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Abstract

We continue a series of papers on a family of many-valued modal
logics, a family whose Kripke semantics involves many-valued acces-
sibility relations. Earlier papers in the series presented a motivation
in terms of a multiple-expert semantics. They also proved complete-
ness of sequent calculus formulations for the logics, formulations using
a cut rule in an essential way. In this paper a novel cut-free tableau
formulation is presented, and its completeness is proved.

1 Introduction

If we have a many-valued logic L whose truth values constitute a complete
lattice, a natural many-valued version of a Kripke model can be easily con-
structed. The notion of a frame is as usual, but now truth values at possible
worlds are members of L and not just true and false. Propositional connec-
tives are dealt with in the obvious way. And for the modal connectives, one
sets the truth value of 2X at a world to be the inf of the truth values of X
at all accessible worlds. This kind of generalization of Kripke semantics has
been explored by several people [16, 19, 15, 9, 11, 10, 12]. The key thing to
note is that, although a many-valued truth value space has been introduced,
the underlying notion of a Kripke frame remains classical.

In [5] and especially [6] I introduced a somewhat more complicated gen-
eralization in which the notion of frame itself was modified: the classical
∗Research partly supported by NSF Grant CCR-9104015.
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accessibility relation is replaced by a many-valued relation. For this to work
it is not enough that the many-valued logic have the structure of a com-
plete lattice — now we need a complete Heyting algebra. But the resulting
family of modal logics has a natural interpretation: it can be thought of as
representing the opinions of a set of experts who are not necessarily indepen-
dent of each other. (In order to make this paper relatively self-contained, I
sketch this motivation below.) Nonetheless, I feel this family of many-valued
modal logics is worth exploring mathematically for its own sake, and not just
because of a connection with multiple experts. For instance, just as the clas-
sical modal logics have non-monotonic versions, there is a non-monotonic
version of this many-valued modal logic as well [7]. Also, the details of the
completeness argument are of particular interest. I think we may be able to
better understand even the classical modal logics by looking at them in a
broader context of ‘similar’ logics.

As in [5, 6] I will confine things here to finite many-valued logics. In the
papers just cited I gave Gentzen calculi for the many-valued modal logics,
but a cut rule played an essential role. In this paper I present a tableau
formulation, though it is equivalent to a Gentzen-style system, of course. The
key point is that there is no cut rule. The general formulation is somewhat
unusual for tableau treatments of many-valued logic, but my real interest is
in the form the modal rules take. I begin with a brief presentation of the
background motivation in terms of multiple experts, then I turn to a formal
presentation of the tableau system.

2 Many Experts, Many Values

We give the informal background for the many-valued modal logic we are
considering, leading up to a formal presentation of the semantics in the next
section. The material here is developed more fully and rigorously in [6].

Suppose we have several experts and we are interested in the opinions of
each, not just about how things are, but about how they might be. That is,
we want to hear from each expert answers to questions like: “if the world
were thus-and-so, what do you think would be the case?” But this is not
enough, since “thus-and-so” may be extremely unlikely. So we also want to
hear from each expert an answer to “do you think the world being thus-and-
so is a serious possibility?” Now this can be represented rather easily using
Kripke models. We have a set of possible worlds; each expert has his or her
own opinion on the truth of atoms at each possible world; and each expert
has his or her own accessibility relation. The details are straightforward.

Now we complicate the picture. Suppose some experts dominate others:
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anything a dominant expert declares to be the case will also be asserted to
be so by any dominated expert. To keep the discussion manageable, say we
have just two experts, e1 and e2, and e1 dominates e2. If e1 says A is true at
world w, e2 will also say A is true at w. On the other hand, if e1 does not
say A is true at w, e2 is free to say anything: A is true at w, or A is false
at w. Thus there is a lack of symmetry built in: assertion (truth) outranks
non-assertion (falsehood). What was just said about truth of formulas at
worlds applies as well to accessibility relations: if e1 says world v is accessible
from world w, e2 will also say this.

The picture just described has an intuitionistic flavor to it. For example,
suppose e2 believes A is true at world w but B is not. Since expert e1

dominates e2, e1 can not believe that A ⊃ B is true at w because otherwise
e2 would also have to believe it, but e2 does not. Thus the calculation of truth
values is no longer ‘local,’ an expert will accept A ⊃ B provided that expert,
and every expert that one dominates, accepts B provided he or she accepts
A. This is essentially the treatment of implication in Kripke intuitionistic
models.

Non-locality carries over to modal notions as well. For e1 to accept 2A
at world w it is not enough for e1 to accept A at all worlds e1 believes are
alternatives to w; we also need that the dominated expert, e2, should accept
A at all the worlds e2 believes are alternatives to w. The conditions on ♦
are simpler, but we won’t go into the details here — things are similar to
the characterization of ∀ and ∃ in Kripke intuitionistic models, including the
impossibility of inter-defining them in general.

A formal version of the semantics sketched above can be found in [6].
In effect, the multiple-expert modal model has features that are modal and
features that are intuitionistic. It is, in fact, a version of the semantics of
[17, 13, 1].

A natural way of simplifying the structure outlined above is to move to
a many-valued picture, treating sets of experts as truth values. Instead of
saying both e1 and e2 accept A at world w, we could say the truth value of
A at w is {e1, e2}. Of course, not every set of experts gives us a truth value;
since e1 dominates e2, the set {e1} can not be the value of any formula, since
no formula can be true for e1 alone. What we want as truth values are sets of
experts closed under dominance. All we require of the dominance relation is
that it be reflexive and transitive. It is a standard result that the collection
of sets closed under such a relation is a Heyting algebra, [14]. (We give a
definition in the next section.) Consequently, what we want to characterize
is the notion of a many-valued modal logic where the space of truth values
is a Heyting algebra.
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We can take the truth conditions worked out for multiple-expert modal
models and simply translate them into conditions appropriate for a many-
valued modal model. Some of them are straightforward. For instance, if S1

is the set of experts who think A is true at w, and S2 is the set of experts
who think B is true at w, clearly S1 ∩ S2 will be the set of experts who
think A ∧ B is true at w. Thus ∧ in the formal language corresponds to ∩
in the family of sets of experts, and this in fact is the meet operation of the
corresponding Heyting algebra.

All the multiple-expert truth conditions convert into quite natural many-
valued conditions. This gives rise to a notion of many-valued modal model;
details can be found in [6]. We do not repeat them here. In this paper we
start the formal work at this point.

3 Syntax and Semantics

In this section we give the formal syntax and semantics for our many-valued
modal logic. First, however, we sketch the basic ideas of Heyting algebras,
since these will be needed in what follows. The primary source for Heyting
algebras is [14].

Suppose we have a lattice (we denote meet and join by ∧ and ∨). The
pseudo-complement of a relative to b is the greatest member of the lattice,
c, such that a ∧ c ≤ b. A pseudo-complement for two members need not
exist in general. If the pseudo-complement of a relative to b does exist, it
is denoted a⇒ b. Pseudo-complements meet the condition (and in fact are
determined by it):

x ≤ (a⇒ b) iff (x ∧ a) ≤ b.

Definition 3.1 A Heyting algebra is a lattice T with a bottom element
(which we denote false), in which all relative pseudo-complements exist.

There are several easy facts concerning pseudo-complements which we
will need. Since a ⇒ b ≤ a ⇒ b, it follows from the equivalence above,
taking x to be a ⇒ b, that a ∧ (a ⇒ b) ≤ b. Also, since x ∧ false = false ≤
false, it follows that x ≤ (false ⇒ false) for any x. Consequently if we set
true = (false⇒ false) we have a top element for the Heyting algebra. Since
true ∧ a = a, we have true ≤ (a ⇒ b) iff a ≤ b. Finally, a ≤ (b ⇒ c)
iff b ≤ (a ⇒ c), since the first is equivalent to (a ∧ b) ≤ c, the second is
equivalent to (b ∧ a) ≤ c, and the meet operation is commutative.

It is shown in [14] that Heyting algebras are distributive. On the other
hand, a finite distributive lattice must be a Heyting algebra. We have been
tacitly assuming we had a finite number of experts — consequently we have
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finite Heyting algebras to deal with, and this translates into the probably
more familiar notion of a finite, distributive lattice.

Notation Convention For the rest of this paper, T = 〈T ,≤〉 is a finite,
distributive lattice; equivalently, a finite Heyting algebra. We write false for
the smallest element of it; and true for the largest element.

Now we begin the business of introducing a many-valued modal logic,
L(T ), based on the Heyting algebra T . We begin with syntax. Classical
logic is intended to be two-valued, and counterparts of the two truth values
are available in the language, A∧¬A for false andA∨¬A for true. When more
than two truth values are allowed it may not be possible to find counterparts
of all the truth values in the language. We need them, so we build them in.
From now on we assume the language of L(T ) has propositional constants,
corresponding to the members of T . To keep the notation simple, we will
just assume the members of T themselves are constant symbols of L(T ).

Definition 3.2 The language of L(T ) is specified as follows.

1. Atomic formulas are the members of T , called propositional constants,
and a countable list of propositional variables, A1, A2, . . . .

2. Formulas are built up from atomic formulas in the usual way, allowing
the connectives ∧, ∨, ⊃, 2, and ♦.

Note that there is no negation in the language of L(T ). A standard way of
introducing one in such a context is to set ¬X = (X ⊃ false). If T happens
to be not just a Heyting algebra but a Boolean algebra, this yields the
expected negation. We find it simpler to omit direct treatment of negation
here. We also use ∧ and ∨ to denote meet and join in T ; there should be no
confusion between their algebraic roles and their roles syntactically in L(T ).

Now we introduce the intended semantics for L(T ), beginning with the
non-modal part.

Definition 3.3 A valuation is a mapping v from propositional variables to
T .

We will refer to members of T as truth values, or T -truth values if it is
necessary to be more specific.

Definition 3.4 Valuations are extended to all non-modal formulas as fol-
lows. Let v be a valuation.
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1. If t is a propositional constant, v(t) = t.

2. v(A ∧B) = v(A) ∧ v(B).

3. v(A ∨B) = v(A) ∨ v(B).

4. v(A ⊃ B) = v(A)⇒ v(B).

Now we extend these notions to the full language, introducing a suitably
generalized version of a Kripke model. This is taken from [5, 6].

Definition 3.5 A T -modal model is a structure 〈G,R, w〉 where G is a non-
empty set (of possible worlds), R is a mapping from G×G to T , and w maps
worlds to valuations.

The map R should be thought of as a many-valued accessibility relation. If
T is the Boolean algebra {false, true}, R corresponds to a classical relation
in the obvious way. To keep notation simple, we will write w(Γ, X) instead
of w(Γ)(X). Now we extend w to arbitrary formulas. We use

∨
and

∧
for

arbitrary ∨ and ∧; meaningfulness of the operations is immediate, since T
is assumed finite.

Definition 3.6 Let 〈G,R, w〉 be a T -modal model. The map w is extended
as follows. For any Γ ∈ G:

1. The action of w, at each world, with respect to ∧, ∨, and ⊃ is as in
Definition 3.4.

2. w(Γ,2A) =
∧{R(Γ,∆)⇒ w(∆, A) | ∆ ∈ G}.

3. w(Γ,♦A) =
∨{R(Γ,∆) ∧ w(∆, A) | ∆ ∈ G}.

Some examples of the calculation of truth values for non-atomic formulas
are given in [6]. We do not repeat them here.

Definition 3.7 We say a formula X is valid in the T -modal model 〈G,R, w〉
provided, for each Γ ∈ G, w(Γ, X) = true.

We return to the non-modal setting for a moment, for some explanation.
Generally, when working with many-valued logics one has some family of
designated truth values, say {d1, . . . , dk}, in mind, and a formula is consid-
ered valid if it always takes on some designated truth value. Suppose we
do this, but we also assume the set of designated truth values is closed un-
der meet (a common assumption). Set d = (d1 ∧ . . . ∧ dk). Then saying X
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has a designated truth value under every valuation really amounts to saying
that, if v is any valuation, d ≤ v(X). Since we have propositional constants
in our language, this is equivalent to saying that v(d) ≤ v(X), and this in
turn is equivalent to true ≤ (v(d) ⇒ v(X)), which finally is equivalent to
v(d ⊃ X) = true.

What all this amounts to is simple. The notion of validity as we gave it
above is general enough to capture the ‘designated value’ version of valid-
ity. Of course we are using the Heyting algebra structure to carry out this
reduction — for many-valued logics with less structure such a thing is not
generally possible. It also suggests a special role for implications involving
propositional constants, and that indeed is the case, as will be seen shortly.

4 Non-Modal Tableau Rules

In presenting the tableau rules for the logic L(T ) we postpone the modal
rules for now, and concentrate on the underlying non-modal many-valued
logic. The rules we give are rather straightforward, and are designed to serve
as a framework to which we can add modal rules. We assume the reader is
familiar with tableau systems for classical logic — if not, [18, 4] will serve as
references. We use signed formulas, following the main development of [18].

To begin with, all formulas appearing in our tableaus will be implications
of a special kind: a ⊃ A or A ⊃ a, where a is a propositional constant. We
call these bounding implications. Informally, think of a ⊃ A as asserting
that, under some many-valued valuation, the value of A is at least a, that
is, ≥ a; likewise A ⊃ a informally asserts that the value of A is ≤ a. The
tableau completeness proof will show to what extent the rules capture this
intention. In addition we use signs, T and F , familiar from classical logic. If
X is a formula, T X and F X are signed formulas. Think of T X as asserting
X, and F X as denying X.

Tableau systems are refutation systems. To establish something, we be-
gin by denying it, and derive some sort of syntactical contradiction. In our
case, if we want to show X is valid under all many-valued interpretations (in
T ), we start a tableau with F (true ⊃ X), thus informally asserting there
could be an interpretation in which X is not (at least) true. Then a tree is
constructed, using the Branch Extension Rules given below. Think of the
tree as the disjunction of its branches, and a branch as the conjunction of the
signed formulas on it. A branch is closed if it contains an ‘obvious’ contra-
diction, again specified below. If each branch is closed, the tableau is closed.
A closed tableau beginning with F (true ⊃ X) constitutes a tableau proof
of X. Somewhat more generally, a tableau proof of Z is a closed tableau
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starting with F Z, and we are specially interested in formulas Z of the form
true ⊃ X.

Notice that we are allowing bounding implications of both forms, a ⊃ A
and A ⊃ a, in tableaus, both lower and upper bounds. Now we have the
formal presentation of the rules. We begin with those for closing branches
— termination rules, so to speak.

Branch Closure Conditions A tableau branch is closed if it contains:

T (a ⊃ b) where a 6≤ b
F (a ⊃ b) where a ≤ b
and a 6= false, b 6= true

F (false ⊃ X)
F (X ⊃ true)

T (b ⊃ X)
F (a ⊃ X)

}
where a ≤ b

Remark The rule covering F (a ⊃ b) has the restrictions it does simply
because these cases are covered by the two rules immediately following it.

There is no negation symbol in our language. Even so, there are analogs
of negation rules. Classically, X is equivalent to true ⊃ X and ¬X is equiv-
alent to X ⊃ false, so the usual classical rule, to infer T X from F ¬X, is
equivalent to a rule saying: infer T (true ⊃ X) from F (X ⊃ false). What
we need are more rules like this, suitable for T , allowing us to switch signs
by reversing implications. There are four such rules.

Reversal Rules In these rules, X is restricted to be any formula other than
a propositional constant.

F ≥ F (a ⊃ X)
T (X ⊃ t1) . . . T (X ⊃ tn)

Where t1,. . . ,tn are all maxi-
mal members of T not above
a, and a 6= false.

T ≥ T (a ⊃ X)
F (X ⊃ ti)

Where ti is any maximal mem-
ber of T not above a, and a 6=
false.
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F ≤ F (X ⊃ a)
T (u1 ⊃ X) . . . T (uk ⊃ X)

Where u1,. . . ,uk are all mini-
mal members of T not below
a, and a 6= true.

T ≤ T (X ⊃ a)
F (ui ⊃ X)

Where ui is any minimal mem-
ber of T not below a, and a 6=
true.

The intuition behind these rules is straightforward; consider F ≥ as
representative. Suppose we have F (a ⊃ X) on a tableau branch and so,
under some valuation v, a 6≤ v(X). Let S be {z ∈ T | a 6≤ z}; then
v(X) ∈ S, so S is not empty. Since T is finite, v(X) is below some maximal
member of S. If we designate the maximal members of S by t1,. . . ,tn we
have v(X) ≤ t1 or . . . or v(X) ≤ tn, and so the tableau branches to the
possible continuations T (X ⊃ t1), . . . , T (X ⊃ tn).

We just used an argument involving maximal members of T meeting a
certain condition. We will use such arguments frequently, and analogous
ones concerning minimal ones. So once and for all we state the general
principle involved. As noted above, it follows from the finiteness of T .

General Principle If x 6≤ y then: (1) there is some w ≤ x such that w is
a minimal member of T not below y; and (2) there is some z ≥ y such that
z is a maximal member of T not above x.

Rule F ≥ does not make sense if a = false since there are no members
of T that are not above false. But this case is covered by the Branch Clo-
sure Condition allowing closure of a branch containing F (false ⊃ X). Rule
T ≥ has a similar restriction but for a different reason. A signed formula
of the form T (false ⊃ X) gives no useful information, since everything in
T is above false and so cannot be expected to enter meaningfully into a
tableau construction. The formal justification of the restriction comes when
we show the system is complete in the presence of the restriction. Similar
comments apply to Rules F ≤ and true. Finally we have rules for the various
propositional connectives, in which there are similar restrictions, for similar
reasons.

Conjunction Rules
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T∧ T (t ⊃ (A ∧B))
T (t ⊃ A)
T (t ⊃ B)

Where t 6= false.

F∧ F (t ⊃ (A ∧B))
F (t ⊃ A) F (t ⊃ B)

Where t 6= false.

Disjunction Rules

T∨ T ((A ∨B) ⊃ t)
T (A ⊃ t)
T (B ⊃ t)

Where t 6= true.

F∨ F ((A ∨B) ⊃ t)
F (A ⊃ t) F (B ⊃ t)

Where t 6= true.

Finally we have the rules for implication. These are somewhat more
complicated, but the motivating idea is clear. Suppose we have F (t ⊃ (A ⊃
B)) on a tableau branch, so under some valuation v, t 6≤ (v(A) ⇒ v(B)).
Since T is a Heyting algebra this is equivalent to (t ∧ v(A)) 6≤ v(B). Let
ti = t ∧ v(A). It follows that: ti ≤ v(A), ti 6≤ v(B); and ti ≤ t. Thus
we should be able to extend the tableau branch by adding T (ti ⊃ A) and
F (ti ⊃ B), for some ti ≤ t. Of course we can rule out the case of t = false,
since then a Branch Closure Condition applies, and similarly we do not need
to consider the possibility that ti = false. This should be enough to motivate
the following rules.

Implication Rules

F ⊃ F (t ⊃ (A ⊃ B))
T (t1 ⊃ A) . . . T (tn ⊃ A)
F (t1 ⊃ B) F (tn ⊃ B)

Where t 6= false and t1,. . . ,tn
are all the members of T below
t except false.

T ⊃ T (t ⊃ (A ⊃ B))
F (ti ⊃ A) T (ti ⊃ B)

Where t 6= false and ti is any
member of T below t except
false.
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This completes the system of non-modal tableau rules. We conclude the
section with a sketch of a proof of (A ⊃ (B ⊃ A)), or rather, of true ⊃ (A ⊃
(B ⊃ A)). The tableau begins with F true ⊃ (A ⊃ (B ⊃ A)). Since every
member of T is below true, an application of F ⊃ yields many branches,
each containing signed formulas of the form:

T (u ⊃ A)
F (u ⊃ (B ⊃ A))

where u 6= false. We continue with a typical such branch in Figure 1. In it
we have used Rule F ⊃, with t1,. . . , tk being all the members of T below u,
except for false. Since ti ≤ u for each i, each branch closes using one of the
Branch Closure Conditions.

q q q
F (tk ⊃ A)
T (tk ⊃ B)

HHHHH

�����

F (t1 ⊃ A)
T (t1 ⊃ B)

F (u ⊃ (B ⊃ A))
T (u ⊃ A)

Figure 1: A Proof of (A ⊃ (B ⊃ A))

5 A Three-Valued Example

A concrete example can often be an aid to understanding. The simplest
example after the classical two-valued case is three-valued; we present this
system here, and continue with it once we get to the modal rules. We take
for truth values T (3) = {false, half, true}, with the ordering false < half <
true. We observed in Section 2 that the kind of many-valued logics we were
considering can be identified with a logic of multiple experts. This applies
to T (3) in the following way. Suppose there are two experts, A and B,
with A dominating B. Then there are three sets that can serve as truth
values: ∅, which corresponds to false; {B}, which corresponds to half; and
{A,B}, which corresponds to true. If we had used the same set of experts
but assumed neither dominated the other, a four-valued logic would have
arisen — we leave it to the reader to formulate rules for it.

The Branch Closure Conditions from Section 4 specialize to the following.
A branch of a T (3) tableau is closed if it contains
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T (half ⊃ false)
T (true ⊃ half)
T (true ⊃ false)
F (half ⊃ half)
F (false ⊃ X)
F (X ⊃ true)

T (half ⊃ X) and F (half ⊃ X)
T (true ⊃ X) and F (true ⊃ X)
T (true ⊃ X) and F (half ⊃ X)

There are eight Reversal Rules.

F half ⊃ X
T X ⊃ false

T X ⊃ false
F half ⊃ X

F true ⊃ X
T X ⊃ half

T X ⊃ half
F true ⊃ X

T half ⊃ X
F X ⊃ false

F X ⊃ false
T half ⊃ X

T true ⊃ X
F X ⊃ half

F X ⊃ half
T true ⊃ X

The Conjunction and Disjunction Rules are straightforward, and we omit
them here. Finally, there are five Implication Rules for T (3).

F (half ⊃ (A ⊃ B))
T (half ⊃ A)
F (half ⊃ B)

T (half ⊃ (A ⊃ B))
F (half ⊃ A) T (half ⊃ B)

F (true ⊃ (A ⊃ B))
T (half ⊃ A) T (true ⊃ A)
F (half ⊃ B) F (true ⊃ B)

T (true ⊃ (A ⊃ B))
F (true ⊃ A) T (true ⊃ B)

T (true ⊃ (A ⊃ B))
F (half ⊃ A) T (half ⊃ B)

Figure 2 shows an example of a tableau proof for T (3). We leave it to
the reader to provide justifications for the various steps.
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HHHHH

�����

aaaaa
!!!!!

aaaaa
!!!!!

T half ⊃ BF half ⊃ A

T half ⊃ (A ⊃ B)F half ⊃ true

T half ⊃ AF half ⊃ half

T half ⊃ (true ⊃ (A ⊃ B))
T half ⊃ (half ⊃ A)
F half ⊃ B
T half ⊃ [(half ⊃ A) ∧ (true ⊃ (A ⊃ B))]
F half ⊃ {[(half ⊃ A) ∧ (true ⊃ (A ⊃ B))] ⊃ B}

Figure 2: A Non-Modal Proof in T (3)

6 Non-Modal Soundness and Completeness

All entries in tableaus are signed bounding implications. We want to show
that there is a closed tableau for F (a ⊃ A) if and only if every valuation v
assigns A a value that is ≥ a. (And similarly for A ⊃ a, and for a sign of
T instead of F .) We begin with the ‘only if,’ or soundness half. All tableau
soundness proofs are essentially the same. One defines what it means for a
tableau to be satisfiable, proves the rules preserve satisfiability, but a closed
tableau is not satisfiable. There are no surprises here.

Definition 6.1 A non-modal tableau is satisfiable if at least one branch
is satisfiable. A branch is satisfiable if the set of signed formulas on it is
satisfiable. A set of signed formulas is satisfiable if some valuation v satisfies
each member. A signed formula is satisfiable under the valuation v if it is
T (X ⊃ Y ) and v(X) ≤ v(Y ); or if it is F (X ⊃ Y ) and v(X) 6≤ v(Y ).
(Recall that for propositional constants, v(c) = c.)

Each of the tableau rules from Section 4 preserves satisfiability. We leave
the verification of this to you (there was a sketch of the argument for the
rule F ⊃ immediately before that rule was given in Section 4).

It is also easy to verify that a closed tableau is not satisfiable. Now we
proceed in the customary way. If we have a closed tableau for F (a ⊃ A) it
must be the case that every valuation assigns A a value that is≥ a. For if not,
F (a ⊃ A) would be a satisfiable formula; the tableau construction would
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thus begin with a satisfiable tableau; every subsequent tableau would be
satisfiable; and tableau construction would terminate with a closed tableau
that was satisfiable.

Now we turn to the completeness half. We begin with some terminology
and notation.

Definition 6.2 Let S be a set of signed bounding implications. We say S
is consistent if no tableau beginning with a finite subset of S closes. Also
S is maximally consistent if it is consistent and has no proper consistent
extensions.

Next, for each maximal consistent set we define two mappings to T . If
a cut rule were part of the tableau formulation, these two mappings would
easily be seen to coincide, and each would be a valuation. As it is, we do
not know this, and must work with somewhat weaker properties.

Definition 6.3 Let S be a maximally consistent set of bounding implica-
tions. For each formula X set:

boundS(X) =
∧{a | T (X ⊃ a) ∈ S}

boundS(X) =
∨{a | T (a ⊃ X) ∈ S}

Essentially we will show that for a maximal consistent set S, any valu-
ation between boundS and boundS satisfies S. First we must establish that
the very notion of ‘between’ is meaningful.

Lemma 6.4 If S is maximally consistent, then for every formula X,
boundS(X) ≤ boundS(X).

Proof It is enough to show that for every a ∈ {a | T (a ⊃ X) ∈ S} and
for every b ∈ {b | T (X ⊃ b) ∈ S}, a ≤ b. So, we assume T (a ⊃ X) and
T (X ⊃ b) are both in S, a 6≤ b, and we derive a contradiction.

Since a 6≤ b, and T is finite, there must be a minimal ui ≤ a such that
ui 6≤ b. Since T (X ⊃ b) ∈ S, by Reversal Rule T ≤, S ∪ {F (ui ⊃ X)} is
consistent. Then since S is maximally consistent, F (ui ⊃ X) ∈ S. But then
a tableau starting with members of S can close immediately by one of the
Branch Closure Conditions, since T (a ⊃ X) and F (ui ⊃ X) are in S and
ui ≤ a, so S is inconsistent, a contradiction.
fillednec

Next, some basic properties of boundS and boundS. These play a crucial
role in the completeness proof both for the non-modal and the modal cases.



Many-Valued Tableaus 15

Proposition 6.5 Let S be maximal consistent, and let X be any formula.

1. If T (c ⊃ X) ∈ S then c ≤ boundS(X).

2. If T (X ⊃ c) ∈ S then boundS(X) ≤ c.

3. If F (c ⊃ X) ∈ S then c 6≤ boundS(X).

4. If F (X ⊃ c) ∈ S then boundS(X) 6≤ c.

Proof Items 1 and 2 are immediate from the definitions of boundS and
boundS. For item 3, suppose F (c ⊃ X) ∈ S but c ≤ boundS(X); we derive
a contradiction. Using Reversal Rule F ≥, for some ti 6≥ c, S ∪{T (X ⊃ ti)}
is consistent, so by maximality of S, T (X ⊃ ti) ∈ S. Then by item 2,
boundS(X) ≤ ti. But then, c ≤ ti, and this is a contradiction. Item 4 has a
similar proof.
fillednec

Note that both the Lemma and the Proposition above use only the Rever-
sal Rules in their proofs. Consequently both hold for the systems with and
without modal rules. Now the main item we need to establish completeness
of the non-modal system.

Proposition 6.6 Let S be a maximally consistent set of signed bounding
implications, and let v be any valuation such that, for propositional variables
P ,

boundS(P ) ≤ v(P ) ≤ boundS(P ).

Then for any non-modal formula X,

boundS(X) ≤ v(X) ≤ boundS(X).

Proof The argument is by induction on the degree of X. The atomic case
is by definition. Now suppose X = (A∧B) and the result is known for each
of A and B; we show it for X. (The other two cases are similar and are
omitted.)

Let a be an arbitrary member of T and suppose T (a ⊃ (A ∧ B)) ∈ S.
Using Conjunction Rule T∧ (and maximality of S) it follows that T (a ⊃ A)
and T (a ⊃ B) are both in S. By Proposition 6.5, a ≤ boundS(A) and
a ≤ boundS(B). Then it follows from the induction hypothesis that a ≤ v(A)
and a ≤ v(B). But then a ≤ v(A)∧v(B) = v(A∧B). Since a was arbitrary,
this establishes that boundS(A ∧B) ≤ v(A ∧B).

For the other half of the conjunction case, to show v(A∧B) ≤ boundS(A∧
B) it is enough to show that whenever T ((A ∧ B) ⊃ a) ∈ S it follows that
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v(A ∧B) ≤ a. We do this by contradiction: suppose there is an a ∈ T such
that T ((A ∧B) ⊃ a) ∈ S but v(A ∧B) 6≤ a. From the set of members of T
that are below v(A∧B) but are not below a choose a minimal member — call
it ui. Thus ui ≤ v(A∧B), and is minimal such that ui 6≤ a. Now by Reversal
Rule T ≤ (and maximality of S), F (ui ⊃ (A∧B)) ∈ S. Then by Conjunction
Rule F∧, either F (ui ⊃ A) ∈ S or F (ui ⊃ B) ∈ S. By Proposition 6.5,
ui 6≤ boundS(A) or ui 6≤ boundS(B). It follows from the induction hypothesis
that ui 6≤ v(A) or ui 6≤ v(B), and hence ui 6≤ v(A) ∧ v(B) = v(A ∧ B), and
this is our contradiction.
fillednec

Theorem 6.7 Any consistent set of signed bounding formulas is satisfiable,
and hence the non-modal tableau rules are complete.

Proof Suppose S0 is consistent. In the usual way it can be extended to
a maximal consistent set S by systematically adding each signed bounding
implication that preserves consistency. Pick an arbitrary valuation v such
that on propositional variables v is between boundS and boundS. Now,
if F (c ⊃ X) ∈ S0 ⊆ S, by Proposition 6.5, c 6≤ boundS(X). But by
Proposition 6.6, v(X) ≤ boundS(X), so c 6≤ v(X). This means v satisfies
F (c ⊃ X). The argument is similar for the other cases of signed bounding
implications. Now completeness follows in the usual way.
fillednec

7 Modal Rules

There are several varieties of tableau rules for modal logics based on classical,
two-valued logic. Here we are interested in the so-called destructive style,
see [3], and also [2, 8]. We begin this section with a brief sketch of the rules
for two-valued K, then we present the many-valued analog.

Let S be a set of signed formulas of modal logic in the conventional sense,
taking both 2 and ♦ as primitive. We define a set S# as follows.

S# = {T X | T 2X ∈ S} ∪ {F X | F ♦X ∈ S}

The idea is, in a conventional Kripke model, if S is the set of formulas true
at a world, and we move from that world to a generic alternative world,
the members of S# will be true there. Now the classical K-rules are easily
given. They are destructive: instead of adding formulas to branches, whole
branches are replaced with new ones. The branch replacement rules are
these.
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Classical K Branch Replacement Rules

S, T ♦X
S#, T X

S, F 2X

S#, F S

These rules are applied as follows: if S ∪ {T ♦X} is the set of formulas on
a tableau branch, that branch can be replaced with a new branch whose
formula set is S# ∪ {T X}. Similarly for the other rule. We assume the
reader has some familiarity with this style of tableau, and do not elaborate
further here.

Now, to present modal rules in this style for a many-valued logic we first
need an analog of the # operation. Classically # corresponds to a move
from a world to an alternative one. But the classical accessibility relation is
two-valued, while now we have a many-valued one. Consequently we need a
# operation for each of the truth-values (other than false).

Definition 7.1 Let S be a set of signed bounding implications, and c be a
propositional constant other than false.

S#(c) = {T ((a ∧ c) ⊃ X) | T (a ⊃ 2X) ∈ S and a ∧ c 6= false}
∪
{T (X ⊃ (c⇒ a)) | T (♦X ⊃ a) ∈ S and c⇒ a 6= true}

Caution: the expressions (a∧c) and (c⇒ a) in the two parts of the definition
above are not syntactic. They are intended to be the propositional constants
resulting from evaluating these expressions in T . Similar considerations
apply to the tableau rules below. In the first clause above, if we allowed
a ∧ c = false the formula added to S# would be T false ⊃ X which is
harmless to allow, but of no use in closing a tableau branch. We rule it
out in the interests of efficiency. Similarly for the restriction in the second
clause. Now, we have the following branch replacement rules. The idea is, if
the set of formulas above the double line is the set on some tableau branch,
that branch may be replaced by the branches below the double line.

Many-Valued Modal Branch Replacement Rules

F2
S

F (a ⊃ 2X)
S#(t1) . . . S#(tn)

F ((a ∧ t1) ⊃ X) F ((a ∧ tn) ⊃ X)



18 Melvin Fitting

F♦
S

F (♦X ⊃ a)
S#(t1) . . . S#(tn)

F (X ⊃ (t1 ⇒ a)) F (X ⊃ (tn ⇒ a))

Restrictions In the Modal Rule F2, a ∧ ti 6= false. In the F♦ Rule,
ti ⇒ a 6= true, or equivalently, ti 6≤ a.

The reasons for the restrictions are similar to those above. In the F2 rule,
branch closure is immediate if a branch contains F ((a∧ti) ⊃ X) and a∧ti =
false, so this case can be omitted. Similarly for the other rule. Note that
if ti = false both restrictions arise, since a ∧ false = false, and false ≤ a.
Consequently we never consider ti = false, which is compatible with the
omission of the false case in defining the # operation.

An intuitive justification for the first rule, F2, is as follows (the other
rule is treated similarly). Suppose S ∪ {F (a ⊃ 2X)} is a set of signed
bounding implications, and its members are satisfied at the world Γ of a
many-valued modal model 〈G,R, w〉 — so in particular, a 6≤ w(Γ,2X).
Now, w(Γ,2X) =

∧{R(Γ,∆) ⇒ w(∆, X) | ∆ ∈ G}, so for some world ∆0,
a 6≤ R(Γ,∆0) ⇒ w(∆0, X). Say R(Γ,∆0) = ti; then a 6≤ (ti ⇒ w(∆0, X)),
so a∧ti 6≤ w(∆0, X). This means the signed formula F (a∧ti) ⊃ X is satisfied
at ∆0. Continuing the rule justification, assume T (♦Y ⊃ b) is one of the
members of S, and so is satisfied at Γ. Then w(Γ,♦Y ) ≤ b, so

∨{R(Γ,∆) ∧
w(∆, Y ) | ∆ ∈ G} ≤ b, and it follows that R(Γ,∆0) ∧ w(∆0, Y ) ≤ b, or
ti ∧ w(∆0, Y ) ≤ b. It follows from this that w(∆0, Y ) ≤ (ti ⇒ b), and so
T (Y ⊃ (ti ⇒ b)) is satisfied at ∆0. A similar argument applies to each of
the members of S.

What we have shown is that if the members of S ∪ {F (a ⊃ 2X)} are
satisfied at a world of a many-valued model, then for some ti ∈ T , the
members of S#(ti) ∪ {F ((a ∧ ti) ⊃ X)} are also satisfied at some world. In
other words, if we have a satisfiable tableau, and we apply one of the modal
rules, we get a satisfiable tableau back.

8 The Three-Valued Example Continued

In Section 5 we gave non-modal rules for a three-valued logic, T (3). We
continue that example, give modal rules, and present a tableau example.
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We begin with the # operation, which has two cases since false is omitted.

S#(half) = {T (half ⊃ X) | T (half ⊃ 2X) ∈ S}∪
{T (half ⊃ X) | T (true ⊃ 2X) ∈ S}∪
{T (X ⊃ false) | T (♦X ⊃ false) ∈ S}

S#(true) = {T (half ⊃ X) | T (half ⊃ 2X) ∈ S}∪
{T (true ⊃ X) | T (true ⊃ 2X) ∈ S}∪
{T (X ⊃ false) | T (♦X ⊃ false) ∈ S}∪
{T (X ⊃ half) | T (♦X ⊃ half) ∈ S}

There are four Modal Branch Replacement Rules for T (3), as follows.

S
F (half ⊃ 2X)

S#(half) S#(true)
F (half ⊃ X) F (half ⊃ X)

S
F (true ⊃ 2X)

S#(half) S#(true)
F (half ⊃ X) F (true ⊃ X)

S
F (♦X ⊃ false)

S#(half) S#(true)
F (X ⊃ false) F (X ⊃ false)

S
F (♦X ⊃ half)
S#(true)

F (X ⊃ half)

Finally we present a tableau proof for T (3) that uses the modal rules. It
is a proof of:

half ⊃ {[(half ⊃ ♦X) ∧ (true ⊃ 2Y )] ⊃ ♦(X ∧ Y )}.

The proof is divided among several Figures for convenience. It begins in
Figure 3.
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F ♦X ⊃ false
T ♦(X ∧ Y ) ⊃ false
T half ⊃ 2YF half ⊃ true

l
l
l
l

,
,
,
,

T half ⊃ ♦XF half ⊃ half

l
l
l
l

,
,
,
,

T half ⊃ (true ⊃ 2Y )
T half ⊃ (half ⊃ ♦X)
F half ⊃ ♦(X ∧ Y )
T half ⊃ [(half ⊃ ♦X) ∧ (true ⊃ 2Y )]
T half ⊃ {[(half ⊃ ♦X) ∧ (true ⊃ 2Y )] ⊃ ♦(X ∧ Y )}

Figure 3: A Modal Tableau, Part One

All of the steps in Figure 3 are propositional, and we omit most expla-
nations. Note that the left two branches are closed because of their final
nodes. Also the last two entries on the rightmost branch result from Re-
versal Rule applications. Now a modal rule applies to the signed formula
F ♦X ⊃ false on the rightmost branch, taking for S the remaining formulas
on that branch. This replaces the rightmost branch by the pair shown in
Figure 4.

In Figure 4 the left main branch begins with S#(half) and the right main
branch with S#(true), which happen to be the same in this case — this
gives the first two signed formulas on these branches. In each case the third
formula is F X ⊃ false, which comes from F ♦X ⊃ false in Figure 3. On the
left branch (4) is from (2), and (5) is from (3), by Reversal Rules, and (6)
and (7) are from (4) by F∧. The right branch is similar. Finally, each of
the four branches is closed.

9 Modal Completeness

We omit proof of the soundness of the modal tableau rules — this is straight-
forward and may be left to the reader. We proceed directly to their com-
pleteness. As usual, the proof amounts to showing that a consistent tableau
is satisfiable. Consistency was characterized in Definition 6.2; we continue
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(13) F half ⊃ X (14) Fhalf ⊃ Y
@
@

�
�

(12) T half ⊃ X
(11) F half ⊃ (X ∧ Y )
(10) F X ⊃ false
(9) T (X ∧ Y ) ⊃ false
(8) T half ⊃ Y

PPPPPPPP

��������

(7) Fhalf ⊃ Y(6) F half ⊃ X
@
@

�
�

(5) T half ⊃ X
(4) F half ⊃ (X ∧ Y )
(3) F X ⊃ false
(2) T (X ∧ Y ) ⊃ false
(1) T half ⊃ Y

Figure 4: A Modal Tableau, Part Two

to use that definition (with the understanding that modal rules are allowed
now). Similarly for maximal consistency. Likewise satisfiability was charac-
terized in Definition 6.1. We continue to use essentially that definition, with
obvious modifications to relativize things to possible worlds. Thus, a set S is
satisfiable if there is a T -modal model 〈G,R, w〉 and a world Γ ∈ G such that
each member of S is satisfied at Γ. And so on. With all this understood, we
need the following extension of Theorem 6.7.

Theorem 9.1 Allowing the modal tableau rules, and using T -modal models,
any consistent set of signed bounding formulas is satisfiable, and hence the
modal tableau system is complete.

The proof of this occupies the rest of the section. Not surprisingly, it is
along the ‘canonical model’ line, suitably modified for the space T of truth
values. Let G be the set of all maximally consistent sets of signed bounding
implications. This will be the set of possible worlds of our canonical model.
We carry over the notation of Definition 6.3, and use it to define a somewhat
unusual many-valued accessibility relation. For Γ,∆ ∈ G:

R(Γ,∆) =
∧{boundΓ(2Y )⇒ bound∆(Y ) | all formulas Y }
∧∧{bound∆(Z)⇒ boundΓ(♦Z) | all formulas Z}

Finally, let w be any mapping such that on propositional variables:

boundΓ(P ) ≤ w(Γ, P ) ≤ boundΓ(P ).
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This defines a canonical model 〈G,R, w〉. The proof is finished once we
extend Proposition 6.6 and show that for any formula X (even allowing
modal operators):

boundΓ(X) ≤ w(Γ, X) ≤ boundΓ(X). (1)

The proof of the sequence of inequalities (1) is, of course, by induction on
the complexity of X. The propositional connective cases are treated exactly
as in the proof of Proposition 6.6, and are not repeated here. The new things
are the 2 and ♦ cases, which we give in detail.

The 2 Case Suppose (1) is known for X; we show it for 2X. Let Γ0 be a
fixed member of G. We begin with the easier half.

By definition of R, for an arbitrary ∆ ∈ G,

R(Γ0,∆) ≤ boundΓ0(2X)⇒ bound∆(X).

By the properties of ⇒,

boundΓ0(2X) ≤ R(Γ0,∆)⇒ bound∆(X).

By the induction hypothesis, bound∆(X) ≤ w(∆, X), and it follows that

boundΓ0(2X) ≤ R(Γ0,∆)⇒ w(∆, X).

Since ∆ is arbitrary,

boundΓ0(2X) ≤
∧
{R(Γ0,∆)⇒ w(∆, X) | ∆ ∈ G} = w(Γ0,2X).

Now for the harder half; to show w(Γ0,2X) ≤ boundΓ0(2X) it is enough
to show that whenever T (2X ⊃ c) ∈ Γ0 then w(Γ0,2X) ≤ c. To show this,
suppose there is some propositional constant c such that T (2X ⊃ c) ∈ Γ0,
but w(Γ0,2X) 6≤ c — we derive a contradiction.

Since w(Γ0,2X) 6≤ c, there is some ui such that ui ≤ w(Γ0,2X), and
ui is minimal with ui 6≤ c. Since T (2X ⊃ c) ∈ Γ0, by Reversal Rule T ≤,
and maximal consistency of Γ0, F (ui ⊃ 2X) ∈ Γ0. Then by Modal Rule
F2, for some tj the set Γ#

0 (tj) ∪ {F ((ui ∧ tj) ⊃ X)} is consistent. Extend
it to a maximal consistent set ∆0. Then ∆0 ∈ G and by Proposition 6.5,
ui ∧ tj 6≤ bound∆0(X), so by the induction hypothesis, ui ∧ tj 6≤ w(∆0, X).

Subordinate Result tj ≤ R(Γ0,∆0).
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Proof of Subordinate Result
The argument is in two parts. First we show tj ≤

∧{boundΓ0(2Y ) ⇒
bound∆0 | all formulas Y }. So, let Y be an arbitrary formula; we show
tj ≤ boundΓ0(2Y )⇒ bound∆0(Y ), or equivalently, that tj ∧ boundΓ0(2Y ) ≤
bound∆0(Y ). Since T is a distributive lattice,

tj ∧ boundΓ0(2Y ) = tj ∧
∨{a | T (a ⊃ 2Y ) ∈ Γ0}

=
∨{(a ∧ tj) | T (a ⊃ 2Y ) ∈ Γ0}

Suppose T (a ⊃ 2Y ) ∈ Γ0. Then by construction, T ((a ∧ tj) ⊃ Y ) ∈ ∆0, so
a ∧ tj ≤ bound∆0(Y ). It follows that

tj ∧ boundΓ0(2Y ) ≤ boundΓ0(Y ).

For the second part of the Subordinate Result argument we show tj ≤∧{bound∆0(Z) ⇒ boundΓ0(♦Z) | all formulas Z}. Let Z be an arbitrary
formula; we show tj ≤ bound∆0(Z) ⇒ boundΓ0(♦Z), or equivalently, that
tj∧bound∆0(Z) ≤ boundΓ0(♦Z). To show this we argue that tj∧bound∆0(Z)
is a lower bound for {a | T (♦Z ⊃ a) ∈ Γ0}.

Suppose T (♦Z ⊃ a) ∈ Γ0. Then by construction, T (Z ⊃ (tj ⇒ a)) ∈
∆0, so bound∆0(Z) ≤ (tj ⇒ a). But then, tj ∧ bound∆0(Z) ≤ tj ∧ (tj ⇒ a) ≤
a, and this gives us what we need.

This ends the proof of the Subordinate Result.

Now that we have established tj ≤ R(Γ0,∆0) we return to the main
argument. By definition,

w(Γ0,2X) =
∧{R(Γ0,∆)⇒ w(∆, X) | ∆ ∈ G}

≤ R(Γ0,∆0)⇒ w(∆0, X)

Then
w(Γ0,2X) ∧R(Γ0,∆0) ≤ w(∆0, X).

But by the Subordinate Result, tj ≤ R(Γ0,∆0), and by our choice of ui,
ui ≤ w(Γ0,2X). But then,

ui ∧ tj ≤ w(∆0, X)

contradicting the fact that ui ∧ tj 6≤ w(∆0, X), established above.
This contradiction ends the argument that w(Γ0,2X) ≤ boundΓ0(2X)

and finishes the 2 case. The argument for the ♦ case is similar, but since it
is short we give it anyway.

The ♦ Case Suppose (1) is known for X; we show it for ♦X. Again let Γ0

be a fixed member of G.
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For an arbitrary ∆ ∈ G,

R(Γ0,∆) ≤ bound∆(X)⇒ boundΓ0(♦X).

Then, using the basic properties of⇒ and the part of the induction hypoth-
esis that says w(∆, X) ≤ bound∆(X), we have

R(Γ0,∆) ∧ w(∆, X) ≤ boundΓ0(♦X).

Since ∆ is arbitrary,

w(Γ0,♦X) =
∨
{R(Γ0,∆) ∧ w(∆, X) | ∆ ∈ G} ≤ boundΓ0(♦X).

For the other half, boundΓ0(♦X) ≤ w(Γ0,♦X), it is enough to show that
from T (c ⊃ ♦X) ∈ Γ0 and c 6≤ w(Γ0,♦X) we can derive a contradiction.
Under these assumptions, there must exist some ui ≥ w(Γ0,♦X) where ui
is maximal not above c. Then by Reversal Rule T ≥ and the maximal
consistency of Γ0, F (♦X ⊃ ui) ∈ Γ0. Now, using Rule F♦, for some tj ∈ T ,
Γ#

0 (tj)∪{F (X ⊃ (tj ⇒ ui))} is consistent. Extend it to a maximal consistent
set ∆0; so ∆0 ∈ G.

By the Subordinate Result (which still applies) tj ≤ R(Γ0,∆0). Now,

tj ∧ w(∆0, X) ≤ R(Γ0,∆0) ∧ w(∆0, X)
≤ ∨{R(Γ0,∆) ∧ w(∆, X) | ∆ ∈ G}
= w(Γ0,♦X)
≤ ui

so w(∆0, X) ≤ (tj ⇒ ui). By induction hypothesis, bound∆0 ≤ w(∆0, X), so

bound∆0(X) ≤ (tj ⇒ ui).

But by construction, F (X ⊃ (tj ⇒ ui)) ∈ ∆0, so by Proposition 6.5,
bound∆0(X) 6≤ (tj ⇒ ui), and we have the desired contradiction.

Now the proof of Theorem 9.1 is essentially done. If a set S is consistent,
extend it to a maximal consistent set Γ. Γ will be a world in a canoni-
cal model, and the inequalities (1) directly imply that S is satisfied at Γ.
Completeness now follows in the usual way.
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