
Modal logic should say

more than it does

Melvin Fitting
MLFLC@CUNYVM.CUNY.EDU

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

Depts. Computer Science, Philosophy, Mathematics
Graduate Center (CUNY), 33 West 42nd Street, NYC, NY 10036 ∗

February 18, 1991

Abstract

First-order modal logics, as traditionally formulated, are not expressive enough. It is this
that is behind the difficulties in formulating a good analog of Herbrand’s Theorem, as well as
the well-known problems with equality, non-rigid designators, definite descriptions, and non-
designating terms. We show how all these problems disappear when modal language is made
more expressive in a simple, natural way. We present a semantic tableaux system for the
enhanced logic, and (very) briefly discuss implementation issues.

1 Introduction

Necessity is the mother of modality, but she has a large family. It includes knows, believes, legally
requires and morally requires, among others. Clearly a proper understanding of the behavior of
modal operators is essential to any formal treatment of natural language, as well as to any formal-
ization of everyday reasoning. Unfortunately, once the elementary level has been passed, virtually
every feature that has made classical logic a powerful tool has led to confusion and argument in the
modal framework. In this paper we propose a simple way out of these difficulties. The constructions
considered here increase the expressive powers of modal language, make it possible to avoid many
of the difficulties usually associated with first-order modal logics, address some interesting philo-
sophical problems, and have a fundamental bearing on non-classical automated theorem proving.
Believe it or not (a modal sentence if I ever heard one.)

In order to give a feeling for some of the problems present in first-order modal logics as usually
formulated, it is convenient to make use of Kripke’s possible world semantics for modal logic. We
give a formal treatment below, but only an informal understanding is required now. A model has a
∗Research partly supported by NSF Grant CCR-8702307 and PSC-CUNY Grant 668283.

1

2 Melvin Fitting

number of possible worlds; some are accessible from others; at each world the classical connectives
and quantifiers behave in the expected classical ways; X (necessarily X) is true at a possible world
if X is true at every world accessible from it. This is enough model detail for now.

In automated theorem proving in classical logic, a formula like (∃x)Φ(x) is often Skolemized.
One introduces a constant symbol, say c, intended to name something having the property Φ(x)
if anything does. Then one replaces (∃x)Φ(x) with Φ(c), thus eliminating a quantifier. Now, in a
modal setting, how should we Skolemize (∃x)Φ(x)? If it is true at a possible world, (∃x)Φ(x) is
true at each accessible world, and hence at each accessible world Φ(x) will be true of some object.
But that object might be different at different worlds. If we Skolemize in the expected way, pro-
ducing Φ(c), the constant symbol c must be allowed to name different objects in different worlds.
Philosophers call such things non-rigid designators. The notion of Skolemization appropriate for
modal logic, then, requires the use of non-rigid designators.

As it happens, almost every treatment of first-order modal logic in the literature does not
permit non-rigid designators. In [12] the usual syntax of terms is modified to allow them to
be non-rigid, while in [20] and [21] the syntax of formulas is modified (the approach continued
here). But essentially everywhere else, constant symbols are required to name the same objects
from world to world. (Such constant symbols are called rigid designators.) One basic reason for
this is astonishingly simple: if one allows non-rigid designators, standard modal notation becomes
ambiguous. Consider again the formula Φ(c); what could it mean for it to be true at the possible
world Γ? One reasonable reading is: Φ(c) is true at Γ provided Φ(c) is true at every alternative
world ∆, taking c to name whatever it did in Γ. Another equally reasonable reading is: Φ(c) is
true at Γ provided Φ(c) is true at every alternative world ∆, taking c to name whatever it does in
∆. But c might name different objects in Γ and ∆. In short, there are two basic actions: letting
c designate, and moving to an alternative world. These two actions commute only if c is a rigid
designator. Ordinary first-order modal syntax has no machinery to distinguish the two alternate
readings of Φ(c). Consequently when non-rigid designators have been treated at all, one of the
readings has been disallowed, thus curtailling expressive power.

If we Skolemize the two modal sentences (∃x) Φ(x) and (∃x)Φ(x), we seem to get the same
sentence, Φ(c), in both cases. In fact, we need to be able to read Φ(c) one way for it to replace
(∃x) Φ(x), and another way for it to replace (∃x)Φ(x); we need both the readings considered
above, and standard modal syntax does not allow us to distinguish them. The classic paper [17]
has taught us the importance of Herbrand’s Theorem for automated theorem proving. In the modal
case a really satisfactory analog of Herbrand’s Theorem is tricky (see [1] and [12] for versions). The
difficulty lies in the lack of expressive power of conventional presentations of first-order modal logics.
Indeed, as we have seen, even Skolemization is a problem.

The issues raised above affect representation of everyday expressions in formal terms. For
example, consider the sentence “The President of the United States someday won’t be the President
of the United States.” In interpreting this we take the designator ‘The President of the United
States’ as naming a person in the present world, then we pass to a future alternative world in which
that person is no longer president. On the other hand, consider the sentence “The President of the
United States might not have been George Bush.” Here we mean that there is a logically possible
world alternative to this one in which ‘The President of the United States’ names somebody other

Modal Logic 3

than George Bush. In the first example, ‘The President of the United States’ designates before a
move is made to an alternative world; in the second example the designation action occurs after the
move to an alternative world is made. These two examples show that each way of reading something
like Φ(c) is sometimes appropriate. In informal settings we rely on context to distinguish which
version we mean, but a formal language should make the distinction explicit.

The observation that non-rigid designators are needed for automated modal theorem proving has
been made by others. Konolige ([9], [12]) introduces a ‘bullet’ operator as a device for coping with
the ambiguity problems that arise. While useful, we feel it does not go far enough in addressing the
fundamental problems of limited expressibility inherent in modal logic. The mechanism presented
here is exactly dual to that of Konolige. Where Konolige modifies the structure of terms, we do
not, but instead modify the general notion of formulas. The two approaches are compared briefly
in Section 4.

The solution to the expressibility problem that is presented here involves a device of abstraction.
It is far from new, though it seems to be generally unknown in the theorem proving and artificial
intelligence communities. It was introduced by Stalnaker and Thomason in [20] and [21]. Based on
their work, modal versions of Hilbert’s epsilon calculus were investigated in [4] and [6]. Even an
analog of Herbrand’s Theorem was developed in [5]. Then, curiously enough, nothing further on
the subject seems to have appeared in the literature, though in a general way the basic ideas were
subsumed in those of Montague semantics. Probably those portions of theoretical computer science
for which such things are relevant had not sufficiently matured. At any rate, we believe it is time for
a revival. We present the basic ideas, as originally introduced in [20] and [21]. To these are added
tableaux methods which allow for automation, though we do not persue the issue here. We then
extend the basic ideas to deal with the problems of definite descriptions in modal contexts, and of
non-designating terms. Semantic tableaux methods are also generalized to treat these issues as well.
We hope others will take up the challange of providing efficient implementations incorporating the
devices presented here, so that applications of a truly versatile non-classical logic can be developed.

2 Predicate Abstraction

In the Lambda calculus a distinction is made between a term, say x+1, and the function formed by
abstraction applied to this term, (λx.x+ 1). Over the years this distinction has become a familiar
one to most of us. What we need here is a similar distinction between a formula of logic, say
Φ(x), and what we might call the predicate abstraction formed by applying lambda abstraction to
it, (λx.Φ(x)). This notion has not arisen in classical first-order logic because it adds nothing there.
For instance, we will see that if Φ contains no modal operators, (λx.Φ) and Φ behave essentially
alike. But there is a significant difference between (λx.Φ(x))(c) and (λx. Φ(x))(c). In the first
formula, (λx.Φ(x))(c), we are asserting that a certain proposition is necessary, the proposition
that c has property Φ. Thinking of λ as a scoping device, c is within the scope of in this formula,
and thus its designation can be expected to change from world to world. The second formula,
(λx. Φ(x))(c), asserts that c has a certain property, the “necessarily-Φ” property. In this, c is not
within the scope of , so its designation can be expected to remain fixed from world to world.

A formula like (λx.Φ(x))(c) in which the necessity operator is applied to a proposition is

4 Melvin Fitting

sometimes said to express a de dicto modality (from dictum, proposition). Likewise a formula
like (λx. Φ(x))(c) in which the object designated by c is asserted to have a necessary property is
sometimes said to express a de re modality (from res, thing). A discussion of the de dicto/de re
distinction can be found in [10], Chapter 10. It will play no special role here.

To make things more concrete, consider the following simple example. Is it necessary that the
number of planets be odd? The number of planets is (we believe) 9, and 9 is necessarily odd.
There is no alternative state of affairs in which 9 could be even. Then one may reasonably say it
is necessary that the number of planets is odd. On the other hand, the number of planets might
not have turned out to be 9. One can imagine an alternative universe in which there are 6, or
even 0 planets. Then it does not seem necessary that the number of planets be odd. Clearly we
are interpreting the natural language assertion “it is necessary that the number of planets be odd”
in two different ways here. Predicate abstraction was introduced by Stalnaker and Thomason in
order to make such distinctions explicit. Suppose p is a constant symbol, designating the number
of the planets. Then p is non-rigid; given the universe as we know it, p designates the number 9,
but one can imagine other situations in which the number of planets is a different number. Let
O(x) be a formula expressing that x is an odd number. Then the formula (λx. O(x))(p) asserts
of the number designated by p, namely 9, that it is necessarily odd. This is correct. On the other
hand, (λx.O(x))(p) asserts the necessity of the proposition that the number of planets be odd.
That is, it asserts that in every alternative universe the number of planets will be odd. This is not
correct. We see that the same natural language sentence has two possible formalizations, one true,
one false.

3 Syntax

We take ∧, ¬, ∀ and as primitive and define the other connectives, quantifiers and modalities as
usual. Also terms are built up from an alphabet of variables and constant symbols using function
symbols in the usual way; we omit details.

An atomic formula is an expression of the form P (x1, . . . , xn) where P is an n-place relation
symbol and x1,. . . ,xn are variables. The definition of formula, and free variable, is the usual one
of first-order modal logic, with the addition of the following:

• if Φ is a formula, x is a variable and t is a term, then (λx.Φ)(t) is a formula. The free variable
occurrences of (λx.Φ)(t) are those of Φ except for occurrences of x, together with the free
variable occurrences of t.

Notice we did not allow any terms except variables to occur in atomic formulas. Where in a
standard formulation of logic we might write P (c), here we will write (λx.P (x))(c). The idea is
that predicate abstractions are applied to terms to create meaningful formulas. At the atomic level,
the variable x in P (x) is essentially a place holder only.

We will abbreviate (λx.(λy.Φ)(u))(t) by (λx, y.Φ)(t, u), and similarly for more complicated
cases. Likewise we will occasionally write (λx.Φ)(t) for (λx1, . . . , xn.Φ)(t1, . . . , tn) when no confu-
sion is likely.

Modal Logic 5

4 Semantics

There are many different propositional modal logics. Semantically, Kripke models for these are dis-
tinguished by putting various special restrictions on the notion of alternativeness between possible
worlds; restrictions like transitivity or reflexivity [13]. Such issues are not important for the points
we are concerned with, so to keep things simple we have chosen a single underlying propositional
modal logic as a foundation throughout. The logic we use is generally called K; it is the weakest
normal modal logic. In Kripke models suitable for this logic no special restrictions are placed on
the accessibility relation at all. What we present for K carries over with no change to other modal
logics as well.

When first-order machinery is added to a propositional modal logic [14], several choices are
available that have no classical counterparts. In a Kripke model each possible world has a domain
associated with it, for quantifiers to range over at that world. We could require that all worlds
have the same associated domains. Or we could weaken this by allowing different worlds to have
different associated domains, but still requiring that all the objects in the domain associated with
a possible world are still available in the domains of worlds accessible from that one. Or we could
simply allow different worlds to have different domains, without restriction. Each choice gives rise
to a different first-order modal logic. There is no ‘right’ choice; the guiding principle must be
appropriateness for an intended application. Again to keep things simple, we assume all possible
worlds have the same associated domains.

When predicate abstraction is not considered, it is well-known that the semantic condition
that all worlds have the same associated domains corresponds to the proof-theoretic condition that
the Barcan formula be a theorem. The Barcan formula is (∀x) Φ(x) ⊃ (∀x)Φ(x) (or rather,
any formula of this form is a Barcan formula). This connection between the Barcan formula and
constant domain models continues when predicate abstraction is allowed. Still, it is important to
repeat that the restriction to constant domain models is only for convenience. There are other
versions of our work that apply more generally but they are more complicated, so for reasons of
clarity we confine ourselves to the constant domain case here.

Finally, there is the issue of non-designating terms. Such things are common in natural language;
‘The King of France’ is a well-known example. At the start we will assume we do not have such
terms; all terms designate. Later on we will discuss modifications to allow non-designating terms.
Now for the formal machinery.

Definition 4.1 A first-order Kripke frame is a triple 〈G,R,D〉 where G is a non-empty set, R is a
binary relation on G, and D is a non-empty set.

If 〈G,R,D〉 is a first-order Kripke frame, the members of G are generally called possible worlds.
The relationR is the accessibility relation: if ΓR∆ then the world ∆ is accessible from Γ, or possible
relative to Γ. D is the domain over which quantifiers range; it is the same for all worlds, as frames
are defined here. If we wanted something more general, we could take it to be a function from
worlds to non-empty sets.

Definition 4.2 A non-rigid Kripke model is a quadruple 〈G,R,D, v〉 where 〈G,R,D〉 is a first-
order Kripke frame and v is a mapping that:

6 Melvin Fitting

1. assigns to each n-place relation symbol P and each world Γ in G an n-place relation v(P,Γ)
on D;

2. assigns to each constant symbol c and each world Γ in G a member v(c,Γ) ∈ D;

3. assigns to each n-place function symbol f and each world Γ in G a function v(f,Γ) : Dn → D.

Informally we may think of a constant symbol c as a name, and v(c,Γ) as the object that c
names in the world Γ. Condition 2. above assumes that names always designate. Similar remarks
apply to function symbols and condition 3. This is not always so in the real world, as we remarked
earlier. In more conventional treatments of first-order modal logic, v(c,Γ) is not allowed to depend
on Γ; constant symbols designate the same objects in all worlds, and so are rigid. Also, function
symbols are not commonly considered. We hope to show our more general version is both more
expressive, and natural.

Definition 4.3 An interpretation s in a model 〈G,R,D, v〉 is a mapping from the set of free
variables of the language to the domain D of the model. We write s [ax] to denote the interpretation
that is like s except that it maps the variable x to a.

Interpretations are defined on variables. We extend the notion to terms and worlds as follows.

Definition 4.4 Let s be an interpretation in the non-rigid Kripke model 〈G,R,D, v〉, and let
Γ ∈ G. Then we set:

1. s(x,Γ) = s(x), for a variable x;

2. s(c,Γ) = v(c,Γ), for a constant symbol c;

3. s(f(t1, . . . , tn),Γ) = v(f,Γ)(s(t1,Γ), . . . , s(tn,Γ)) for a function symbol f .

Now the central notion. We write M,Γ |= Φ[s] to symbolise that the formula Φ is true, under
the interpretation s, at the world Γ, in the model M.

Definition 4.5 Let M = 〈G,R,D, v〉 be a non-rigid Kripke model, and let s be an interpretation
in M. Then:

1. if P (x1, . . . , xn) is atomic, M,Γ |= P (x1, . . . , xn)[s] provided 〈s(x1), . . . , s(xn)〉 is in the rela-
tion v(P,Γ);

2. M,Γ |= ¬Φ[s] if it is not the case that M,Γ |= Φ[s];

3. M,Γ |= (Φ ∧Ψ)[s] if M,Γ |= Φ[s] and M,Γ |= Ψ[s];

4. M,Γ |= (∀x)Φ[s] if M,Γ |= Φ[s [ax]] for every a ∈ D;

5. M,Γ |= Φ[s] if M,∆ |= Φ[s] for every ∆ ∈ G such that ΓR∆;

6. M,Γ |= (λx.Φ)(t)[s] if M,Γ |= Φ[s [ax]] where a = s(t,Γ).

Modal Logic 7

We can think of the members of D as the objects of the model. Item 4. says quantifiers range
over objects, not over names for them. Item 5. is characteristic of Kripke models. It says necessary
truth at a world is equivalent to truth at all worlds that are possible relative to it, a technical
version of an idea traceable to Leibnitz. Item 6. is the only one that is not standard in treatments
of first-order modal logic. Essentially it says the predicate abstraction (λx.Φ) is true of a name t
at a world provided Φ is true of the object that t names.

If Φ is a closed formula, or sentence, it is easy to see that M,Γ |= Φ[s] for some interpretation
s if and only if M,Γ |= Φ[s] for every interpretation s. For a sentence Φ we will write M,Γ |= Φ
for M,Γ |= Φ[s] for some (any) interpretation s.

In the introduction we noted there were two possible readings of Φ(c), depending on when c was
allowed to designate. Φ(c) is not a formula of our language as we have defined it. But correspond-
ing to Φ(c) we now have two syntactically distinct sentences, (λx. Φ(x))(c) and (λx.Φ(x))(c).
A straightforward application of the definition above shows that, in a non-rigid Kripke model M,

M,Γ |= (λx. Φ(x))(c)[s] if and only if for every ∆ such that ΓR∆,
M,∆ |= Φ(x)[s [ax]] where a = s(c,Γ);

M,Γ |= (λx.Φ(x))(c)[s] if and only if for every ∆ such that ΓR∆,
M,∆ |= Φ(x)[s [ax]] where a = s(c,∆).

These are exactly the two alternative readings of Φ(c) we considered informally earlier.

Definition 4.6 A sentence Φ is valid provided, for every non-rigid modelM and for every possible
world Γ of M we have M,Γ |= Φ. Φ is satisfiable if there is some non-rigid model M and some
possible world Γ of M such that M,Γ |= Φ.

In [9] an example is given to show that a naively formulated Herbrand’s Theorem fails for modal
logics. This example is useful here as a device to contrast the approach taken by Konolige in [12]
and [9] with ours, and so we spend some time discussing it now. 1. Currently, the mayor of New
York City is not Italian (it’s Ed Koch). 2. Suppose that if someone isn’t Italian, Sam knows it. 3.
Still, it may be that Sam doesn’t know the mayor of New York isn’t Italian (since he may believe
that Fiorello LaGuardia is still the mayor). Suppose we let m be a constant symbol intended to
name the mayor of New York, and we use N(x) with the intended meaning ‘x is not Italian.’ Then
the numbered sentences can be formalized as follows, using to represent Sam knows.

1. N(m)

2. (∀x)(N(x) ⊃ N(x))

3. ¬ N(m)

The argument is made in [9] that this set of sentences is satisfiable (it is essential that m be
non-rigid for this), but if we add the following substitution instance of item 2., N(m) ⊃ N(m),
the resulting set is not satisfiable. In order to get around this, a ‘bullet’ operator is introduced, so
that for a term t, “•t always refers to whatever t denotes in the actual world, no matter what the

8 Melvin Fitting

context of interpretation.” Then the ‘correct’ substitution instance of item 2. should be written as
N(m) ⊃ N(•m), and now we get a set that turns out to be satisfiable.

Our own solution to the problem is exactly complementary to that of [12]: we see nothing wrong
with item 2., but both of the other two items pose problems. Item 1. is not syntactically correct
in our system, but this is simple to adjust. We replace it with (λx.N(x))(m). Item 3., however,
is the real problem. We could replace it with either 4. ¬(λx. N(x))(m) or 5. ¬ (λx.N(x))(m).
Distinctions that were blurred together before now must be carefully distinguished. (λx. N(x))(m)
can be read, “Sam knows, of the mayor of New York, that he is not Italian.” Since the mayor of
New York is Ed Koch (currently), and he is not Italian, presumably Sam knows he is not Italian.
He can know this without knowing that he is the mayor. On the other hand, (λx.N(x))(m) can
be read as, “Sam knows that the mayor of New York is not Italian,” which is quite a different
assertion.

It is easy to see that at any possible world at which item 2. is true, we also have that
(λx.N(x))(m) ⊃ (λx. N(x))(m) is true. Then it is trivial that sentences 1. (revised as above),
2. and 4. together are inconsistent. On the other hand, it is not hard to show that 1., 2. and 5. are
consistent. We believe that the failure to distinguish between the two possible readings of item 3.
was at the heart of the problem all along.

5 Elementary Results

We begin with a result that says the addition of predicate abstraction machinery is conservative.
If a sentence Φ does not contain any occurrences of the lambda operator, then Φ will also be a
meaningful sentence in more conventional formulations of modal logic. But, the machinery of our
version of Kripke model only differs from more conventional versions in its treatment of predicate
abstractions. If Φ does not involve the lambda operator, its truth value at a possible world in one
of our models will be calculated the same way it would be in other treatments. Ignoring the special
machinery, our models are simply those of the so-called constant domain version of K. Such models
are sound and complete with respect to K+ the Barcan Formula [10], [11]. Consequently we have
the following.

Proposition 5.1 If Φ is a sentence that contains no predicate abstractions, then Φ is valid in our
sense if and only if Φ is a theorem of the first-order modal logic K+ the Barcan Formula.

We may think of (λx.Φ(x)) as the predicate abstracted from Φ(x). Such a notion does not seem
to have arisen in classical logic; there one essentially thinks of Φ(x) as already being a predicate.
The following easily established result explains why the notion of predicate abstraction has not
arisen classically. It says abstraction is transparent with respect to the classical machinery.

Proposition 5.2 The following sentences are valid (where c and d are constant symbols):

1. (λv.Φ ∧Ψ)(c) ≡ (λv.Φ)(c) ∧ (λv.Ψ)(c)

2. (λv.¬Φ)(c) ≡ ¬(λv.Φ)(c)

3. (λv.(∀x)Φ)(c) ≡ (∀x)(λv.Φ)(c) provided x is not in the list v

Modal Logic 9

4. (λv.(λx.Φ)(d))(c) ≡ (λx.(λv.Φ)(c))(d) provided x is not in the list v.

Even in a classical setting, however, the use of lambda abstraction can be valuable. We will see
in Section 10 that if terms are allowed to be non-designating, it is natural to assign meanings in a
way that makes item 2. above no longer valid.

In automated theorem proving for classical logic it is most common to convert a formula to
clause form. In modal logic, this is not a tool that is available, since quantifiers can’t generally
be moved outside modal operators. Indeed, without predicate abstraction even Skolemization is
not possible, since both (∃x)P (x) and (∃x) P (x) would convert to the same thing. But with
predicate abstraction available we are able to Skolemize ‘in place’ so to speak, thus eliminating
existential quantifiers. In the following we assume the notion of a positive or a negative occurrence
of a subformula is known.

Proposition 5.3 (Skolemization) Suppose Φ is a sentence in which (∀x)Ψ occurs as a negative
subformula. Say this subformula occurrence is within the scope of only positive occurrences of
universal quantifiers, and these involve the variables y. Let f be a function symbol that does
not occur in Φ, and let Φ∗ be the result of replacing the negative occurrence of (∀x)Ψ in Φ with
(λx.Ψ)(f(y)). Then Φ is satisfiable if and only if Φ∗ is satisfiable.

The semantic proof of this is much like the classical one, and is omitted. It was stated entirely
in terms of negative occurrences of the universal quantifier. It is understood that positive occur-
rences of the existential quantifier are treated similarly, since they translate into negative universal
occurrences. Repeated application of this Proposition allows us to fully Skolemize any sentence.

As an example, consider the sentence (∀w) (∃z)(∀x)(∃y)[R(x, y) ⊃ R(z, w)]. If we negate
this and perform a few elementary transformations we get (∃w)♦(∀z)(∃x)(∀y)[R(x, y)∧¬R(z, w)].
Skolemizing this produces (λw.♦(∀z)(λx.(∀y)[R(x, y)∧¬R(z, w)])(f(z)))(c). It is not hard to show
that this implies the sentence (λw.♦[(λz, x, y.R(x, y) ∧ ¬R(z, w))(c, f(z), w) ∧ (λz, x, y.R(x, y) ∧
¬R(z, w))(f(c), f(z), c)])(c). It is straightforward to check that this is not satisfiable, and so neither
is (∃w)♦(∀z)(∃x)(∀y)[R(x, y) ∧ ¬R(z, w)]. Then
(∀w) (∃z)(∀x)(∃y)[R(x, y) ⊃ R(z, w)] must be valid.

In the preceeding paragraph we produced a kind of Herbrand expansion, suggesting that there
is a Herbrand Theorem in the background. Herbrand’s Theorem can be looked at as a way of
reducing a problem about first-order provability to problems about propositional provability. As
such, it is one of a family of closely related theorems. In [5] we used a more limited version of lambda
abstraction (without function symbols) to state and prove a modal analog of a theorem of Smullyan.
Smullyan’s Theorem, like Herbrand’s, is a reduction from first-order to propositional provability,
though the mechanics are different. In [12] a Herbrand Theorem using the bullet operator is given.
The presence of function symbols and predicate abstraction makes it possible now to give a full
modal analog of Herbrand’s theorem, but its statement is of considerable complexity, and we do
not give it.

10 Melvin Fitting

6 A Tableau System

We give a tableau proof procedure that is sound and complete with respect to the semantics
considered above. This tableau version is suitable for hand calculation; we will briefly discuss
automation issues later. The underlying idea is an old one, and was anticipated in [2], and explicitly
given in [3] and [7] for systems without non-rigid designators. The idea is to introduce a convenient
syntactic device for ‘naming’ possible worlds, and turn semantic notions into syntax manipulations.
We use finite sequences of positive integers for this purpose. The underlying idea is very elementary.
If we think of the sequence 1, 2, 1, say, as naming a possible world, then the simple extensions
1, 2, 1, 1 and 1, 2, 1, 2 and 1, 2, 1, 3, and so on, all name worlds accessible from it. In general, if σ
is a finite sequence and n is a positive integer, we write σ n for the sequence resulting when n is
added to the end of σ. Then σ n is intended to name a world accessible from the world σ names.

Definition 6.1 A prefixed formula is an expression of the form σ Φ where σ is a finite sequence of
positive integers (called a prefix) and Φ is a formula.

A tableau is a tree of a certain sort, with nodes labeled by prefixed formulas. We write these
trees with the root node at the top and the leaves at the bottom. We give rules for ‘growing’ a
tableau, and we begin with the propositional cases, and consider examples, before we go on to the
complications brought by quantifiers.

Definition 6.2 We say a prefix σ is available on a tableau branch θ if there is a prefixed formula
σ Φ on θ. Likewise we say σ is unrestricted on θ provided, for every prefixed formula τ Φ on θ, σ
is not an initial segment of τ (proper or not).

The intuition here is straightforward. An available prefix, informally, names a world whose ex-
istence has already been established. An unrestricted prefix has no previously determined meaning.

Now, the propositional branch extension rules are as follows. Let T be a tableau, and let θ be
a branch of T . Then:

1. if σ ¬¬X occurs on θ, σ X may be added to the end of θ;

2. if σ (X ∧ Y) occurs on θ, both σ X and σ Y may be added to the end of θ;

3. if σ ¬(X ∧ Y) occurs on θ, a left child and a right child may be created for the last node of
θ, one labeled σ ¬X, the other labeled σ ¬Y ;

4. if σ X occurs on θ, σ n X may be added to the end of θ for any σ n that is available on θ;

5. if σ ¬ X occurs on θ, σ n ¬X may be added to the end of θ, where n is the smallest integer
such that σ n is unrestricted on θ.

Applying a branch extension rule to a branch of a tableau T yields another tableau.

Definition 6.3 A branch of a tableau is called closed if it contains both σ X and σ ¬X, for some
sentence X. A tableau is closed if each branch is closed.

Modal Logic 11

We still must say how to start. The tableau system is designed only to prove sentences. In
an attempt to prove the sentence X, we begin with a one-branch, one-node tree, with that node
labeled 1 ¬X. Then we apply the branch extension rules. If we ever produce a closed tableau, we
have a proof of X.

The ideas are rather straightforward. By beginning with 1 ¬X we are informally supposing
there is a world, named by 1, in which ¬X is true. A closed tableau tells us this is impossible, and
so X must be valid. We will make this more precise later on, but now we present an example of a
proof using the rules so far. The proof is of the formula (P ∧ Q) ⊃ (P ∧Q). Actually, we must
translate away defined connectives, and so we really prove the formula ¬((P ∧ Q)∧¬ (P ∧Q)).
Equally well, we could give derived branch extension rules to cover the defined connectives. The
proof is contained in Figure 1. Note that the line 1, 1 ¬(P ∧ Q) comes from 1 ¬ (P ∧ Q), and at
the point when the line is added, 1, 1 is unrestricted on the branch. Likewise 1, 1 P comes from
1 P , and at the point when it is added, 1, 1 is available on the branch.

Next we move on to the branch extension rules for quantifiers. In order to do this we need to
introduce a little more machinery. First, in tableau systems for classical logic, as in [19], proofs of
formulas from a first-order language L involve formulas from a larger language, say L∗. The larger
language is like L except that an extra, countable set of new constant symbols has been added.
These are called parameters; their purpose is to act like Skolem constants. Well, we must do the
same thing here. So from now on, a parameter is a constant symbol not part of the formal language
with which we began. We are going to treat these as rigid designators, and so their role will be
somewhat different from constant symbols of the original language, in several respects.

Next, non-rigid constant symbols designate different things in different worlds. If c is a non-rigid
constant symbol and σ is a prefix, we will write cσ and think of it informally as the object that
c designates in the world that σ names. Similarly for function symbols. We introduce a technical
term for all this.

Definition 6.4 The notion of an object expression is given as follows:

1. if c is a (non-rigid) constant symbol and σ is a prefix, cσ is an object expression;

2. if p is a parameter, p is an object expression;

3. if f is an n-place function symbol, σ is a prefix, and o1,. . . , on are object expressions,
fσ(o1, . . . , on) is an object expression.

The notion of availability must be extended to object expressions. We say an object expression
o is available on a branch if every subscript in o is available on the branch.

We will need things that are like formulas, except that object expressions are allowed to occur
in them. We call such things generalized formulas. They occur in proofs, but are not part of the
underlying language.

The quantifier branch extension rules are as follows. Let T be a tableau, and let θ be a branch
of T . Then:

1. if σ (∀x)Φ(x) occurs on θ then σ Φ(o) may be added to the end of θ for any object expression
o that is available on θ;

1 ¬¬ ((P ∧ Q)) ∧ ¬ (P ∧ Q))

1 (P ∧ Q) ∧ ¬ (P ∧ Q)

1 P ∧ Q

1 ¬ (P ∧ Q)

1 P

1 Q

1,1 ¬ (P ∧ Q)

1,1 P

1,1 Q

1,1 ¬ P 1,1 ¬ Q

12 Melvin Fitting

Figure 1: A Propositional Tableau Proof

Modal Logic 13

2. if σ ¬(∀x)Φ(x) occurs on θ then σ ¬Φ(p) may be added to the end of θ, where p is a parameter
that is new to θ.

In the rules above, we used Φ(o) as an informal way of designating the result of substituting
occurrences of o for all free occurrences of x in Φ(x). It is expressions like Φ(o) that we will call
generalized formulas.

As a very simple example, we give a tableau proof of (∀x) P (x) ⊃ (∀x)P (x), or rather, of
¬((∀x) P (x) ∧ ¬ (∀x)P (x)). This is known to be characteristic for Kripke models in which all
possible worlds have the same associated quantification domains. In the proof, given in Figure 2,
the line 1, 1 ¬P (p) comes from 1, 1 ¬(∀x)P (x); p is a parameter, and all parameters are new to the
branch at this point. Likewise, line 1 P (p) is from line 1 (∀x) P (x), using the fact that p is an
available object expression.

Finally we give the rules for the abstraction operator. And here we need one more piece of
notation. Suppose σ is a prefix, and t is like a closed term, except that some of the constant and
function symbols may have prefixes as subscripts. By t@σ we mean the expression that is like
t except that all unsubscripted function symbols and constant symbols (other than parameters)
have had σ attached as a subscript. For example, say p is a parameter, while c and d are non-
rigid constant symbols and f and g are function symbols. If t = f1,2(g(c1), d, p) then t@ 1, 1 =
f1,2(g1,1(c1), d1,1, p).

Now, the abstraction branch extension rules are as follows. Let T be a tableau, and let θ be a
branch of T . Then:

1. if σ (λx.Φ(x))(t) occurs on θ then σ Φ(t@σ) may be added to the end of θ;

2. if σ ¬(λx.Φ(x))(t) occurs on θ then σ ¬Φ(t@σ) may be added to the end of θ.

Once again we give a simple example, a proof of
(∀x) (λy.R(x, y))(f(x)) ⊃ (∀x) (∃y)R(x, y), or rather of
¬[(∀x) (λy.R(x, y))(f(x)) ∧ ¬(∀x) ¬(∀y)¬R(x, y)]. The proof is contained in Figure 3; we leave
the justification of the steps to you.

7 Soundness and Completeness

Soundness of the tableau system is easy to establish. As usual with both tableau and resolution
systems, we want to show the rules preserve satisfiability. But since entries on tableau branches
can involve object expressions and prefixes, as well as more conventional formula constructs, we
must say how we are interpreting them. In fact, we simply do the obvious thing.

Suppose we have a non-rigid Kripke model M = 〈G,R,D, v〉, which we hold fixed for now.
If S is a set of prefixes, a prefix map, I, from S toM is a function that assigns possible worlds

to prefixes in a way that respects the syntactical machinery of the prefixes. Specifically, we require
that if σ, σ n ∈ S then I(σ)RI(σ n). Informally, we can think of I(σ) as the world that σ names.

Next, a parameter map P to M is simply a function from the set of parameters to D.

1 ¬¬ ((∀ x) P(x) ∧ ¬ (∀ x)P(x))

1 (∀ x) P(x) ∧ ¬ (∀ x)P(x)

1 (∀ x) P(x)

1 ¬ (∀ x)P(x)

1,1 ¬ (∀ x)P(x)

1,1 ¬ P(p)

1 P(p)

1,1 P(p)

14 Melvin Fitting

Figure 2: A First-Order Tableau Proof

1 ¬¬ [(∀ x) (λy . R(x,y))(f(x)) ∧ ¬ (∀ x) ¬ (∀ y)¬ R(x,y)]

1 (∀ x) (λy . R(x,y))(f(x)) ∧ ¬ (∀ x) ¬ (∀ y)¬ R(x,y)

1 (∀ x) (λy . R(x,y))(f(x))

1 ¬ (∀ x) ¬ (∀ y)¬ R(x,y)

1 ¬ ¬ (∀ y)¬ R(p,y)

1 (λy . R(p,y))(f(p))

1,1 ¬¬ (∀ y)¬ R(p,y)

1,1 (∀ y)¬ R(p,y)

1,1 (λy . R(p,y))(f(p))

1,1 R(p, f (p))

1,1 ¬ R(p, f (p))
1,1

1,1

Modal Logic 15

Figure 3: A Tableau Proof Involving Abstraction

16 Melvin Fitting

Finally, if we have both a prefix map I and a parameter map P, we can assign a member of D
to each object expression in a straightforward way. We denote the member assigned to the object
expression o by oI,P . The definition is as follows:

1. for a parameter p, pI,P = P(p);

2. for a non-rigid constant symbol c and a prefix σ ∈ S, (cσ)I,P = v(c, I(σ));

3. for a function symbol f and a prefix σ ∈ S,
[fσ(o1, . . . , on)]I,P = v(f, I(σ))(oI,P1 , . . . , oI,Pn).

Next, the notion of truth for a generalized sentence Φ(o1, . . . , on), in a model M, at a world Γ,
under a prefix map I and a parameter map P is defined in the obvious way. We omit details.

The following connection with earlier definitions is not hard to establish. Let Φ(x1, . . . , xn) be
a formula (not a generalized formula), and let o1,. . . , on be object expressions. LetM be a model,
and let I and P be a prefix map and a parameter map toM. Finally, let s be an interpretation such
that, for each i, s(xi) = oI,Pi . Then for each possible world Γ we have: M,Γ |= Φ(x1, . . . , xn)[s] if
and only if Φ(o1, . . . , on) is true at Γ under I and P.

Finally, suppose σ Φ(o1, . . . , on) is a prefixed generalized sentence. Let I be a prefix map to a
model M and P be a parameter map to M. The truth value of σ Φ(o1, . . . , on) under I and P is
true if Φ(o1, . . . , on) is true in M, under I and P, at the world I(σ), and is false otherwise.

A set S of prefixed generalized sentences is satisfiable if there is some modelM, some parameter
map P, and some prefix map I, defined on all prefixes occurring in S such that every member of
S is true under I and P.

A tableau branch is satisfiable if the set of prefixed generalized sentences on it is satisfiable. A
tableau is satisfiable if some branch is satisfiable.

Lemma 7.1 The application of a tableau rule to a satisfiable tableau yields another satisfiable
tableau.

The proof of this is straightforward, but tedious, and so we omit it. But from it soundness
follows directly, by the following argument.

Suppose Φ is not valid. Then {1 ¬Φ} is easily seen to be satisfiable, and so the initial tableau
in a proof attempt for Φ is satisfiable. Then continued application of the tableau rules can only
produce satisfiable tableaux. A satisfiable tableau can not be closed, hence no proof of Φ is possible.
Stating this in a more positive form, we have the following.

Theorem 7.2 (Soundness) If Φ has a tableau proof then Φ is valid.

Completeness also follows using standard tableau style arguments. Suppose, in constructing
tableaux, we follow some systematic construction procedure. There are many such. What is
essential is that, unless we manage to produce a closed tableau, we eventually apply each applicable
rule. Thus, if σ (X ∧ Y) is on a branch, eventually we add σ X and σ Y . If σ (∀x)Φ(x) is on a
branch, and o is any available object expression, we eventually add σ Φ(o). And so on. When we

Modal Logic 17

refer to a systematic tableau construction, we assume some particular one has been specified; we
omit details.

Suppose we try to prove Φ, and so we begin a tableau with 1 ¬Φ. Now, continue using a
systematic tableau construction procedure. If we do not generate a closed tableau, there are two
possibilities. Either the procedure terminates, leaving an unclosed branch, or the procedure never
terminates, in which case König’s Lemma says there is an infinite branch generated, which must
be unclosed. Either way, there is an unclosed branch θ on which no rules remain unapplied.

Using θ, we construct a model in a straightforward way. We take for G the set of prefixes
occurring on θ. We define R by the condition σRσ n. D is the set of object expressions. v(c, σ) =
cσ for constant symbols. v(f, σ)(o1, . . . , on) = fσ(o1, . . . , on) for function symbols. And for a
relation symbol P , v(P, σ) = {〈o1, . . . , on〉 | σ P (o1, . . . , on) occurs on θ}. This gives us a model
M = 〈G,R,D, v〉.

Let I be the identity prefix map, and let P be the identity parameter map. Now, an induction
on complexity will show that each prefixed generalized sentence on θ is true under I and P in M.
Since 1 ¬Φ is on θ, it follows that Φ is false at world 1 of the modelM, and so Φ is not valid. Thus
we have shown the following.

Theorem 7.3 (Completeness) If Φ is valid then Φ has a tableau proof.

8 Equality

The proper role of equality in modal logic has been controversial for a long time. See, for instance,
[10]. Generally one thinks of substitutivity as the distinguishing characteristic of the equality
relation. But then we immediately run into the well-known morning star/evening star problem.
Since the morning star = the evening star, we should be able to substitute an occurrence of ‘evening
star’ in any sentence containing an occurrence of ‘morning star’ without affecting its truth value.
The sentence, “The Greeks knew that the morning star is the morning star,” is true. Substituting
for the second occurrence of ‘morning star,’ we get, “The Greeks knew that the morning star is the
evening star,” and this is false.

Put more baldly, the issue comes down to whether one wants to accept as a correct principle all
instances of (a = b) ⊃ (a = b). Much argument has been generated by this question. Incidentally,
it is no coincidence that the sentence displayed is not syntactically correct in our present system.
The subformula that reads (a = b) should be replaced by one of (λx, y. (x = y))(a, b) or by

(λx, y.(x = y))(a, b). Thus in fact, there are really two distinct ‘official’ versions of the problem
sentence, and these turn out to represent the two sides the argument has taken.

There is no problem with substitutivity at the level of objects. If we say two objects are equal,
we mean we don’t have two objects after all. The difficulties arise because we don’t use objects
when we talk; we use names for them, and names that designate the same object in one possible
world need not do so in a different one. But the observation that there is no problem at the object
level is the key to the problem, and leads us to an extremely simple solution.

Definition 8.1 A non-rigid Kripke model M = 〈G,R,D, v〉 is normal if, at each possible world,
the interpretation of the two-place predicate = is by the equality relation. That is, for each Γ ∈ G,

18 Melvin Fitting

v(=,Γ) is the equality relation on D.

We noted above that the sentence giving us trouble actually had two official versions in our
syntax. These are:

1. (λx, y.(x = y))(a, b) ⊃ (λx, y. (x = y))(a, b)

2. (λx, y.(x = y))(a, b) ⊃ (λx, y.(x = y))(a, b)

Now, item 1. turns out to be valid in all normal models, but it is easy to produce examples that
show item 2. is not.

Returning to the morning star/evening star problem, a resolution is now straightforward. The
sentence, “The Greeks knew that the morning star is the evening star,” is false. The natural
formalization of it is:

Greeks knew(λx, y.(x = y))(morning star, evening star)

This formalization corresponds to the version of substitution in item 2. above, which is not gen-
erally valid. Item 1. is the correct substitutivity principle, but it is not relevant to the morning
star/evening star issue.

We conclude this section with tableau rules for equality. They are simple to state and use,
though we omit proofs of soundness and completeness. There are only two rules we need.

Reflexive Rule For any available object expression o and any available prefix σ, the generalized
sentence σ o = o may be added to the end of any branch.

Substitution Rule If Φ(x) is a formula with only x free, then to any tableau branch containing
σ Φ(o1) and σ o1 = o2 we may add σ Φ(o2).

Note that in the Substitution Rule o1 and o2 are object expressions, not terms. Substitutivity
applies to objects, not to names for them. It is an interesting exercise to use these rules to give a
proof of item 1. above, and to attempt to give a proof of item 2.

9 Definite Descriptions

Expressions of the form “the so-and-so such that . . . ” arise constantly in natural language. Bertrand
Russell [18] gave a famous formal treatment of them in classical logic, essentially showing how to
translate such espressions away. Under his theory the sentence, “The King of France is bald,”
translates into “there is one and only one object having the property of being the King of France,
and that object is bald.” (In this example, the translated version is false, since no object has
the property of being the King of France.) Russell’s theory has been fundamental ever since its
introduction.

On the other hand, Kripke [15] has argued forcefully that the Russell treatment does not extend
to modal contexts. After all, if it did, how would we deal with something like “The President of

Modal Logic 19

the United States someday won’t be the President of the United States.” It would wind up as
something like, “in some possible future, there is one and only one person who is the President of
the United States, and that person is not the President of the United States.” Clearly this is silly.

The papers [20] and [21] present a treatment of definite descriptions using their abstraction
device in which, loosely speaking, they are treated as primitives. But surprisingly enough, it turns
out that the Russell technique of translation works very well in modal contexts provided it is
combined with the predicate abstraction device. We treat ‘the object such that . . . ’ syntactically
as a constant symbol, following the rules outlined earlier. But semanticaly we translate it away,
exactly as Russell did. No other changes need to be made. In the following we use Russell’s
notation, reading (ιy)Ψ(y) as ‘the y such that Ψ(y). (Actually, Russell used an inverted ι, which
we don’t happen to have available.) Thus, from now on, (λx.Φ)((ιy)Ψ(y)) will be counted as a
formula.

Definition 9.1 If Ψ is a formula and y is a variable then (ιy)Ψ is a term.

Definition 9.2 (λx.Φ(x))((ιy)Ψ(y)) is taken semantically to abbreviate
(∃x)[Ψ(x) ∧ (∀w)(Ψ(w) ⊃ (w = x)) ∧ Φ(x)]. (Here it is assumed that x is a variable that does not
occur in Ψ(y) and w does not occur in either Φ(x) or Ψ(y).)

Now, we return to the example of the President of the United States, mentioned earlier. Suppose
P (x) is a formula that legally defines the presidency. Then what is being asserted when we say
“The President of the United States someday won’t be the President of the United States,” is that
the property of possibly not being President applies to the person who currently is the President.
Symbolically this is just (λx.♦¬P (x))((ιy)P (y)). This translates into (∃x)[P (x) ∧ (∀w)(P (w) ⊃
(w = x))∧♦¬P (x)]. To say this is true at a possible world Γ of some Kripke model is to say there
is some object o that, at Γ, is the only object for which P (x) is true, and there is a possible world
∆, alternative to Γ, such that at ∆, o does not make P (x) true. This is a perfectly reasonable
formal version of what we meant informally. Since it is easy to construct a model that behaves this
way, the sentence (λx.♦¬P (x))((ιy)P (y)) is satisfiable.

We might point out that the silly reading we gave to “The President of the United States
someday won’t be the President of the United States” earlier formalizes as
♦(λx.¬P (x))((ιy)P (y)). This sentence, in fact, is not satisfiable.

10 Existence

Much virtual bloodshed has occurred in battles over the correct use of non-designating names.
If it is true that “Pegasus does not exist,” of what is non-existence being asserted? We wish to
avoid controversy, but we do recognize that we have here an issue whose formal treatment will have
significant consequences for natural language processing. We propose a technical solution that has
the advantage of also having nice intuitive features. We don’t assert that this technical device
solves the philosophical problems, but it does allow us to get on with the formal work.

In more conventional treatments of modal logic, with rigid designators, it is common to allow
domains to vary from world to world. Then one has the problem of interpreting formulas containing

20 Melvin Fitting

a constant symbol in worlds where the object designated by that symbol does not happen to be in
the domain. A common device, used by Kripke [14], [10], is to take any atomic formula containing a
non-designating constant as being false. We propose adopting a similar solution here, but replacing
atomic by predicate abstraction.

Recall the intuitive motivation behind predicate abstraction. A formula like Φ(x) is turned into
a predicate abstraction using lambda: (λx.Φ(x)). Loosely, (λx.Φ(x)) is a property, while Φ(x) is a
formula, in the same sense that (λx.x + 1) is a function, while x + 1 is a term. Now the intuitive
idea is simple: only things that exist have properties. The rest of the section is devoted to making
this precise, and looking at its consequences.

From now on we broaden the notion of Kripke frame and model by allowing the interpretation
of constant and function symbols to be partial. More precisely, we consider 〈G,R,D, v〉 where all
is as before, except that:

1. v is a partial function on constant symbols and worlds, that is, v(c,Γ) is defined only for some
c and Γ, not necessarily for all;

2. v assigns to function symbols and worlds partial functions, that is, v(f,Γ) is a mapping from
a subset of Dn to D, possibly a proper subset.

The result of all this is that the extension of an interpretation s to terms will also be partial.
That is, for a term t, s(t,Γ) may turn out to be undefined.

Definition 10.1 Let M = 〈G,R,D, v〉 be a model (in the sense above, allowing non-designating
terms). The definition of |= is exactly as in Definition 4.5, except that item 6. is replaced by the
following:

M,Γ |= (λx.Φ)(t)[s] provided s(t,Γ) exists, and M,Γ |= Φ[s [ax]], where a = s(t,Γ).

Note that, as a consequence, (λx.Φ)(t) will be false at any world where t doesn’t designate. It
is enlightening to introduce an existence predicate. This is easily defined in terms of equality.

Definition 10.2 E(x) stands for (x = x).

The sentence (∀x)E(x) is valid, as it should be. After all, everything exists (show me something
that doesn’t). In a world in which the constant symbol a designates, (λx.E(x))(a) will be true
(because the object that a names equals itself), and in a world in which a does not designate,
(λx.E(x))(a) will be false (because predicate abstractions are taken to be false of non-designating
terms).

What is a little more surprising is that, at a world in which a does not designate, (λx.¬E(x))(a)
will be false (again because predicate abstractions are false of non-designating terms). But the
sentence ¬(λx.E(x))(a) will be true, since it is the negation of something we determined was false
above. Thus, if a does not designate, then a does not have the property of existence: ¬(λx.E(x))(a)
is true. But we can not say it does have the property of non-existence: (λx.¬E(x))(a) is false. In
fact, our device has made it possible to talk of a non-existence property, distinct from the negation

Modal Logic 21

of an existence property. The solution to the Pegasus problem, then, is that it is correct to say it is
not the case that Pegasus exists, but it is false to say that Pegasus has the property of non-existence.
In fact, nothing has the non-existence property, (∀x)¬(λx.¬E(x))(x) is a valid sentence.

We noted in Section 5 that the lambda abstraction device was transparent to the operations of
classical logic. In fact, this is no longer true if we allow non-designating terms to occur. We just
showed that it was possible to have ¬(λx.E(x))(a) true but (λx.¬E(x))(a) false. Consequently
¬(λx.E(x))(a) ⊃ (λx.¬E(x))(a) is not valid.

We have dealt with the problem of talking about the non-existence of something that, in fact,
does not exist. As we said above, it amounts to a formalization of the intuition that non-existing
things don’t have properties. Now what can we do with a sentence like, “Pegasus has wings?”
Given the predicate abstraction machinery, how might we formalize this? We take the sentence to
mean that, even though Pegasus does not exist in this world, in every world in which it does exist,
it has wings. We do not wish to defend this reading philosophically. We merely observe that it
is technically convenient, and does not seem to violate any intuitions we have about non-existent
things. Now, suppose F (x) is a formula that characterizes the flying horse usually called Pegasus,
and suppose W (x) is a formula asserting that x has wings. Then the formalization we propose for
“Pegasus has wings” is:

(λx.E(x) ⊃W (x))((ιy)F (y))

Presumably the formula F (x) characterizing Pegasus has a clause covering the presence of wings,
and so (∀x)(F (x) ⊃ W (x)) is valid. It is easy to see that this is enough to ensure the validity of
our formalization of “Pegasus has wings.” Incidentally, since contradictions imply everything, a
formalization of “The round square is green,” will also be valid. But this ought not be surprising;
there are no possible worlds in which a round square exists that is not green.

We consider one more example. It is required that the President of the United States be (born)
a citizen. How might we formalize this? Suppose we let P (x) be a formula defining the presidency,
as above, and let C(x) be a formula defining citizenship. Then a first attempt at a formalization
is:

(λx.C(x))((ιy)P (y))

This attempt fails, though. For it to be true at a possible world it must be the case that
(λx.C(x))((ιy)P (y)) holds at every accessible world, and for this to be so, there must be a Presi-
dent of the United States in every such world. But there are unfortunate times when there is no
President. The requirement that a President be a citizen surely is not also a requirement that there
always be a President. Rather what is meant is, it is legally necessary that, if there is a President,
then that person must be a citizen. Then a more reasonable formalization is:

[(λx.E(x))((ιy)P (y)) ⊃ (λx.C(x))((ιy)P (y))]

It is easy to check that this formula is satisfiable, and captures the intended legal requirement.

A sound and complete tableau system allowing non-designating terms is easy to produce. We
need to change three rules. The first is the one for the universal quantifier. It should be changed

22 Melvin Fitting

to: if σ (∀x)Φ(x) occurs on a branch θ then σ Φ(o) may be added to the end of θ for any object
expression o that already occurs on θ. The second rule change involves the Reflexive Rule for
equality. It should be restricted to: σ o = o can be added to θ for any available σ and any available
object expression o that already occurs on θ. The final rule change involves negated predicate
abstractions. It becomes: if σ ¬(λx.Φ(x))(t) occurs on θ then σ ¬Φ(t@σ) may be added to the
end of θ provided t@σ already occurs on θ. With these changes, there are only two rules that can
introduce new object expressions to a branch. One is the rule for a negated universal quantifier,
which introduces a new parameter. The other is the rule for an unnegated predicate abstraction.
In each of these cases, if the premise of the rule is true at a possible world, we are guaranteed the
existence of a suitable object. Thus, in the modified system, we are only allowed to add object
expressions when existence is a sure thing, and we are only allowed to use object expressions that
we know are safe.

11 Notes on implementation

It would make this paper too long to get seriously into issues of implementation. Instead we present
a brief outline of an approach that seems quite promising. The specifically modal problems involved
in automation all come from the branch extension rule involving un-negated occurrences of . If
σ X occurs on a branch, we are allowed to add σ n X for any available prefix, and how are we
to know which is best to add. Although based on resolution rather than tableaux, [16] presents an
interesting family of theorem provers for first-order modal logics using a device that is, in essence,
the same as that of prefixes above. The solution to the comparable problem there is to introduce
a variable, and later on to use unification to decide what an appropriate value of it should be.
Of course this leads to problems with negated occurrences of , since we won’t know what is
unrestricted unless we already know what is present. There are ways around this, essentially using
Skolem functions in prefixes. What is more interesting, though, is the mechanism used for getting
the various modal logics. In [3] and [7] our solution for hand calculation consisted of modifying rules
to syntactically build in reflexivity or transitivity or whatever. The tableau implentation of [8] was
built on very different principles, and so its methods are not directly applicable here. But in [16],
modified forms of unification are used at this point, building reflexivity or transitivity or whatever
into the unification algorithm. This elegant solution can be applied to a tableaux formulation as
well as to a resolution based one. Or equivalently, a resolution formulation of predicate abstraction
can be developed by building on [16] directly.

But in fact, the difficulties to be faced all come from the underlying modal logic. The ad-
ditional problems posed by predicate abstraction have essentially straightforward solutions, as a
little thought and experimentation with pencil and paper will quickly show. Indeed, we even have a
small advantage now, since Skolemization is possible, and was not when predicate abstraction was
absent. Consequently the introduction of parameters during the course of a proof can be avoided,
in favor of Skolemizing ahead of time.

Finally, we note that predicate abstraction does not have a utility that is confined to modal
logics alone. Such a device should be considered for any first-order non-classical logic. After all, it
has happened in other subjects that abstraction has brought insight.

REFERENCES 23

References

[1] M. Cialdea, L. Fariñas del Cerro. A Modal Herbrand’s property, Zeitschr. f. math. Logik und
Grundlagen d. Math., vol 32, pp 523–530 (1986).

[2] F. Fitch. Tree proofs in modal logic (abstract), Journal of Symbolic Logic, vol 31, p 152 (1966).

[3] M. Fitting. Tableau methods of proof for modal logics, Notre Dame Journal of Formal Logic,
vol 13, pp 237–247 (1972).

[4] M. Fitting. An Epsilon-calculus system for first-order S4, Conference in Mathematical Logic,
London ‘70, W. Hodges editor, pp 103–110, Springer Lecture Notes in Mathematics, No. 255
(1972).

[5] M. Fitting. A Modal logic analog of Smullyan’s fundamental theorem, Zeitschrift für mathe-
matische Logik und Gründlagen der Mathematik, vol 19, pp 1–16 (1973).

[6] M. Fitting. A Modal logic epsilon-calculus, Notre Dame Journal of Formal Logic, vol 16, pp
1–16 (1975).

[7] M. Fitting. Proof Methods for Modal and Intuitionistic Logics, D. Reidel Publishing Co., Dor-
drecht (1983).

[8] M. Fitting. First-Order modal tableaux, Journal of Automated Reasoning, pp 191–213, vol 4
(1988).

[9] C. Geissler, K. Konolige. A Resolution method for quantified modal logics of knowledge and
belief, Reasoning About Knowledge, Proc. of the 1986 conf., J. Y. Halpern, editor, pp 309–324,
Morgan Kaufman (1986).

[10] G. E. Hughes, M. J. Cresswell. An Introduction to Modal Logic, Methuen, London (1968).

[11] G. E. Hughes, M. J. Cresswell. A Companion to Modal Logic, Methuen, London (1984).

[12] K. Konolige. A deduction model of belief, Morgan Kaufman, Los Altos, CA (1986).

[13] S. Kripke. Semantical analysis of modal logic I, normal propositional calculi, Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, vol 9, pp 67–96 (1963).

[14] S. Kripke. Semantical considerations on modal logics, Acta Philosophica Fennica, Modal and
Many-valued Logics, pp 83–94 (1963).

[15] S. Kripke. Naming and Necessity, Harvard University Press, Cambridge (1980).

[16] H. J. Ohlbach. A Resolution calculus for modal logics, Ninth International Conference on
Automated Deduction (CADE-9), E. Lusk and R. Overbeek editors, pp 500–516 (1988).

[17] J. A. Robinson. A Machine-oriented logic based on the resolution principle, Journal of the
ACM, vol 12, pp 23–41 (1965).

24 REFERENCES

[18] B. Russell. On denoting, Mind, new series, vol 14, pp 479–493 (1905).

[19] R. M. Smullyan. First Order Logic, Springer-Verlag (1968).

[20] R. Stalnaker, R. Thomason. Abstraction in first-order modal logic, Theoria, vol 34, pp 203–207
(1968).

[21] R. Thomason, R. Stalnaker. Modality and reference, Nous, vol 2, pp 359–372 (1968).

