols of the language, all individual object parameters that occur
on θ, and all subscripted (prefixed) individual concept constant symbols and
parameters that occur on θ.

3. if f is an individual concept constant symbol, or individual concept param-
eter that occurs on θ, a function f̂ is defined as follows. The domain of f̂ is
the set of prefixes σ such that fσ occurs on θ. And if σ is in the domain of
f̂ then f̂(σ) = fσ. Note that f̂ maps a subset of G to Do. The domain Dc of
concepts is the set of all these f̂ .

4. For the interpretation I:



Modality and Databases 19

(a) I assigns to each member of Do itself.
(b) I assigns to each f that is an individual concept constant or parameter

(on θ) the function f̂ .
(c) I assigns to a relation symbol P of type 〈〉 the mapping from G to
{false, true} such that I(P )(σ) = true iff σ P occurs on θ.

(d) To make this clause easier to state, I’ll use the following notation. If f
is an object symbol, set f̂ = f . If f is a concept constant or parameter,
f̂ has already been defined. Now, I assigns to a relation symbol R of
type 〈n1, n2, . . . , nk〉 a mapping on G such that 〈t̂1, . . . , t̂k〉 ∈ I(R)(σ)
iff σ R(t1, . . . , tk) occurs on θ.

This completes the definition of a model, call it M. Actually, the equality
symbol may not be interpreted by equality, but leaving this aside for the moment,
one can show by standard methods involving an induction on formula degree
that, for any valuation v:

– If σ Φ occurs on θ then M, σ °v Φ.
– If σ ¬Φ occurs on θ then M, σ 6°v Φ.

The valuation v can be arbitrary because free variables do not occur in tableaus.
Since 1¬X begins the tableau, it occurs on θ, and hence X is not valid in M
since it is false at world 1.

Finally, one “factors” the modelM using the equivalence relation that is the
interpretation of the equality symbol, turning it into a normal modal model. The
Equality Transfer Rule tells us that the interpretation of the equality symbol will
be the same at every world of M. I’ll leave details to you.

12.3 A Sketch of Proposition 10

Assume r is a relation instance and X a simple existential sentence X. All
members axiom(r) are true in model(r), so if X is a consequence of axiom(r),
then X will be true in model(r). It is the converse direction that needs work.

Suppose X is not a consequence of axiom(r). Then X does not have a tableau
derivation from axiom(r). Suppose we now carry out the steps of the complete-
ness argument, from Section 12.2. We begin a tableau for 1¬X, carry out its
construction systematically and, since it is a derivation, we introduce members
of axiom(r) onto the branch during the construction. As usual, I’ll omit details.

Members of axiom(r) that are constraint axioms all involve 2 in a positive
location—they do not involve 3. The sentence X is simple existential, and so
¬X contains 3 in a negative location—it behaves like 2. None of these formulas,
then, can invoke applications of a possibility rule. Only the instance axioms of
axiom(r) can do this. So, if there are n members of axiom(r) that are instance
axioms, an open tableau branch will have exactly n + 1 different prefixes on
it: prefix 1 with which we started, and the n additional prefixes introduced by
possibility rule applications to instance axioms.

Now, proceed with the construction of a model, using an open tableau branch,
as outlined in Section 12.2. We get a model with n+ 1 worlds, with X is false at



20 Melvin Fitting

world 1, and a world corresponding to each instance axiom. Because of the form
of X (only existential quantifiers and a single possibility symbol), since it is false
at world 1, it is also false at every world. If we now consider the submodel in
which world 1 is dropped, it is not hard to check that truth values of members
of axiom(r) do not change at remaining worlds, nor does the truth value of X.
And the resulting model is (isomorphic to) model(r).

13 Conclusion

I want to finish by describing two plausible directions for future work, one having
to do with the modal logic directly, the other with its applications to databases.

The tableau proof procedure given here used parameters and, as such, is
meant for human application. But it should be possible to develop a free-variable
version that can be automated. The S5 modality itself is a kind of quantifier,
but it is of a simple nature. Object quantification is essentially classical. Con-
cept quantification may create some difficulty—I don’t know. Equality plays a
fundamental role, but it is a rather simple one. Perhaps what is needed can be
captured efficiently in an automated proof procedure.

The databases considered here were all conventional relational ones. This is
what the first-order modal language can handle. But one could consider multiple-
valued databases, say, in which entries can be sets. Or for a more complicated ex-
ample, consider this. Say a record represents a person, and among a person’s at-
tributes are these three: FAVORITE BOOK, FAVORITE MOVIE, and MOST IMPORTANT.
The first two attributes have the obvious meaning. The MOST IMPORTANT at-
tribute records which that person considers most important in evaluating some-
one, FAVORITE BOOK or FAVORITE MOVIE. Thus MOST IMPORTANT is an attribute
whose value is an attribute. (This example is meant to be easily described, and
hence is rather artificial. More realistic examples are not hard to come by.) The
modal logic of this paper is really the first-order fragment of a higher-type sys-
tem, presented in full in [1]. If one uses that, one can easily have sets of objects,
or attributes, as entries. Indeed, one can consider much more complex things
yet. Of course the proof procedure also becomes more complex, as one would
expect. Whether such things are of use remains to be seen.

References

1. Melvin C. Fitting. Types, Tableaus, and Gödel’s God. 2000. Available on my web
site: comet.lehman.cuny.edu/fitting.

2. Melvin C. Fitting and Richard Mendelsohn. First-Order Modal Logic. Kluwer, 1998.
Paperback, 1999.

3. Saul Kripke. Naming and Necessity. Harvard University Press, 1980.
4. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.

Computer Science Press, 1988.



Modality and Databases 21

1¬¬3[LOCATION ∧ (↓JOBNUMBER = 1) ∧ (↓WHERE = Away)] 1.
1 3[LOCATION ∧ (↓JOBNUMBER = 1) ∧ (↓WHERE = Away)] 2.
2 LOCATION ∧ (↓JOBNUMBER = 1) ∧ (↓WHERE = Away) 3.
2 LOCATION 4.
2 (↓JOBNUMBER = 1) 5.
2 (↓WHERE = Away) 6.
1 2{(D(JOBNUMBER) ∧D(WHERE)) ⊃
〈λx, y.2[(D(JOBNUMBER) ∧D(WHERE) ∧ x =↓WHERE) ⊃
(y =↓JOBNUMBER)]〉(↓WHERE, ↓JOBNUMBER)} 7.

2 (D(JOBNUMBER) ∧D(WHERE)) ⊃
〈λx, y.2[(D(JOBNUMBER) ∧D(WHERE) ∧ x =↓WHERE) ⊃
(y =↓JOBNUMBER)]〉(↓WHERE, ↓JOBNUMBER) 8.

2 〈λx, y.2[(D(JOBNUMBER) ∧D(WHERE) ∧ x =↓WHERE) ⊃
(y =↓JOBNUMBER)]〉(↓WHERE, ↓JOBNUMBER) 9.

2 〈λx, y.2[(D(JOBNUMBER) ∧D(WHERE) ∧ x =↓WHERE) ⊃
(y =↓JOBNUMBER)]〉(WHERE2, JOBNUMBER2) 10.

2 2[(D(JOBNUMBER) ∧D(WHERE) ∧ WHERE2 =↓WHERE) ⊃
(JOBNUMBER2 =↓JOBNUMBER)] 11.

1 3[LOCATION ∧ (↓JOBNUMBER = 2) ∧ (↓WHERE = Away)] 12.
3 [LOCATION ∧ (↓JOBNUMBER = 2) ∧ (↓WHERE = Away)] 13.
3 LOCATION 14.
3 (↓JOBNUMBER = 2) 15.
3 (↓WHERE = Away) 16.
3 [(D(JOBNUMBER) ∧D(WHERE) ∧ WHERE2 =↓WHERE) ⊃

(JOBNUMBER2 =↓JOBNUMBER)] 17.
3 [(WHERE2 =↓WHERE) ⊃

(JOBNUMBER2 =↓JOBNUMBER)] 18.

�
� @

@
3¬(WHERE2 =↓WHERE) 19. 3 (JOBNUMBER2 =↓JOBNUMBER) 20.
3 (WHERE3 = Away) 21. 3 (JOBNUMBER2 = JOBNUMBER3) 22.
3¬(WHERE2 = WHERE3) 23. 2 (JOBNUMBER2 = 1) 24.
2 (WHERE2 = Away) 25. 3 (JOBNUMBER3 = 2) 26.
3 (WHERE2 = Away) 27. 3 (JOBNUMBER2 = 1) 28.
3¬(Away = WHERE3) 29. 3 (1 = JOBNUMBER3) 30.
3¬(Away = Away) 31. 3 (1 = 2) 32.
1 (Away = Away) 33. 1¬(1 = 2) 34.

3¬(1 = 2) 35.

Fig. 1. Derivation Example


