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THE JOURNAL OF SYMBOLIC LoGIc 
Volume 49, Number 4, Dec. 1984 

LINEAR REASONING IN MODAL LOGIC 

MELVIN FITTING 

?1. Introduction. In [1] Craig introduced a proof procedure for first order 
classical logic called linear reasoning. In it, a proof of P D Q consists of a sequence of 
formulas, each of which implies the next, beginning with P and ending with Q. And 
one of the formulas in the sequence will be an interpolation formula for P D Q. 
Indeed, this was the first proof of the Craig interpolation theorem, some of whose 
important consequences were demonstrated in a companion paper [2]. In this 
paper we present systems of linear reasoning for several standard modal logics: K, 
T, K4, S4, D, D4, and GL. Similar systems can be constructed for several regular, 
nonnormal modal logics too, though we do not do so here. And just as in the 
classical case, interpolation theorems are easy consequences. Such theorems are well 
known for the logics considered here. There is a model theoretic argument in [6], an 
argument using Gentzen systems in [8], an argument using consistency properties in 
[4] and [5], and an argument using symmetric Gentzen systems in [5]. This paper 
presents what seems to be the first modal proof that follows Craig's original 
methods. We note that if the modal rules given here are dropped, a classical linear 
reasoning system results, which is related to, but not the same as those in [1] and 
[10]. 

Since the basic linear reasoning ideas are fully illustrated by the propositional 
case, we present that first, to keep the clutter down. Later we show how the 
techniques can generally be extended to encompass quantifiers. We do not follow 
[1] in making heavy use of prenex form, since it is not generally available in modal 
logics. Fortunately, it plays no essential role. 

We are not able to deal with all modal logics using linear reasoning techniques. 
The systems presented below are closely related to semantic tableau systems as 
presented in [5], so it should not be surprising that we provide linear reasoning 
systems for the same logics that have cut-free tableau systems. Thus we give no 
systems for propositional B or S5, for instance. Since linear proof procedures supply 
us with interpolants, we really should not expect things to be nice for those logics not 
having the interpolation property once quantifiers are added (see [3]). 

For a logic L that we consider here, we supply a proof procedure having the 
following characteristics. A proof of P D Q consists of a sequence of formulas: 
Pl,.. ., Pn R. Q1, ... v Qk, where 
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1364 MELVIN FITTING 

1) P = P1 andQ = Qk, 

2) each of P1, .. ., P'n are equivalent in L, 
3) each of Q1,. *, Qk are equivalent in L, 
4) P, D R is valid in L, and R follows from P, syntactically by simplification of 

conjunctions, 
5) R D Q1 is valid in L, and Q1 follows from R syntactically by elaboration of 

disjunctions, and 
6) R is an interpolant for P D Q, that is, in the propositional case the propositional 

variables of R are common to P and Q, in the first order case the predicate symbols 
and constants of R are common to P and Q, and P D R and R v Q are both valid in 
L. 

?2. Propositional background and notation. Although one can make do with a 
minimum set of propositional connectives, we prefer a rich set. Consequently, we 
assume the following basic syntax. Atomic formulas are the propositional variables 
Al, A2,,..., as well as 1 (falsehood constant) and T (truth-hood constant). Formulas 
are then built up in the usual way using A (and), v (or), D (implication), - 
(negation), [] (necessity) and > (possibility). 

Such a generous syntax requires a large number of rules of derivation in the linear 
reasoning system. These rules fall into a relatively small number of families, which 
can be presented succinctly using Smullyan's device of uniform notation [9], [10], 
which we have extended to the modal case [4], [5]. Nonatomic formulas are 
grouped into four classes: conjunctions (a-formulas), disjunctions (fl-formulas), 
necessitations (v-formulas) and possibles (7r-formulas). For each type, one or two 
components are specified; thus an a-formula has two components, a, and a2, while a 
v-formula has one component, vo. The classes, and the corresponding components, 
are specified in the following tables. 

aI al LX2 1 3 

XAY X Y X vY X Y 

-(X V Y) ~X Y -(X A Y)- ~X Y 

~(X ,DY) X -Y X,)Y I X Y 

x x x 
V Vo i to 

OJX X O>X X 

Note that in classical logic, for any a-formula, a is equivalent to a, A a2, and for 
any f-formula, f is equivalent to #1 v fl2. Likewise, in the usual modal logics, for 
any v-formula, v is equivalent to Evo, and for any i-formula, 7r is equivalent to 0K i0. 

Although it is not strictly essential, it is very convenient to have generalized 
conjunctions and disjunctions available. So, we extend the definition of formula by 
adding the following clause to the usual definition: 

If X1, X2,. .., X,, is a finite sequence of formulas, then A[X1,X2,... ,Xn] and 
V [X1, X2,... , X"] are formulas. 
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LINEAR REASONING IN MODAL LOGIC 1365 

We may think of A[XlX2,. . . XX] as the conjunction of X1,X2,. .., X, 
parenthesized according to some fixed convention. Similarly for V [X1, X2,... , Xn]. 
The details need not concern us. 

In order to minimize elementary syntactic manipulations we will be assuming 
things like associativity and commutativity of A and V as a matter of course. Thus, 
if X1, X2, ... , Xn and Y1, Y2,..., Yk are two sequences of formulas such that 
{X1, X2,. .., Xn } and { Y1, Y2,..., Yk} are equal sets, then we takeA[xlx2 . ... Xn] 
and A[y, Y2,..., Yk] as interchangable, and similarly for V. Also, to cover the 
extreme cases, we will take A[X]- VEX] X, and A ]- T and V[ ]-l. 

We will need the notion of a positive occurrence of subformula. Informally the 
idea is this. An occurrence of a subformula Y in X is a positive one if, when X is 
rewritten in standard ways to translate away instances of a, then the (rewritten) 
occurrence of Y will be within the scope of an even number of - instances. A more 
formal characterization follows. 

1) The only occurrence of X in the formula X is positive. 
2) If X has a positive occurrence in oa or 02 the corresponding occurrence of X in 

a is positive. 
3) If X has a positive occurrence in fl1 or fl2 the corresponding occurrence of X in 

fi is positive. 
4) If X has a positive occurrence in v0 the corresponding occurrence of X in v is 

positive. 
5) If X has a positive occurrence in n0 the corresponding occurrence of X in i is 

positive. 
6) If X has a positive occurrence in Yi the corresponding occurrence of X in 

A[ Y1,..., Y,..., in] is positive; similarly for VI Y1,..., Y,... Yn] 
Our linear reasoning systems are correct and complete with respect to appro- 

priate Kripke models. We do not introduce a notation for them, since we will not be 
needing it in this paper. In [5] the reader can find a presentation of Kripke models 
that makes use of the uniform notational scheme given above. 

The logics we will be considering here are quite standard and can be quickly 
characterized in terms of the accessibility relation of the corresponding Kripke 
model theory, as follows. (We use idealization to mean: for any world, there is some 
world accessible from it.) 

logic accessibility relation 

K no special conditions 
T reflexitivity 
K4 transitivity 
S4 reflexivity and transitivity 
D idealization 
D4 idealization and transitivity 
GL transitivity, irreflexivity 

and a finite model. 

?3. Linear reasoning for propositional K. In this section we present the rules of the 
system for propositional K, the weakest normal modal logic, and we give examples 
of proofs. 
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1366 MELVIN FITTING 

A linear reasoning derivation has four phases: 
Phase I: expansion. 
Phase II: conjunction simplification. 
Phase III: disjunction elaboration. 
Phase IV: contraction. 

All Phase I rule applications must precede any Phase II rule applications, and so on. 
In a proof that P v Q, an interpolant will be produced as the last formula of Phase II. 

General Rule. The following rule may be applied in any phase of a derivation. We 
state it first so that the formulation of the other rules can be simplified. 

Rule S. If X1, X2,... ,X, and Y1, Y2,..., Yk are two sequences of formulas, and 
{X1,X2,... .,Xn } and {Y1, Y2,..., Yk} are the same sets, then any occurrence 
of A[X1,X2,...,Xn] can be replaced by an occurrence of A[Yl, Y2,..., Yk], 
and any occurrence of V[X1,X2,...,Xn] can be replaced by an occurrence 
of VIY1, Y2.. , YJ 

Notation and conventions. In the statement of the rules below, X is any single 
formula, and S, S1, S2 are finite sequences of formulas. We writeS, X for the sequence 
consisting of the terms of S, followed by X; and similarly for S,, S2, and other 
combinations. Because of Rule S, A [S,, X, S2] can be replaced in a derivation by 
A [S,, S2, X], so the rules below generally assume the formulas we are concerned 
with occur at the ends of sequences. In giving examples of proofs we will often tacitly' 
assume Rule S, and will not generally state when it is being used. Finally, we use the 
following special notation. 

SW is the sequence of vo-formulas corresponding to v-formulas in the sequence S. 
Sb is the sequence of no-formulas corresponding to t-formulas in the sequence S. 
For example, suppose S is the sequence A, I B, - L C, K D, - K E, where A, B, C, 

D and E are atomic. Then S# is the sequence B, - E and Sb is the sequence - C, D. 
Now we give the primary rules of derivation. 
Phase I. 

'-V[] VEX] 

A[X] 
I-A I X 

II- 

I-AT A[ST] 

I-C 1l~'.X 

I-a A[S,a] 

I-fl ~~~~~~~~~A I5, cx] 

I, [AIfA[S I#] 
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LINEAR REASONING IN MODAL LOGIC 1367 

I-v A IS] 
AsA[S, DA[sfl] 

I-it A[S, n] 
Als, o A [soi]] 

Phase TI. 

II A[sx] 
A[M] 

provided A [s, x] occurs positively. 

Phase ITT. 

III ~~~~~~V IS] 
V[S,X] 

provided V [S] occurs positively. 

Phase IV. 

Iv-A[] A~x] 
X 

IV-v[ I VXI 

TV-yE] VX] 

IV-T T 

yIs, I] 
IV-VI V[S] 

IV-D T 
V[S'X5 .X] 

IV-: V[Sfl ll2] 
V [5, A3] 

IVYL~ AiVis al] V[SLoc211 
V[S5 a] 

IV-v VI[S, LIIV[Sv]] 
V is] 

IV-v VIS50V[Sb, vo]] 
V[S5 v] 

Say Q/R is an instance of one of the rules given above. We say a formula Yfollows 
from a formula X by this rule instance if Y is the result of replacing some occurrence 
of Q in X by an occurrence of R. In the case of Phase TT and Phase III rules, the 
occurrence of Q in X must be a positive one. 
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1368 MELVIN FITTING 

A derivation is a sequence of formulas in which each term (except the first) follows 
from the preceding term by one of the rules above, and in which all Phase I rule 
applications precede all Phase TI rule applications, which precede all Phase III rule 
applications, which precede all Phase IV rule applications. 

A proof of P D Q is a derivation of Q from P. Strictly speaking, only implications 
can be proved in this system, though we can agree to say we have a proof of X if 
T D X has a proof. 

EXAMPLES. A [] and T can each be derived from the other very simply, as follows. 

T 

A[T] '-AL ] 

and 

A[] 
AET] I-AT 
T IV-AL ] 

Similarly V[ ] and I are interderivable, as are A[X], VEX] and X. 
The following is a proof of EJ(P D Q), (LIP O LIQ); that is, a derivation of 

DP, OQ from D(Pv Q). 

M (PDQ) 

A[m(P DQ)] '-AL ] 
V[A[m(P, Q)]] I-V[ I 
V[A[w(P, Q), zA[P Q]]] I-V 

V[A[(P Q), LV[AH IP], A[Q]]]] I-: 

VHA[EPA[VAHP],A[Q]]]] I V[ IC mP, A ImV [A I P], A IQ]] IIII 

VI-wP,A[IVI-P,A[Q]]]] IV-A[ ] 
VH-wP,A[ZVH-P,Q]]] IV-A[ ] 
V[HwP wVHPQ]] IV-AL ] 
V IElP, EQ] IV-v 

V[wPzDQ] IV-: 

DPzDQ IV-VE] 
Finally, here is a proof of (LP A K Q) 3 2 (Q v R). 

EJP A OQ 

AIEIP A OQ] '-AL ] 
V[A[P A OQ]] I-VI] 
V[A[OmPcQ]] T-x 

V [rA I. . -P 0 A [P Q1 Inn I I _ -V 
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LINEAR REASONING IN MODAL LOGIC 1369 

V[AK0V[A[PQ]]]] II 
() V[A[c0V[A[Q]]]] II 

V[A[c0V[A[Q],R]]] III 
V[K(Q v R),AK0V[A[Q],R]]] III 
V[K(Q v R),AK0V[QR]]] IV-A I] 
V[O(Q V R) OV[QR]] Iv-A[ ] 
V[O(Q v R), OV[Q v R]] IV-3 
V [ O(Q V R)] IV-X 
<O(Q vR) IV-V[] 

The formula (*) at the end of Phase II is an interpolant. Using the simplifications 

A[X]- X and V [X] = X, the formula in question turns into O Q. 
REMARKS. Once correctness of this system has been established, it will be 

immediate that the formula at the end of Phase II of a derivation must be an 
interpolant. For, each line of a derivation will be shown to imply the next; hence any 
intermediate line is implied by the first, and implies the last. Further, an inspection 
shows that Phase I rules either do not alter the set of propositional variables 
present, or else reduce it (in the case of rule I-C), while Phase IV rules either leave 
the set of propositional variables unchanged, or increase it (IV-D). And Phase II 
rules can eliminate some propositional variables but cannot add any, while 
Phase III rules can introduce some, but cannot remove any. Consequently, any 
propositional variable present at the end of Phase II of a derivation, before 
Phase III starts, must be present in all earlier lines, and in all later ones, and hence 
must be present in the first and last lines of the derivation. 

We note that the completeness proof sketched in the next section actually 
establishes the stronger result that the system remains complete even if all rule 
applications are restricted to the replacement of positive subformula occurrences, 
not just for Phase II and Phase III rules. Also, the formula X in rules I-C and IV-D 
can be restricted to be atomic. 

?4. Correctness and completeness. We sketch proofs of the correctness (sound- 
ness) and completeness of the system of linear reasoning presented in ?3, with 
respect to Kripke K-models. Correctness depends on the following results. 

Semireplacement of implication: Let L be a normal modal logic. Suppose the 
formula Y results from the replacement of some positive occurrences of P in X by 
occurrences of Q. Then if P D Q is L-valid, so is X D Y. 

Replacement of equivalence: Again let L be a normal modal logic. Suppose the 
formula Y results from the replacement of some (not necessarily positive) 
occurrences of P in X by Q. Then if P _ Q is L-valid, so is X _ Y. (Here A _ B may 
be thought of as abbreviating (A = B) A (B D A).) 

For a sketch of the proofs in an axiomatic setting see [5, Chapter 4, ?4]. 
It is quite straightforward to check that, for any instance of a Phase I or Phase IV 

rule, the premise formula (above the line) and the conclusion formula (below the line) 
are equivalent in K. The same is the case with Rule S. Also trivially, for Phase II and 
Phase III rule instances, the premise implies the conclusion in K. It then follows 
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1370 MELVIN FITTING 

from the two results cited above that in any derivation in the system of ?3, each line 
must imply the next in K. Indeed, except where Phase II or Phase III rules are 
involved, each line will be equivalent to the next. 

It follows that if P D Q is provable then P D Q must be K-valid, so the system is 
correct. 

For showing completeness, rather than constructing a proof from the beginning, 
we make use of the model existence theorem for K, which we state but do not prove 
here (see [5, Chapter 2, ?5]). 

It is most convenient to bring in Smullyan's device of signed formulas [9], [10]. If 
one does not, the following problem occurs. Suppose, for instance, we have the 
formula (X v Y), and we need to define its "conjugate". Should this be (X v Y), 
or (X v Y)? Although they are logically equivalent, structurally one is an a- 
formula while the other is a fl-formula. The use of signed formulas avoids 
this issue, though it does require us to define signed versions of several items 
already introduced earlier in unsigned form. 

Let T and F be two new symbols. By a signed formula we mean TX or FX, where 
X is a formula. Signed nonatomic formulas are grouped into categories, with 
corresponding notions of components, in the following tables. 

a a1 a2 P i f2 

TX A Y TX TY 7X v Y TX TY 

FXv Y FX FY FX A Y FX FY 

FX D Y TX FY TXD Y FX TY 

F X TX TX T X FX FX 

V VO Ro 

TDX TX T<OX TX 

FOX FX FO)X FX 

If S is a set of signed formulas, by S# we mean {vo I v E S}. Again, if S is a set of 
signed formulas, we say S is K-satisfiable if there is some Kripke K-model, and some 
possible world F of it such that, at F, all the formulas signed with T in S are true, and 
all the formulas signed with F in S are false. 

Let C be a collection of sets of formulas. C is a K-consistency property if, for each 
set S E C: 

0) S does not contain both TA and FA for A atomic; S does not contain F Tor TI; 
1) C e S =S U {1, a2} e C; 
2)flSS u {11} eCorS u {122} C;and 
3) c E S =S U {ol} e C. 
The model existence theorem for K states: if C is a K-consistency property, then 

any member of C is K-satisfiable. 
If Z is a signed formula, by the conjugate of Z, denoted Z, we mean FX if 

Z = TX, and TX if Z = FX. For a set S of signed formulas, by S we mean 
{Z Z e S}. Finally we extend A and V to finite sets of signed formulas in 
the expected way. Say S = {TX1,... .,TX,,FY1,... .,FYk}. Then As is the formula 

AE[X1A . . . A X 
Y1 . . . Yk], and similarly for Vs. 
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LINEAR REASONING IN MODAL LOGIC 1371 

Now we are ready to prove the completeness of the linear reasoning system for K. 
Let S be a finite set of signed formulas. By a partition of S we mean two disjoint sets 
Si and S2 such that S = Si u S2. Now, let us call a finite set S of signed formulas 
consistent provided, for some partition S1, S2 of S, there is no derivation of VT2from 
AS1. Let C be the collection of all such consistent sets. We claim C is a K- 
consistency property. There are several cases that must be checked to verify this 
claim. We consider one in detail, involving a fl-signed formula. 

Suppose neither S u {fl } nor S ul {fl2} is consistent; we show S u {fl} is also not 
consistent. To do this we must consider every partition of S u {fl}, and this leads to 
two subcases depending on which part of the partition contains the fl-formula. 

Subease 1. Si u 1{f}, S2 is a partition of S u {f3}. We show there is a derivation of 
VY2from AS, u {fl}. Note that S1 U {fIA}, S2 is a partition of S u { flj, for i = 1, 2, 
so our assumption of inconsistency for S u {fl1} and S u {fl2} says there are 
derivations of VS2 from each of ASi u {Ifl} and ASi U {fl2}. Then we also have 
the following derivation. 

As, U 1#1 
WAS U J{fl~}Asi {fl2}1 I-fl 

} using 
assumed 
derivations 

V[V&2, V921 

V[VS12 Rule S 
Vs - 2 IV-V[ ] 

Subease 2. Si, S2 U {f} is a partition. We show there is a derivation of V2 '-{ 
from As1. This is treated similarly to Subcase 1. We note that S2 u {fl} =_ 2 U {,B}. 
Further, the conjugate of a fl-formula is always an a-formula, and flA = A3i (i = 1, 2). 
Then we have the following derivation. 

As, 
A[AS1] I-AE I 
A[AS1,As1i Rule S 

using 
assumed 
derivations 

AEVS2 U {fll}, VS2 U{l2}1 

VT2 U {,B} IV-o 
Since the two subcases cover all partitions, S u {,B} is not consistent. This 

concludes the ,B-case. The remaining cases are similar, and are left to the reader. 
Thus C is a K-consistency property. This gives completeness by the following 

argument. Suppose P D Q is K-valid (true at all worlds of all Kripke K-models). 
Suppose also that P = Q has no proof in our system. Then there is no derivation of 
Q from P and thus, invoking rules I-AE [ and IV-VE [, there is no derivation of 
V[Q] from A[P]. Then the set {TP, FQ} must be consistent because {TP}, {FQ} is 
a partition of it and there is no derivation of V{FQ} from A{TP}. By the model 
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1372 MELVIN FITTING 

existence theorem, {TP, FQ} must be K-satisfiable, which contradicts the supposed 
K-validity of P D Q. 

?5. Other modal logics. The linear reasoning system of ?3 was for K, the weakest 
normal modal logic. Simple modifications to it provide us with systems suitable for 
several other normal propositional modal logics. We describe them briefly. 

For K4, change the definitions of # and b as follows. S# is the sequence consisting 
of 1) all v-formulas in the sequence S, together with 2) all vo-formulas corresponding 
to v-formulas in S. SI is the sequence consisting of 1) all 7t-formulas in S, together 
with 2) all n0-formulas corresponding to 7t-formulas in S. These are the only changes 
to the K-system that are needed to get K4. 

For T, add to the K system the following two rules. 

I-T A s, v] 
A[svvol 

IV- T VEs, 7Ad ro]I V[SZ] 
For S4, add the two extra T-rules to the system for K4. Alternatively, one can use 

the T-system, changing the # and b definitions as follows. S# is the sequence of v- 
formulas in S, and SI is the sequence of 7t-formulas in S. 

For D, add to the K-system the following two rules. 

I-D A[SI 
A[S c0AsU 

IV-D V [S. EDVSbI 

For D4, add the two extra D-rules to the system for K4. 
The correctness of these systems is straightforward, while completeness can be 

established, as in ?4, by using the appropriate model existence theorem [5, 
Chapter 2, ?5]. 

Finally we mention modifications suitable for GL, the modal logic of provability 
in Peano arithmetic. For this it is convenient to define an unsigned conjugation, just 
for v- and 7t-formulas, as follows. 

DX ElX O X O X 

OX O X ElX X 

Now, for GL, use the K4-system given above, but replace the rules 1-7t and IV-v by 
the following. 

I-GL A[S i, 

IV-GL V[S, Vi 
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LINEAR REASONING IN MODAL LOGIC 1373 

Once again, completeness is most easily shown using a model existence 
theorem [5, Chapter 5, ?17]. 

?6. First order logics. First order version of the logics we have been considering 
can be specified axiomatically or semantically. Both versions are fairly standard. 
Axiomatically, one adds the "usual" modal axioms and rules for the particular logic 
to a "standard" axiomatization of classical first order logic. Semantically one uses 
Kripke models with a classical first order structure (appropriate for the language) 
associated with each possible world, subject to the monotonicity condition, that any 
member of the domain of the structure associated with a world is also in the do- 
main of the structure associated with any accessible world. See [5] for proper 
formulations that make use of the system of uniform notation adopted in the 
present paper. Correctness and completeness results are well known for K, T, K4, 
S4, D and D4, and all trace back to [7]. 

We omitted GL from the list of logics above because we do not know of a good 
semantic characterization of a first order version of it. 

The Barcan formula states (Vx) DA(x) v D(Vx)A(x). Adding it to an axiomatic 
formulation of one of the present logics is equivalent to imposing the semantic 
constant domain condition: that the classical structures associated with the various 
possible worlds all must have the same domains. It is known [3] that such logics do 
not have the interpolation property, and we do not provide linear reasoning systems 
for them. 

In this section we do provide linear reasoning systems for quantified K, T, K4, S4, 
D and D4, without the Barcan formula, and we sketch proofs of correctness and 
completeness. The interpolation theorem for these logics then follows easily. 

We note that by adding the quantifier rules of this section to the propositional GL 
rules given earlier, we do get a first order GL linear reasoning system. We do not 
know if it is equivalent to an axiomatically formulated first order GL. Without an 
appropriate model theory available, any equivalence proof would be syntactic in 
nature. It seems like an interesting problem. 

Just as we were generous in our choice of propositional connectives, here we take 
both V (universal) and 3 (existential) quantifiers as basic. We assume formulas are 
built up in the usual way. We assume an infinite list of constant symbols is available. 
We refer to constant symbols as parameters. We use the term statement to mean 
formula without free variables (though parameters may be present). All lines of 
proofs will be statements. 

Still following [9] and [10] we use uniform notation for quantifiers. The y- 
formulas (universals), the 3-formulas existentialls, and their instances are specified 
in the tables below. In stating them we use the following notational convention. A(x) 
represents a formula with some (possibly none) free occurrences of the variable x, 
and A(t) represents the result of replacing, in A, all free occurrences of x by 
occurrences of t (where t is a parameter or a variable). 

y A(t) 3 3( At) 
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Generally, not every instance is appropriate. Since t can be a variable here, as well 
as a parameter as in [10], we have to care about "accidental" quantification. 

DEFINITION. Let t be a variable or parameter not occurring in y. If no occurrence 
of t in y(t) is within the scope of (Vx) or (3x), we say y(x) is an allowed instance of y. 
Similarly for allowed instances of 3-formulas. 

If y(x) is an allowed instance of a y-formula, (Vx)y(x) and y are equivalent. 
Similarly, if 3(x) is an allowed instance of a 3-formula, (3x)b(x) and 3 are equivalent. 

Now, the quantifier rules are these, where S is any finite sequence of formulas. 
Phase I. 

I-Y A [s, ] 
AEs, Y, Y(t)] 

1-3 AEs, 3] 
(3x)A[S, ,3(x)] 

I-VAC a vacuous quantifier can be added. 

Phase IV. 

IV-3 yEs, 3,36(t)] 
V ES, 3] 

IV-Y (Vx)V[S, Y, Y(t)] 
VEs, y] 

IV-VAC a vacuous quantifier can be dropped. 

There are certain restrictions on these rules. First, in 1-3, the 6(x) must be an 
allowed instance of 3, and the variable x must not occur free in S or b. [Free variables 
are possible because these rules state what replacements are allowed within 
statements; the "context" in which the replacement takes place supplies the binding 
quantifiers.] Similarly in IV-y, y(x) must be an allowed instance of y, and x must not 
occur free in S or y. Second, in I-y and IV-3, the rule can only be applied to 
statements to yield statements. This means the "t" displayed must be either a 
parameter, or a variable that is within the scope of a quantifier. And further, if t is a 
variable, the instance must be an allowed one. Finally, in applying the Phase III rule 
stated in ?3, the result must be a statement-that is, any disjuncts added by this rule 
must be in contexts that quantify their free variables. 

We present an example of a derivation using these rules. The particular example 
chosen does not involve modal features; it was meant to illustrate only the quantifier 
rules. In it, R is a 2-place relation symbol, and we give a linear proof of 

(3x)(Vy)R(x, y) A (Vy)(3x)R(x, y). 

(3x)(V1y)R(x, y) 

A[(3x)(Vy)R(x, y)] I-AE I 

(3x)A[(3x)(Vy)R(x, y), (Vy)R(x, y)] 1-6 

This content downloaded from 47.18.24.249 on Wed, 27 Aug 2014 14:25:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


LINEAR REASONING IN MODAL LOGIC 1375 

(Vy)(3x)A[(3x)(Vy)R(x, y), (Vy)R(x, y), R(x, y)] '-V 
(Vy)(3x)VEAE(3x)(Vy)R(x, y), (Vy)R(x, y), R(x, y)]] I-VE I 
(Vy)(3x)V[A[R(x, y)]] II 
(Vy)(3x)V[(Vy)(3x)R(x, y), (3x)R(x, A A[R(x, y)]] III 

(Vy)(3x)V[(Vy)(3x)R(x, y), (3x)R(x, y), R(x, y)] IV-A[ I 
(Vy)(3x)VE(Vy)(3x)R(x, y), (3x)R(x, y)] IV-6 

(VY)VE(Vy)(3x)R(x, Y), (3x)R(x, y)] IV-VAC 

VE(Vy)(3x)R(x, Y)] IV-7 
(Vy)(3x)R(x, y) IV-VE I 

The theorem on replacement of equivalences (stated in ?4) has a first order analog 
that says that if the universal closure of P Q is L-valid, so is the universal closure of 
X =_ Y. where Y is the result of replacing some occurrences of P in X by Q (subject to 
the usual conditions that such replacement turns a statement into a statement, and 
no free variables get bound that should not be). This result holds for all the logics we 
are considering (including an axiomatic version of GL). Now, in fact, if P/Q is an 
instance of any of our six quantifier rules, the universal closure of P _ Q is L-valid 
(indeed, classically valid). Then correctness of the quantified linear reasoning system 
follows by the same argument as in ?4. 

To show completeness we can use first order versions of consistency properties, 
and the model existence theorem. These are available for K, T, K4, S4, D and D4, 
in their quantified versions. See [5, Chapter 7, ?8] for a statement and proof. With 
this machinery available, completeness of the quantified linear reasoning systems 
follows by exactly the same argument that worked in ?4 in the propositional case. 

We note again that we have not established completeness of a quantified GL 
system-we have no appropriate model existence theorem to use. 

Interpolation theorems are again a byproduct, but the argument is a little more 
complicated than it was in the propositional case. Just as we argued in ?3, the 
statement at the end of Phase II of a derivation will be implied by the first line, and 
will imply the last. Also any predicate symbols present in such a statement must 
occur in all earlier and all later lines, and hence in the first and last lines. This is 
established by the same argument that worked for propositional variables earlier. 
Thus we immediately have a "weak" interpolation lemma for first order versions of 
our logics, that takes predicate symbols but not parameters into account. There is a 
problem with parameters, however. Rule I-y can introduce a parameter, and rule 
IV-3 can eliminate one, so it is possible for the statement at the end of Phase II of a 
derivation to contain parameters not present in the first or last lines. This requires a 
little extra work. 

PROPOSITION. If X = Y has a proof (in one of the first order linear reasoning 
systems we are considering), then it has a proof in which all parameters involved occur 
in either X or Y. 

PROOF. Suppose X D Y has a proof in which the parameter c appears, while c 
does not occur in either X or Y. Then c was introduced by either an application of I- 
y or in Phase III, and c was eliminated by an application of IV-6 or in Phase II. Say 
that I-y and IV-6 are the rules involved; the other two are treated similarly. 
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Then we have a derivation of Y from X in which in the Phase I part there are two 
successive lines of the form 

* A[s,y. 
... A[S, Y, (c)] ... 

where c does not occur before these lines, and in the Phase IV part there are two 
successive lines of the form 

..V ES' 6,6()] ... 

..V Es', 61.. 

where c does not occur after these lines. 
Rewrite the derivation as follows. Choose a variable x that was not used in the 

derivation at all. Replace the first two lines displayed above by the three lines 

* A[s,yA. 
(vx).. A[S, ]... 
(8x) AES, Y, 7(x)]. 

(justified now by I-VAC and I-y). Replace the last two lines displayed by 

(8x) ... V[S', 3,3(x)] * 

(vx) * *V[S', ]" ... 

..V[s', a] 

(justified by IV-6 and IV-VAC). And for all intermediate lines, replace every 
occurrence of c by an occurrence of x, and prefix the quantifier (Vx). 

It is straightforward to check that the resulting sequence of statements is still a 
derivation, and one in which c does not occur. 

INTERPOLATION THEOREM. Let L be one of the first order logics K, T, K4, S4, D or 
D4. If X D Y is L-valid then there is a statement Z (an interpolant) such that X D Z 
and Z D Y are both L-valid, and all predicate symbols and parameters of Z are 
common to X and Y. 

PROOF. Say X contains the parameters al,,.. ., an which do not occur in Y, while 
Y contains the parameters b1,... ., bk which do not occur in X. We write 
X(a1, .. ., a") D Y(b1,. . ., bk) to indicate this. Let x1, , x, Y1, k be distinct 
variables that do not occur in X or Y. If X D Y is L-valid, so is 

(3x1) ..(3x.)X(x1,...,x.) z (VYJ .. (VYk) Y(Y1, - , YJ) 

Since this is L-valid, by completeness and the proposition above, it has a linear proof 
in which all parameters that occur also occur in one of (3x1) ... (3x")X(x1,.. ., x") or 
in (VY1)... (VYk) Y(Y1, ., Yk) In this case it means such parameters must occur in 
both statements. Now it is easy to check that the statement occurring at the end of 
Phase II in such a proof must be an interpolant for 

(3xa) .e(3Xo)X(X1, r axa) -b(VY.b ) (VY Y(Y1, , 

and hence for X(al, . .., an) vD Y(bl, . .., bk). 
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?7. Heuristic remarks. We conclude with some remarks and comments. There are 
two issues we consider: why our linear reasoning rules do not give constant domain 
models, and what should be the analog of cut elimination in Gentzen systems. There 
are no proofs in this section, only vague suggestions that may help motivate future 
work. 

The quantifier rules of the previous section are for modal logics whose Kripke 
models satisfy the monotonicity condition, but need not satisfy the constant domain 
condition. Where, in the rules themselves, can this distinction be localized? There is 
an essential difference between rules I-y and 1-6 (and likewise between IV-6 and 
IV-y, but one pair of rules is enough to talk about). Rule I-y allows replacement of 

A[S, y] by A[s y, Y(x)] (where x is a variable that meets specified conditions). In 
such a replacement, the variable x must be within the scope of a quantifier, but that 
quantifier could be considerably "further out" in the statement. In particular, y(x) 
could be within the scope of modal operators that are, themselves, within the scope 
of the quantifier binding x. On the other hand, rule 1-3 allows the replacement of 

A[s, 6] by (3x) A s, 6, 6(x)]. Here there can be no modal operators between 6(x) 
and its binding quantifier. This difference in rules is the key issue. 

Suppose we think of a statement X as a partial description of a Kripke model. 
Within X a subformula beginning with a modal operator indicates the passage to 
an alternate world. We can think of quantifiers as ranging over possibly different 
domains, depending on what modal operators they are within the scope of. Now, the 
fact that we can replace As, y] by As, y, Y(x)] where x can be bound by a 
quantifier "further out" says we can think of this y as including in its quantifier range 
things that existed at "earlier" worlds, worlds to which the present one is an 
alternate. The range of what are essentially universal quantifiers is cumulative: if we 
go further inside a formula by passing through a modal operator, we still can include 
in the quantifier range the "things" we had on the outside. 

On the other hand, rule 1-3 requires the binding quantifier "instantiating" the 6 to 
be within the same modal operators that 3 itself is. That is, if something exists at a 
certain world, we cannot conclude it existed at any earlier one, something which 
would correspond to having the binding existential quantifier for 3(x) outside one or 
more modal operators covering 3(x). 

Thus the form of the I-y rule suggests that models will obey the monotonicity 
condition, but the form of the 1-3 rule suggests that they will not be constant 
domain. 

We proved completeness with an appeal to the model existence theorem; the 
details of a model construction were not seen here. Were one to attempt a direct 
completeness proof, the ideas suggested above presumably could be used as a guide. 
The lines of an attempted proof of P D Q could be thought of as partial descriptions 
of a model in the way suggested. If the attempted proof "tries everything", enough 
material should be generated to construct a counter-model. 

The second issue we wish to raise is the possibility of a syntactic completeness 
argument. That is, it should be possible to give a proof-theoretic argument that 
establishes the equivalence of one of our linear systems and the corresponding 
axiomatic version. As usual, the chief difficulty is modus ponens. One needs an 
analog of cut elimination for linear systems. Specifically, one needs the following. 
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Suppose we have a linear derivation of Q from P, in the system for logic L, and we 
also have a linear derivation of R from Q. If we simply write down the steps of the 
first derivation and follow them by those of the second, we obtain what we might call 
a pseudo-derivation of R from P. Each line still follows from the previous one in a 
reasonable sense. But it is no longer a proper derivation, because we have lost the 
feature that all Phase I rule applications must preceed all Phase II rule applications, 
etc. The completeness proof for L says there must be a proper derivation of R from 
P. The question is, can a proper derivation of R from P be constructed by purely 
syntactic means, starting with a pseudo-derivation of R from P? This has obvious 
similarities with the issue of normalization in natural deduction. 

If there is a syntactic means of converting pseudo-derivations into derivations 
that works for the first order linear GL system, it would amount to a proof that such 
a system is equivalent to an axiomatically formulated first order GL. 

Based on the discussion earlier in this section, a plausible attempt at producing 
constant domain linear reasoning systems would be to replace the 1-3 and IV-y 
rules by ones allowing the binding quantifier to be outside the scope of some modal 
operators. Presumably such a system would not be complete. If a syntactic 
completeness argument is developed, as suggested in the previous paragraph, it 
would be interesting to see where it breaks down for the extended versions of I-6 
and IV-y. 

REFERENCES 

[1] W. CRAIG, Linear reasoning. A new form of the Herbrand-Gentzen theorem, this JOURNAL vol. 22 
(1957), pp. 250-268 

[2] , Three uses of the Herbrand-Gentzen theorem in relating model theory to proof theory, this 
JOURNAL, vol. 22 (1957), pp. 269-285. 

[3] K. FINE, Failure of the interpolation lemma in quantified model logic, this JOURNAL, vol. 44 (1979), 

pp. 201-206. 
[4] M. FITTING, Model existence theoremsfor modal and intuitionistic logics, this JOURNAL, vol. 38 

(1973), pp. 613-627. 

[5] , Proof methods for modal and intuitionistic logics, Reidel, Dordrecht, 1983. 
[6] D. GABBAY, Craig's interpolation theorem for modal logics, Conference in Mathematical Logic- 

London '70, Lecture Notes in Mathematics, vol. 255, Springer-Verlag, Berlin, 1972, pp. 111-127. 
[7] S. KRIPKE, Semantical considerations for modal logics, Proceedings of a Colloquium on modal and 

many-valued logics, Helsinki, 23-26 August, 1962 Acta Philosophica Fennica, 1963, pp. 83-94. 
[8] D. LEIVANT, On the proof theory of the modal logic for arithmetic provability, this JOURNAL, vol. 46 

(1981), pp. 531-538. 
[9] R. SMULLYAN, A unifying principle in quantification theory, Proceedings of the National Academy 

of Sciences of the United States of America, vol. 49 (1963), pp. 828-832. 
[10] - , First-order logic, Springer-Verlag, Berlin, 1968. 

HERBERT H. LEHMAN COLLEGE 

BRONX, NEW YORK 10468 

This content downloaded from 47.18.24.249 on Wed, 27 Aug 2014 14:25:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 1363
	p. 1364
	p. 1365
	p. 1366
	p. 1367
	p. 1368
	p. 1369
	p. 1370
	p. 1371
	p. 1372
	p. 1373
	p. 1374
	p. 1375
	p. 1376
	p. 1377
	p. 1378

	Issue Table of Contents
	Journal of Symbolic Logic, Vol. 49, No. 4, Dec., 1984
	Volume Information [pp.  i - vii]
	Front Matter
	Simplified Morasses with Linear Limits [pp.  1001 - 1021]
	Diamonds, Uniformization [pp.  1022 - 1033]
	More on Proper Forcing [pp.  1034 - 1038]
	The Strength of Nonstandard Methods in Arithmetic [pp.  1039 - 1058]
	The Undecidability of Entailment and Relevant Implication [pp.  1059 - 1073]
	Typical Ambiguity and the Axiom of Choice [pp.  1074 - 1078]
	Functors and Ordinal Notations. II: A Functorial Construction of the Bachmann Hierarchy [pp.  1079 - 1114]
	The Model Theory of Finitely Generated Finite-by-Abelian Groups [pp.  1115 - 1124]
	The Universal Complementation Property [pp.  1125 - 1136]
	Decidable Subspaces and Recursively Enumerable Subspaces [pp.  1137 - 1145]
	Bases of Supermaximal Subspaces and Steinitz Systems. I. [pp.  1146 - 1159]
	A Hierarchy of Families of Recursively Enumerable Degrees [pp.  1160 - 1170]
	The Uniqueness of Envelopes in ℵ<sub>0</sub>-Categorical, ℵ<sub>0</sub>-Stable Structures [pp.  1171 - 1184]
	Forcing the Failure of Ch by Adding a Real [pp.  1185 - 1189]
	Definable Structures in the Lattice of Recursively Enumerable Sets [pp.  1190 - 1197]
	The Consistency Strength of the Free-Subset Property for ω<sub>ω</sub> [pp.  1198 - 1204]
	Pseudo-Jump Operators. II: Transfinite Iterations, Hierarchies and Minimal Covers [pp.  1205 - 1236]
	The Unsolvability of the Gödel Class with Identity [pp.  1237 - 1252]
	A Decidable Subclass of the Minimal Gödel Class with Identity [pp.  1253 - 1261]
	A Normal Form Theorem for First Order Formulas and Its Application to Gaifman's Splitting Theorem [pp.  1262 - 1267]
	On the Ultrafilters and Ultrapowers of Strong Partition Cardinals [pp.  1268 - 1272]
	On ∑<sup>1</sup><sub>1</sub> Equivalence Relations with Borel Classes of Bounded Rank [pp.  1273 - 1283]
	A Natural Extension of Natural Deduction [pp.  1284 - 1300]
	Finite Level Borel Games and a Problem Concerning the Jump Hierarchy [pp.  1301 - 1318]
	The Hereditary Partial Effective Functionals and Recursion Theory in Higher Types [pp.  1319 - 1332]
	Decidable Properties of Finite Sets of Equations in Trivial Languages [pp.  1333 - 1338]
	How to Glue Analysis Models [pp.  1339 - 1349]
	Closed Sets and Chain Conditions in Stable Theories [pp.  1350 - 1362]
	Linear Reasoning in Modal Logic [pp.  1363 - 1378]
	Categoricity and Ranks [pp.  1379 - 1392]
	Well-Behaved Modal Logics [pp.  1393 - 1402]
	Reviews
	untitled [pp.  1403 - 1406]
	untitled [pp.  1406 - 1407]
	untitled [pp.  1407 - 1408]
	untitled [pp.  1408 - 1409]
	untitled [pp.  1409 - 1410]
	untitled [pp.  1411 - 1413]
	untitled [pp.  1413 - 1415]
	untitled [pp.  1415 - 1417]
	untitled [pp.  1417 - 1419]
	untitled [pp.  1419 - 1420]
	untitled [pp.  1420 - 1421]
	untitled [p.  1421]
	untitled [p.  1422]
	untitled [pp.  1422 - 1423]
	untitled [pp.  1423 - 1424]
	untitled [p.  1425]

	Meeting of the Association for Symbolic Logic: Perth, 1983 [pp.  1426 - 1429]
	Meeting of the Assocaition for Symbolic Logic: Caracas, Venezuela, 1983. [pp.  1430 - 1440]
	Annual Meeting of the Association for Symbolic Logic: Boston 1983 [pp.  1441 - 1449]
	Association for Symbolic Logic [pp.  1450 - 1482]
	Notices [pp.  1483 - 1485]
	Errata [p.  viii]
	Back Matter



