
J. LOGIC PROGRAMMING 1993:12:1–199 1

METRIC METHODS
THREE EXAMPLES AND A THEOREM

MELVIN FITTING

∗ †

� The existence of a model for a logic program is generally established by
lattice-theoretic arguments. We present three examples to show that met-
ric methods can often be used instead, generally in a direct, straightforward
way. One example is a game program, which is not stratified or locally
stratified, but which has a unique supported model whose existence is eas-
ily established using metric methods. The second example is a program
without a unique supported model, but having a part that is ‘well-behaved.’
The third example is a program in which one part depends on another, il-
lustrating how modularity might be treated metrically. Finally we use ideas
from this third example to prove a general result from [3]. The intention
in presenting these examples and the theorem is to stimulate interest in
metric techniques, and is not to present a fully developed theory. �

1. INTRODUCTION

One of the most common approaches to the problem of assigning a meaning to a
logic program is to associate a single-step function with the program, and then look
for a fixed point. If the underlying logic is classical, the operator associated with
program P is denoted TP . The existence of a fixed point for TP usually follows
from lattice-theoretic considerations. For example, if P has no negations TP will be
monotonic on the lattice of valuations, and the Knaster-Tarski theorem applies. If
P has negations TP will no longer be monotonic in this lattice, and so the existence

Address correspondence toDepartment of Computer Science, Graduate Center (CUNY), 33
West 42nd Street, New York, NY 10036
∗Research partly supported by NSF Grant CCR-9104015.
†I want to thank one of the referees, whose suggestions improved the presentation in the paper.

THE JOURNAL OF LOGIC PROGRAMMING

c©Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

2

of a fixed point can no longer be guaranteed. To deal with this a three-valued
approach was developed in [10] and elsewhere. Instead of TP , which maps classical
valuations to classical valuations, an operator ΦP is considered which maps three-
valued valuations to three-valued valuations. Using an ordering corresponding to
‘degree of information’ instead of ‘degree of truth,’ ΦP will always be monotonic
and so the existence of a fixed point is again guaranteed, by a generalization of the
Knaster-Tarski theorem.

Sometimes the three-valued approach is natural, but there are examples where
it is quite awkward. For instance, there is a simple game-playing program from
[11] that causes considerable difficulties. Suppose there is a game, G, with positions
denoted by constants, a, b, (If the game is chess, for instance, think of a
constant as coding up the location of all the pieces, together with the information
on whose move it is, plus other information such as how many times a board
arrangement has recurred.) By convention a loss for a player of G means the player
has no move. Now, the following program P(G) captures the notion of winning in
G:

win(X)← move(X,Y),¬win(Y)

supplemented with a list of facts, move(a, b), move(c, d), . . . , listing all the legal
moves of game G. The intention is, ← win(c) should succeed if and only if there is
a possible win starting from position c.

There is essentially only one meaning that can be attached to this program. In
fact, the operator TP(G) has a unique (two-valued) fixed point — the problem comes
in showing that this is so since TP(G) is not monotone. The program P(G) is not
stratified; it is not even locally stratified. It is remarked in [14] that this program
“. . . is one of the examples that led to the formulation of well-founded semantics,
as well as stable models.” In [3] it is shown that several semantical approaches
agree for this program, but the argument is quite roundabout. First the existence
of a three-valued model is shown, using the operator ΦP(G), then by an induction
argument it is shown that the model is actually two-valued.

Much of the difficulty arises from the adherence to lattice-theoretic techniques.
Alternative approaches based on metric methods have appeared from time to time,
but for various reasons they have never become well-known in the logic program-
ming community, though they are fairly common elsewhere. The purpose of this
paper is to demonstrate their utility and simplicity (when they are applicable). We
do this by presenting three examples of programs, and a general theorem, all of
which are subject to metric methods. One of these is a direct argument that the
game program operator TP(G) has a unique fixed point and that it coincides with
the unique fixed point of ΦP(G). The argument is simpler and more direct than
that based on other techniques.

The basic theory underlying a metric approach was developed in considerable
detail in [4], which was not published. Additional material can be found in [5].
It is not our intention here to be complete and exhaustive. Instead we want to
demonstrate utility, in order to encourage others to try applying these and related
techniques. As far as possible we try to keep this paper self-contained.

3

2. VALUATIONS AND METRICS

Logic programming semantics is generally based on classical, two-valued logic. It
has been found useful sometimes to base it on partial, or three-valued logic. Less
frequently, bilattices or other more esoteric spaces of truth values are used. What
we are about to say does not depend critically on the exact choice. We carry
out most of the work using ordinary two-valued logic and mention three-valued
briefly from time to time. We assume some program P has been specified, and all
references to ground atoms involve the Herbrand base of P.

Definition2.1. A valuation is a mapping from ground atoms to {false, true}. It
is extended to literals by mapping ¬A to false (true) if A maps to true (false).

What we must do is turn the collection of valuations into a metric space. We begin
by recalling the definition.

Definition2.2. A metric or distance function on a space M is a mapping

d :M×M→ R

(where R is the real numbers) such that:

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, y) ≤ d(x, z) + d(z, y).

Occasionally we will also need the notion of a pseudo-metric. This is like a metric,
except that one drops the condition: d(x, y) = 0 implies x = y.

There is a simple and quite general way of introducing a metric on the set of
valuations, involving the notion of level mapping, [8, 9, 6, 7, 2].

Definition2.3. A level mapping for a program P is a function | | : BP → N,
where N is the set of natural numbers and BP is the Herbrand base for P. If

|A| = n we will say the level of A is n. Now, if we are given a level mapping, we
can introduce a (candidate for) a metric on the set of valuations.

Definition2.4. Let | | be a level mapping. An associated mapping d is defined
as follows. Let v and w be two valuations. If v = w, set d(v, w) = 0. Otherwise, set
d(v, w) = 1/2n where v and w differ on some ground atom A of level n, but agree
on all ground atoms of lower level.

The notion of distance defined above is fairly standard. See the last Chapter of
[12], for instance, for a very similar notion. All conditions for being a metric space
are trivial with the exception of condition 3, the triangle inequality, which we now
check.

If any two of x, y, or z are the same, condition 3 is easily verified. Now say x, y,
and z are valuations with d(x, y) = 1/2n, d(x, z) = 1/2m, and d(z, y) = 1/2k. Then
x and z differ on a ground atom of level m, but agree on all ground atoms with

4

level m − 1 or less. Similarly z and y agree on all ground atoms with level k − 1
or less. Say m ≤ k (the argument is similar the other way around). Then x and
y must agree on all ground atoms with level m − 1 or less and so d(x, y) ≤ 1/2m.
Consequently d(x, y) ≤ 1/2m + 1/2k = d(x, z) + d(z, y).

The proof just given actually shows the stronger fact that d is an ultrametric, that
is, d(x, y) ≤ max{d(x, z), d(z, y)}, though we do not make use of this here. Further,
the notion of distance defined above not only makes the space of valuations into a
metric (or ultrametric) space, it actually gives us a complete metric space. There
are several equivalent ways completeness can be characterized; we give one standard
version for reference.

Definition2.5. A metric space M is complete if every Cauchy sequence con-
verges. A sequence s1, s2, s3, . . . is Cauchy if, for every ε > 0 there is an integer
N such that for all n,m ≥ N , d(sn, sm) ≤ ε. (Essentially a sequence is Cauchy if
its elements get arbitrarily close together.) The sequence converges if there is an s
such that, for every ε > 0, there is an integer N so that for all n ≥ N , d(sn, s) ≤ ε.
(Essentially a sequence converges if there is some value its elements get arbitrarily
close to.)

Proposition 1. The space of valuations, using a metric based on a level mapping, is
a complete metric space.

The proof of completeness is quite simple. We sketch the ideas. Suppose s1, s2,
s3, . . . is a Cauchy sequence of valuations. We define a ‘limit’ valuation s as follows.
Suppose A is a ground atom of level n; we say what value s should assign to A.
Since the sequence is Cauchy, from some point on all valuations are within 1/2n+1

of each other, and so agree on all ground atoms of level ≤ n. Then from some point
on all valuations in the sequence assign the same truth value to A. Set s(A) to be
this value. In this way a valuation s is characterized, and it is straightforward to
check that it is actually the limit of the sequence.

Finally, we were working above with classical valuations. A little checking will
verify that everything we said applies with no essential changes to three-valued
valuations (or to valuations on several more general spaces of truth values as well).
We leave this to you.

3. GENERAL PROGRAMS AND SINGLE-STEP OPERATORS

As usual, a general program is made up of a finite number of general clauses, which
are of the form

A← L1, . . . , Ln

where A is atomic and L1,. . . ,Ln are literals. For convenience, we repeat the stan-
dard definition of the (two-valued) single-step operator for a general program.

Definition3.1. Let P be a general program. The associated mapping TP , map-
ping valuations to valuations, is characterized as follows. For a valuation v and a
ground atom A,

5

1. If there is a ground instance, A← L1, . . . , Ln, of a clause in P with v(L1) =
true and . . . and v(Ln) = true, then TP(v)(A) = true.

2. Otherwise, TP(v)(A) = false. That is, if A is not the head of any ground
instance of a clause in P, or if for every ground instance, A← L1, . . . , Ln, of
a clause in P, v(L1) = false or . . . or v(Ln) = false, then TP(v)(A) = false.

The machinery of metric spaces was introduced in the previous section. The
set of valuations has many metrics, since each level mapping determines one. The
central idea is: find a metric with respect to which the single-step operator TP is
a contraction. We begin by recalling the definition of a contraction (see [15]), then
we say why we are interested in them.

Definition3.2. LetM be a metric space. A mapping f :M→M is a contrac-
tion if there is some number 0 < k < 1 such that for all x, y ∈M:

d(f(x), f(y)) ≤ k · d(x, y).

(Informally, a contraction shrinks distances by at least some constant factor that
is smaller than 1, independently of the choice of points.)

Our interest in contractions comes from the following, which can sometimes serve
as a replacement for the Knaster-Tarski Theorem.

The Banach Contraction Theorem A contraction mapping f on a complete
metric space has a unique fixed point. Further, the sequence x, f(x), f(f(x)), . . .
converges to this fixed point for any x.

We do not prove this here. It is standard, and a proof can be found in [15] among
other places. But with it available many of our problems are at an end. If TP is a
contraction on the space of valuations, it has a unique fixed point. Further, using
essentially the same argument on the metric space of three-valued valuations we
can often show the ΦP operator is a contraction as well. If so, it also has a unique
fixed point. Since every fixed point of TP is also a fixed point of ΦP , classical and
three-valued semantics would then coincide for P. Since every stable model is a
fixed point of ΦP , there is a unique stable (and well-founded) model. Thus the
whole idea reduces to this: find a metric on the set of valuations that makes TP
and, if possible, ΦP into a contraction.

One more point. The three-valued single-step operator ΦP is monotonic in the
ordering used in [10], so the usual lattice-theoretic arguments show ΦP converges
to a fixpoint when started with the valuation mapping all ground atoms to ⊥. But
in general the ΦP operator may need more than ω steps to reach its fixpoint. If the
approach outlined above can be managed, that can not happen, since the Banach
Theorem gives convergence in ω steps, starting from anywhere.

4. THE GAME PROGRAM

We recall the program from Section 1. We are given a game G, with positions
denoted by constants. The program P(G) is the following:

6

(w) win(X)← move(X,Y),¬win(Y).
(m) move(ai, aj)← . for all legal moves ai to aj

This program has two predicates, move and win, and of the two, move is not
problematic. All clauses for move are simply facts, so if we start with initial valua-
tions that differ, after one cycle of applying either the T or the Φ operator we reach
valuations that agree on all instances of move. Consequently it will do no harm,
and will simplify the presentation, if we ignore the behavior of valuations on move.
In effect we confine our attention to the behavior of valuations on win.

Valuation Assumption For the rest of this section the notion of valuation for
P(G) is restricted to those that map to true exactly those instances of move that
occur as facts in the program P(G).

We need to make certain reasonable assumptions about the game G if the be-
havior of the program P(G) is to be decent. In order to present this simply, we use
the following more-or-less standard terminology.

Definition4.1. A game tree for a position p is a tree having each node labeled
with a position in game G, with p at the root, and with the children of a node
labeled with the positions reachable in one move from the position labeling the
parent. The height of a game tree is the length of the longest branch.

Game Assumption For the rest of this section we assume that move is acyclic,
and hence every game tree for a position in G is finite.

The Game Assumption covers games with no loops, such as chess which termi-
nates if the same position recurs three times, or for 50 moves no pawn has been
moved and no piece captured. Indeed, it is an assumption that applies to most
‘reasonable’ games. We make use of it to define a complete metric on the space of
valuations, via a level mapping.

Definition4.2. Let | | be the level mapping: |win(p)| is the height of the game
tree with p at the root. The metric d is the one induced by this level mapping.

Now, the main item we need.

Proposition 1. The operator TP(G) is a contraction, using the metric defined above.

The proof of this is simple — we sketch the idea. If the valuations x and y
agree on all game trees of height < n, TP(G)(x) and TP(G)(y) will agree on all
game trees of height < n + 1 since an application of TP(G) corresponds to the
carrying out of one more move in the game. Consequently if d(x, y) = 1/2n then
d(TP(G)(x), TP(G)(y)) = 1/2n+1 = (1/2) · (1/2n) = (1/2) · d(x, y).

This essentially ends the discussion of the game program. There is a unique fixed
point for TP(G). And by exactly the same argument, but applied in the three-valued
setting, there is a unique fixed point for ΦP(G) as well, so classical, three-valued,
and stable semantics coincide.

7

5. A SECOND EXAMPLE

The game program has a unique supported model (supported models are fixed
points of the TP operator). Many programs of interest are not like this but even
so, parts of programs may be well-behaved. In this section we look at a contrived
example intended to show how such programs can sometimes be treated with metric
methods. The program is one for the even numbers, combined with one designed
to have as many models as possible. We denote the program P(E).

(e1) even(0)← .
(e2) even(s(X))← ¬even(X).
(a) any(X)← any(X).

The subprogram consisting of (e1) and (e2) has a unique supported model, while
the subprogram consisting of (a) has infinitely many models. So, essentially, the
idea is to ignore the problematic part by factoring it out.

Definition5.1. A partial level mapping for a program P is a function | | : B0 →
N, where N is the set of natural numbers and B0 is some subset of the Herbrand
base for P. We say A is of level n if A is in the domain of | | and |A| = n. Now

we proceed rather like before.

Definition5.2. Let | | be a partial level mapping. An associated mapping d is
defined as follows. Let v and w be two valuations. If v and w agree on the domain
of | |, set d(v, w) = 0. Otherwise, set d(v, w) = 1/2n where v and w differ on some
ground atom A of level n, but agree on all ground atoms of lower level.

A mapping deriving from a partial level mapping that is not total will be a
pseudo-metric, but not a metric. The triangle inequality is verified exactly as
before. The problem, of course, is that v and w might agree on all members of the
domain of | | but differ elsewhere, and so d(v, w) = 0 while v 6= w. However, a true
metric can be introduced in a relatively painless manner.

Call two members, x and y of a pseudo-metric space equivalent if d(x, y) = 0.
This is easily seen to be an equivalence relation. Partition the pseudo-metric space
into equivalence classes; denote the class containing x by x. Define a mapping d on
equivalence classes by: d(x, y) = d(x, y). This is well-defined, and is a true metric
on the space of equivalence classes.

One still has a notion of completeness for a pseudo-metric space. The definition
is word for word the same, but now the limit of a Cauchy sequence need not be
unique. Instead, any two limits must be a distance of 0 apart. A partial level
mapping yields a complete pseudo-metric, using the same argument as before. And
when we pass to the metric space of equivalence classes, a complete metric space
results.

Now, define a partial level mapping for the program P(E), with domain the set of
ground atoms of the form even(t). Since a ground term for this program must be of
the form sn(0), we simply set |even(sn(0))| = n. This produces a complete pseudo-
metric space. Form the space of equivalence classes, as described above, obtaining
a complete metric space. The single-step operator TP(E) induces an operator on
the space of equivalence classes:

8

TP(E)(v) = TP(E)(v)

This is well defined, and is easily verified to be a contraction. Then the operator
TP(E) has a unique fixed point. In effect, this means that the behavior of even in
P(E) is completely determined, even though that of any is not.

6. A FINAL EXAMPLE

We conclude with a program from [3] intended to compute transitive closures,
deriving from a program in [13] determining graph connectivity. It is like the game
program in having a unique supported model, but also it is like the even number
program in having two relations to be taken into account. The complication this
example introduces is that one of the relations depends on the other. In effect the
example shows how part of a program can be semantically understood, then that
understanding used in developing the semantics of the rest.

We give the program, denoted P(T), using the notation and terminology of [3].
Suppose we have a finite graph with nodes labeled with constants, a, b,. . . , where
A is the set of labels used.

(r1) r(X,Z,E,G)← member([X,Z], E).
(r2) r(X,Z,E,G)← member([X,Y], E),¬member(Y,G), r(Y, Z,E, [Y |G]).
(m1) member(X, [X|T])← .
(m2) member(X, [Y |T])← member(X,T).
(e) element(a)← . for a ∈ A

An edge of a graph from node a to node b is represented by the two-element list
[a, b]. Now, if e is a list of all edges for a graph, it is intended that ← r(x, y, e, [])
should succeed just when there is a path in the graph from x to y; that is, when
[x, y] is in the transitive closure of e. In operational terms, the fourth argument of
r keeps track of which nodes have been visited, so the path search does not become
cyclic. Declaratively, as K. Apt has forcefully pointed out, r(x, y, e, a) should be
read: there is a path from x to y in graph e that avoids the nodes in a. The purpose
of item (e) is just to make sure all the node labels are in the Herbrand base. In what
follows we simply ignore element, just as we ignored move in the game program.

The graph program is more complicated than the previous example because there
are two relations we are concerned with, not one, and they are not independent. In
order to deal with this dependency we divide the specification of a metric into two
parts, one for each of the two relations. Note that while r refers to member, the
clauses for member are self-contained. Consequently we can discuss the behavior of
member first, without reference to r. Once its behavior is determined, we can make
use of it in our consideration of r, which is rather what one might expect us to do.

There is, however, a minor annoyance concerning member that must be faced.
There is no type checking to ensure Y is a list in member(X,Y), and in fact the
program will report that member(a, [a|b]) holds, where a and b are constants, even
though [a|b] is not a list. Type checking could be added, but doing so complicates
the program, and does not change behavior in the cases we are interested in. We
have decided to complicate the semantics somewhat instead.

9

Definition6.1. By a pseudo-list we mean a ground term of one of the forms []
and [a | b], where a and b are arbitrary terms. We define a notion of length as
follows. If b is not a pseudo-list, its length is 0. The length of [] is also 0. And
the length of [a | b] is 1+ the length of b. We also define the notion of element
as follows. If b is not a pseudo-list, or is [], it has no elements. The elements of
[a | b] are a, and the elements of b. Note that a list is also a pseudo-list, and

for it length and element has the usual meaning. Now we can define a partial level
mapping for member.

Definition6.2. If y is a pseudo-list, set |member(x, y)| to be the length of y. If
y is not a pseudo-list, set |member(x, y)| to be 0. The function | | is not defined on
ground atoms of the form r(x, y, e, g). The distance function d1 is the pseudo-metric
induced by this partial level mapping.

We can now proceed as in the previous section, forming a metric space of equiv-
alence classes. In this way we can show that the program semantically determines
the behavior of member uniquely: member(x, y) holds if and only if y is a pseudo-list
and x is one of its elements. The details are straightforward, and we omit them.

Once the behavior of member has been determined, this behavior can be used to
help determine the behavior of r; that is, a kind of modularity can be invoked. The
way this shows up in what follows is quite direct. Where member is concerned, we
measure distance in terms of how much deviation there is from the real membership
in pseudo-lists relation.

Definition6.3. Let vM be a valuation such that vM (member(x, y)) = true if and
only if y is a pseudo-list and x is one of its elements. On ground atoms of the form
r(x, y, e, g), vM is arbitrary. Now, for valuations v and w, define a distance function
d2 by:

d2(v, w) = max{d1(v, vM), d1(w, vM)}

The function d2 is also a pseudo-metric. The triangle inequality is verified as

follows.

d2(x, y) = max{d1(x, vM), d1(y, vM)}
≤ max{d1(x, vM), d1(z, vM), d1(y, vM)}
≤ max{d1(x, vM), d1(z, vM)}+ max{d1(z, vM), d1(y, vM)}
= d2(x, z) + d2(z, y)

Now we turn to the behavior of r. For this purpose we introduce yet another
pseudo-metric d3, based on a partial level mapping taken directly from [3].

Definition6.4. Let t1 and t2 be ground terms; (t1r t2) is the number of ground
atoms y such that [x, y] is an element of t1 (for some x) but y is not an element of
t2. (Recall, terms that are pseudo-lists have elements; terms that are not, do not.
The expression (t1 r t2) has meaning either way.)

10

Let r(x, z, e, g) be ground. By ‖r(x, z, e, g)‖ we mean the number: length of e +
length of g+2·(erg)+1. (Recall, if either term e or g is not a pseudo-list, its length
is 0.) The function ‖ ‖ is not defined on ground atoms of the form member(x, y).

The pseudo-metric d3 is the one induced by the partial level mapping ‖ ‖.

Finally, we define a metric that combines the two pseudo-metrics d2 and d3.

Definition6.5. For valuations v and w, set d(v, w) = max{d2(v, w), d3(v, w)}.
Whenever a distance function is defined in this way, as the maximum of other

pseudo-metrics, the result is always pseudo-metric — this is straightforward to
show. Also, if d(v, w) = 0 then d1(v, vM) = d1(w, vM) = d3(v, w) = 0 and it follows
that v and w must agree on all instances of both member and r, and so v = w.
Thus d is a metric. It can also be verified that it gives us a complete metric space;
we omit details.

Proposition 1. TP(T) is a contraction.

Proof. If d(v, w) = 0 then v = w since d is a metric. Then trivially TP(T)(v) =
TP(T)(w) and so d(TP(T)(v), TP(T)(w)) = 0. Now suppose v and w are two valua-
tions with d(v, w) = 1/2n.

First, d2(v, w) ≤ 1/2n, so d1(v, vM) ≤ 1/2n and v and vM agree on all ground
atoms of the form member(a, l) with |member(a, l)| < n, and so agree on ground
atoms member(a, l) where l is a pseudo-list with length< n. It follows from (m1) and
(m2) that TP(T)(v) and TP(T)(vM) agree on ground atoms involving pseudo-lists of
length ≤ n, and so d1(TP(T)(v), TP(T)(vM)) ≤ 1/2n+1. But d1(TP(T)(vM), vM) = 0
so by the triangle inequality, d1(TP(T)(v), vM) ≤ 1/2n+1, and hence

d1(TP(T)(v), vM) ≤ 1
2
· d(v, w).

Likewise

d1(TP(T)(w), vM) ≤ 1
2
· d(v, w).

Consequently

d2(TP(T)(v), TP(T)(w)) ≤ 1
2
· d(v, w).

Now let r(x, z, e, g) be a ground atom with ‖r(x, z, e, g)‖ ≤ n; we show TP(T)(v)
and TP(T)(w) must agree on this ground atom. If we do this, it will follow that
d3(TP(T)(v), TP(T)(w)) ≤ 1/2n+1, and so

d3(TP(T)(v), TP(T)(w)) ≤ 1
2
· d(v, w)

Then we will immediately have

d(TP(T)(v), TP(T)(w)) ≤ 1
2
· d(v, w)

which says that d is a contraction, and we will be finished.

11

So to complete things, assume TP(T)(v) assigns r(x, z, e, g) true; we will show
TP(T)(w) also assigns it true. Our underlying assumptions are that ‖r(x, z, e, g)‖ ≤
n, and d(v, w) = 1/2n.

Since d(v, w) = 1/2n, d1(v, vM) and d1(w, vM) are both ≤ 1/2n. This implies
that v, w, vM all agree on ground atoms member(a, l) whenever l is a pseudo-list of
length < n, and so if l is a pseudo-list of length < n, v(member(a, l)) = true iff
w(member(a, l)) = true iff a is an element of l.

Now, TP(T)(v) assigns r(x, z, e, v) the value true. There are two cases, depending
on whether (r1) or (r2) was involved. The case where (r1) was used is the easier of
the two, and is omitted. Suppose (r2) is the reason that TP(T)(v) assigns true to
r(x, z, e, g). Then there is a ground instance of (r2):

r(x, z, e, g)← member([x, y], e),¬member(y, g), r(y, z, e, [y|g])

and v assigns true to member([x, y], e), ¬member(y, v), and r(y, z, e, [y|g]). Now,
n ≥ ‖r(x, z, e, g)‖ > length of e, and v(member([x, y], e)) = true, so it really is
the case that [x, y] is an element of e, and also w(member([x, y], e) = true. Also
n ≥ ‖r(x, z, e, g)‖ > length of g, and since v(¬member(y, g)) = true, y is not an
element of g and w(¬member(y, g)) = true.

Finally, [x, y] is an element of e and y is not an element of g so (e r [y|g]) =
(er g)− 1. Then

‖r(y, z, e, [y|g])‖ = length of e+ length of [y|g] + 2 · (er [y|g]) + 1
= length of e+ length of g + 1 + 2 · ((er g)− 1) + 1
= length of e+ length of g + 2 · (er g)
< ‖r(y, z, e, g)‖
≤ n

Since d3(v, w) ≤ 1/2n, v and w agree on r(y, z, e, [y|g]), and so w(r(y, z, e, [y|g])) =
true. We have seen that w(member([x, y], e)) = true and w(¬member(y, g)) = true.
Then, using (r2), TP(T)(w) must assign r(x, z, e, g) true, and we are done. 2

7. ACCEPTABLE PROGRAMS

In [3] the game program P(G) was shown to be well-behaved semantically by show-
ing it belonged to a class of well-behaved programs, the acceptable ones. It was a
central result of that paper that for acceptable programs various ways of defining
semantics coincide. The method of proof was somewhat roundabout: first the exis-
tence of a three-valued model was established, then an induction argument showed
it was actually two-valued. In this section we use metric methods to re-prove this
result about acceptable programs more directly.

We begin with the necessary background concerning acceptable programs. The
underlying idea is to capture in a simple way the left-first approach of Prolog, as
contrasted with the non-deterministic selection rule generally considered in theoret-
ical approaches to logic programming The notion of acceptability originated in [2]
and was extended to allow negation in [3]. In order to define the class of acceptable
programs, we need some preliminary concepts, the primary one being that of a level
mapping, which we have already seen. What is added here is the singling out of
the essentially negative part of a program. This is taken directly from [3].

12

Definition7.1. Let P be a program, and p and q be relations.

1. p refers to q if there is a clause in P with p in its head and q in its body.
2. p depends on q if p = q, or there is a sequence p = p1, p2, . . . , pn = q, where

pi refers to pi+1.
3. NegP is the set of relations in P which occur in a negative literal in the body

of a clause of P .
4. Neg∗P is the set of relations in P on which the relations in NegP depend.
5. P− is the set of clauses in P whose head contains a relation from Neg∗P .

Thus the clauses in P− are those one needs in order to understand the behavior of
relations that appear negated in P . To keep terminology down, if a ground literal
L has its relation symbol in Neg∗P , we will say L itself is in Neg∗P . Now for the
central notion, presented in a form somewhat modified from [3].

Definition7.2. Let P be a general program, | | be a level mapping for P , and I be
a model (not necessarily Herbrand) of P whose restrictions to the relations in Neg∗P
is a model for comp(P−) (where comp(Q) denotes the Clark completion of program
Q). P is acceptable with respect to | | and I if, for every clause A← L1, . . . , Ln in
ground(P), and for every i with 1 ≤ i ≤ n,

I |= L1 ∧ . . . ∧ Li−1 implies |A| > |Li|.

P is acceptable if it is acceptable with respect to some level mapping and some
model. Loosely, a program is acceptable if there is some model for it which is

well behaved with respect to the uses of negation in the program, and with respect
to which clause bodies are ‘simpler’ than clause heads. But the essential difference
between this notion of simpler and that used in local stratification, say, is that we
don’t look at the whole of a clause body but only at enough of it, starting from the
left, to know whether it is true or false in the model.

We will prove that for an acceptable program P , both the operators TP and
ΦP have the same unique fixed point. We lead up to this through a sequence of
definitions and results that culminate in the formal result we seek.

Assumption For the rest of this Section, P is a general program that is acceptable
with respect to the level mapping | | and the model I.

An acceptable program is modular, more or less in the way that the transitive
closure program was: the behavior of relations in Neg∗P does not depend on the
behavior of relations not in Neg∗P . We work with the negative part of P first. We
begin with some general observations, whose verification we omit.

General Facts

1. Let vI be the valuation corresponding to the model I. That is, for a ground
atom A, vI(A) = true if and only if I |= A. Also let v0

I be vI restricted to
those ground atoms in Neg∗P . Since I, restricted to relations in Neg∗P , is a
model for comp(P−) it follows from [1] that TP−(v0

I) = v0
I . (In fact, this is

the only consequence of the assumption I |= comp(P−) that is used.)

13

2. The behavior of relations in Neg∗P only depends on clauses in P−. More
precisely, suppose A is a ground atom in Neg∗P , and let v be any valuation.
Then TP (v)(A) = TP−(v)(A).

Now we introduce a partial level mapping and a pseudo-metric to handle the es-
sentially negative part of P .

Definition7.3. If A is a ground literal in Neg∗P , set ‖A‖ = |A|. On all other
ground atoms ‖ ‖ is not defined. The distance function d1 is the pseudo-metric
induced by this partial level mapping. Next we show a convergence result

directly, without use of the Contraction Theorem.

Lemma 1. d1(TP (v), vI) = d1(TP−(v), vI) ≤ 1
2 · d1(v, vI).

Proof. The equality, d1(TP (v), vI) = d1(TP−(v), vI), is simple, since d1 only de-
pends on relations in Neg∗P , and TP (v) and TP−(v) agree on such relations, by
General Fact 1.

Now suppose d(v, vI) = 1/2n, so that v and vI agree on all ground atoms A
with ‖A‖ < n, but differ on a ground atom A such that ‖A‖ = n. To show
d(TP−(v), vI) ≤ 1

2 ·d(v, vI), it is enough to show TP−(v) and vI agree on all ground
atoms A with ‖A‖ < n+ 1.

Let A be a ground atom with ‖A‖ < n+1, and suppose that TP−(v)(A) 6= vI(A).
There are two cases that arise since TP−(v)(A) can be true and vI(A) false, or the
other way around. Suppose TP−(v)(A) = true but vI(A) = false; the other half is
somewhat easier and we omit it.

Since ‖A‖ is defined, A ∈ Neg∗P . Since TP−(v)(A) = true, there is a ground
instance of a clause in P−, A← L1, . . . , Lm, such that v(L1) = . . . = v(Lm) = true.
But also, using the General Facts, false = vI(A) = v0

I (A) = TP−(v0
I)(A). It

follows that v0
I must falsify the body of clause A ← L1, . . . , Lm. Consequently

for some k ≥ 1, v0
I (L1) = . . . = v0

I (Lk−1) = true and v0
I (Lk) = false. Then

I |= L1 ∧ . . . ∧ Lk−1. It follows that |A| > |Li| for i = 1, . . . , k, from which it
further follows that n + 1 > ‖A‖ > ‖Li‖, so ‖Li‖ < n for i = 1, . . . , k. Since
d(v, vI) = 1/2n, v and vI must agree on Lk, that is, v and v0

I must agree on Lk,
and they do not. This contradiction establishes the Lemma. 2

It follows immediately from this Lemma that any sequence v, TP (v), TP (TP (v)),
. . . , converges in the pseudo-metric d1, to vI . That is, the behavior of relations in
Neg∗P is completely determined by the program P , and agrees with the model I.

Now we turn to the relations not in Neg∗P . This time we will find their behavior
is also uniquely characterized, but need not agree with I. We will use a metric
essentially consisting of two parts. One part measures how close the interpretation
of relations in Neg∗P is to their meaning in I. This is much like what we did in the
previous Section. The other part concerns itself with relations not in Neg∗P , and
here we are not interested in simple closeness, but in the existence of contradictions
to the ‘assertions’ of I and how significant they are.

Definition7.4.

1. If A is a ground literal not in Neg∗P , set |||A||| = |A|. On all other ground
atoms ||| ||| is not defined.

14

2. The distance function d2 is the pseudo-metric induced by the partial level
mapping ||| |||.

3. We say a valuation v correctly asserts a ground atom A if: v(A) = true ⇒
I |= A; that is, either v(A) = false or I |= A.

4. A mapping ρ, on ground atoms not in Neg∗P , is defined as follows.

(a) Set ρ(v) = 0 if v correctly asserts all ground atoms A 6∈ Neg∗P .
(b) Otherwise, set ρ(v) = 1/2n where n is the smallest integer such that v

does not correctly assert a ground atom A with |||A||| = n.

Now, finally, the metric we really want.

Definition7.5. The metric d3 is given by:

d3(v, w) = max{d1(v, vI), d1(w, vI), d2(v, w), ρ(v), ρ(w)}.

It is straightforward to show this is a pseudo-metric; we omit details. And it

is a true metric since if d3(v, w) = 0 then d1(v, vI), d1(w, vI) and d2(v, w) are all
0, so v and w must agree on ground atoms both in and not in Neg∗P . Now, we can
establish the principal result of this section.

Proposition 1. TP is a contraction relative to the metric d3.

Proof. We will show d3(TP (v), TP (w)) ≤ 1
2 · d3(v, w). Assume d3(v, w) = 1/2n,

so each of d1(v, vI), d1(w, vI), d2(v, w), ρ(v), and ρ(w) are ≤ 1/2n. Since we have
Lemma 1, both d1(TP (v), vI) and d1(TP (w), vI) are ≤ 1/2n+1. It remains to show
each of ρ(TP (v)), ρ(TP (w)), and d2(TP (v), TP (w)) are ≤ 1/2n+1 to finish the proof.

We begin with ρ(TP (v)); the argument for ρ(TP (w)) is, of course, the same. To
show ρ(TP (v)) ≤ 1/2n+1 it is necessary to show, for each ground atom A 6∈ Neg∗P
with |||A||| ≤ n, that TP (v) correctly asserts A. So suppose otherwise. Assume there
is a ground atom A with |||A||| ≤ n such that TP (v)(A) = true but I 6|= A; we derive
a contradiction.

Since TP (v)(A) = true, there is a ground instance of a clause in P , A ←
L1, . . . , Lm with v(L1) = . . . = v(Lm) = true. Also, since I is a model for program
P , and I 6|= A, not every literal Li in the body of this clause can be true in I. So
there is a k such that I |= L1, . . . , Lk−1 but I 6|= Lk. Note that |Lk| < |A| ≤ n.
The argument now divides into two cases.

Case 1: Lk ∈ Neg∗P . Since d1(v, vI) ≤ 1/2n, v and vI agree on ground literals in
Neg∗P of level < n, hence true = v(Lk) = vI(Lk), but this contradicts the fact that
I 6|= Lk.

Case 2: Lk 6∈ Neg∗P . (Then Lk must be a positive literal.) Since ρ(v) ≤ 1/2n, v
must correctly assert each ground atom not in Neg∗P whose level is< n; in particular,
v correctly asserts Lk. But this is impossible since v(Lk) = true but I 6|= Lk.

Finally we show that d2(TP (v), TP (w)) ≤ 1/2n+1. This time we must show,
for each ground atom A 6∈ Neg∗P with |||A||| ≤ n, that TP (v)(A) = TP (w)(A).
So, for the rest of this proof, assume |||A||| ≤ n, and TP (v)(A) = true. We show
TP (w)(A) = true.

15

Since TP (v)(A) = true, there is a ground instance, A ← L1, . . . , Lm of a clause
in P , with v(L1) = . . . = v(Lm) = true. Now there are two possibilities: either the
body of this ground instance is true in I, or not. If it is, that is, if we have that
I |= L1 ∧ . . . ∧ Lm, then |Li| < |A| ≤ n for i = 1, . . . ,m. Since d2(v, w) ≤ 1/2n, v
and w must agree on literals of level < n, so w(L1) = . . . = w(Lm) = true and so
TP (w)(A) = true.

The other alternative is that the body of A ← L1, . . . , Lm is not true in I. We
show this is not possible, completing the argument. So, suppose I |= L1, . . . , Lk−1

but I 6|= Lk. Once again, |Lk| < |A| ≤ n. Now, just as earlier, things break into
two cases.

Case 1: Lk ∈ Neg∗P . Once again, since d1(v, vI) ≤ 1/2n, v and vI agree on ground
literals in Neg∗P of level < n, hence true = v(Lk) = vI(Lk), and this contradicts the
fact that I 6|= Lk.

Case 2: Lk 6∈ Neg∗P . Since ρ(v) ≤ 1/2n, v must correctly assert each ground
atom not in Neg∗P whose level is < n; so v correctly asserts Lk. This is impossible
since v(Lk) = true but I 6|= Lk. 2

Now using the Banach Contraction Theorem it follows that if P is acceptable
with respect to some level mapping and some model, TP has a unique fixed point,
and that fixed point is reached by iterating TP starting from any valuation, after
ω steps. If we had used ΦP instead of TP nothing essential would have changed in
the argument. Consequently there is only one three-valued fixed point as well, and
so it must coincide with the unique fixed point of TP . This is one of the results of
[3].

8. CONCLUSION

In imperative programming loop invariants are used to guarantee that a loop be-
haves as desired, provided it terminates, and variant functions are used to guarantee
termination. The problem of finding useful ones for a program that is already writ-
ten is undecidable in general. Software engineers recommended that a program
writer have such things in mind when designing a loop. Of course, invariants and
variants can be expressed informally — they often are.

In logic programming, metrics and pseudo-metrics sometimes play a role analo-
gous to both loop invariants and to variant functions. They can be used to show
convergence in ω steps, analogous to termination. And they can be used to show
convergence to a particular model, establishing program correctness. Just as with
loops in imperative programming, the problem of finding a suitable metric should
not begin after the program is written, but should be done during the design stage.
It is likely level functions will be found more intuitive than metrics, and the def-
inition may be quite informal. Still the essential idea is, when writing a program
one should have an idea of what gets ‘simpler’ during query calls, and metrics are
a way one can formalize this intuitive notion. We suggest, therefore, that metrics
be considered as a natural tool of software engineering appropriate for the logic
programming community.

The examples given in this paper illustrate some techniques for working with
metrics in the context of logic programming. The intention is not to be exhaustive
— after all, no general theory is presented. Rather the intention is to get people
interested in metric methods — hoping that others will develop general results.

16

The third example, for instance, shows how the behavior of one part of a program
can be established completely before moving on to other parts that depend on it.
Modularity of program semantics is an important issue for imperative programming.
To what extent can modular techniques involving metrics be developed for logic
programming? We have raised the question. We hope others pursue it.

REFERENCES

1. Apt, K. R., Blair, H., and Walker, A. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed.
Morgan Kaufmann, 1988, pp. 89–148.

2. Apt, K. R., and Pedreschi, D. Studies in pure Prolog: termination. In Symposium
on Computational Logic (1990), J. W. Lloyd, Ed., Springer-Verlag, pp. 150–176.

3. Apt, K. R., and Pedreschi, D. Proving termination of general Prolog programs.
Information and Computation (Jan. 1993).

4. Batarekh, A. Topological aspects of logic programming. PhD thesis, Syracuse
University, 1989.

5. Batarekh, A., and Subrahmanian, V. S. Topological model set deformations in
logic programming. Fundamenta Informaticae 12 (1989), 357–400.

6. Bezem, M. Characterizing termination of logic programs with level mappings. In
Proceedings of the North American Conference on Logic Programming (1989), E. L.
Lusk and R. A. Overbeek, Eds., MIT Press, pp. 69–80.

7. Bezem, M. Strong termination of logic programs. Journal of Logic Programming
15 (1993), 79–97.

8. Cavedon, L. Continuity, consistency, and completeness properties for logic pro-
grams. In Proceedings of the Sixth International Conference on Logic Programming
(1989), G. Levi and M. Martelli, Eds., MIT Press, pp. 571–584.

9. Cavedon, L. Acyclic logic programs and the completeness of SLDNFL-resolution.
Theoretical Computer Science 86 (1991), 81–92.

10. Fitting, M. C. A Kripke/Kleene semantics for logic programs. Journal of Logic
Programming 2 (1985), 295–312.

11. Gelfond, M., and Lifschitz, V. The stable model semantics for logic program-
ming. In Proc. of the Fifth Logic Programming Symposium (Cambridge, MA,
1988), R. Kowalski and K. Bowen, Eds., MIT Press, pp. 1070–1080.

12. Lloyd, J. W. Foundations of Logic Programming, second ed. Springer-Verlag, 1987.
13. Sterling, L., and Shapiro, E. The Art of Prolog. MIT Press, 1986.
14. Van Gelder, A., Ross, K. A., and Schlipf, J. S. Unfounded sets and well-founded

semantics for general logic programs. In Proc. Seventh Symp. on Principles of
Database Systems (1988), pp. 221–230.

15. Willard, S. General Topology. Addison-Wesley, 1970.

