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Abstract

A sequent calculus of a new sort is extracted from the Prolog program
leanTAP. This calculus is sound and complete, even though it lacks almost
all structural rules. Thinking of leanTAP as a sequent calculus provides a
new perspective on it and, in some ways, makes it easier to understand.
It is also easier to verify correctness and completeness of the Prolog im-
plementation. In addition, it suggests extensions to other logics, some of
which are considered here.

1 Introduction

In recent papers [1, 2], Beckert and Posegga present a remarkable and elegant
first-order theorem prover, which they call leanTAP. It is small, consisting in
its entirety of five Prolog clauses. It makes essential use of Prolog’s search
mechanism—if the algorithm were to be written in a different language, one
would need to emulate at least a part of Prolog. It is because of the close fit
with Prolog that the program can be as small as it is, and it is as efficient as the
Prolog in which it is implemented allows. Finally, because of the small size of
the program, Beckert and Posegga are able to sketch a proof of soundness and
completeness for it.

In trying to understand leanTAP better, and to simplify the proof of its
completeness, I tried formulating the underlying algorithm in a more abstract
fashion. Much to my surprise, I found that it could readily be thought of as
a sequent calculus, of a kind I had not seen before. Once formulated this way,
natural modifications in the presentation suggested themselves. The result is a
sequent calculus for classical logic that is of theoretical interest in its own right.
In particular, almost all structural rules are missing, though it is still a system
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for classical logic and not for one of the substructural logics. Moreover, it is a
sequent calculus whose implementation in Prolog is relatively obvious, and so
soundness and completeness of the resulting implementation essentially reduces
to soundness and completeness of the sequent calculus itself, and this can be
proved at a more abstract level. Finally, once seen this way, extensions to other
logics suggest themselves—we give a few modal versions here.

I want to emphasize that the purpose of this paper is not to present an im-
proved version of leanTAP. That hardly seems possible. Rather the purpose is to
gain insights into the operation of leanTAP by taking a different, more abstract,
way of looking at it. That versions for modal logics were then formulated so
readily suggests that such an approach can be fruitful. Nonetheless, this is per-
haps the first time that a sequent calculus originated as a computer program,
rather than the other way around.

2 Propositional leanTAP
The Beckert and Posegga program is a theorem prover for first-order logic.
All the essential points we wish to consider can already be addressed at the
propositional level and so, in the interests of simplicity, we ignore issues of
quantification. In particular, this allows us to avoid Skolemization efficiency
concerns, which are more subtle for modal logics than for classical logic. From
a programming point of view, confining things to the propositional case leads
us to modify leanTAP by dropping two arguments from the main predicate,
simplifying one clause, and deleting another. The resulting program is as follows.

prove((A,B),UnExp,Lits) :- !,
prove(A,[B|UnExp],Lits).

prove((A;B),UnExp,Lits) :- !,
prove(A,UnExp,Lits),
prove(B,UnExp,Lits).

prove(Lit,_,[L|Lits]) :-
(Lit = -L,!) ; (-Lit = L,!) ; prove(Lit,[],Lits).

prove(Lit,[Next|UnExp],Lits) :-
prove(Next,UnExp,[Lit|Lits]).

Beckert and Posegga assume formulas have been preprocessed into negation
normal form. They use “−” for negation, “,” for conjunction, and “;” for
disjunction. The theorem-prover essentially runs through the branches of a
classical tableau from left to right (as conventionally presented), except that
the left-right spatial ordering is replaced by a temporal one invoking Prolog’s
search mechanism. The three arguments of prove(Fml,UnExp,Lits) (Beckert
and Posegga actually had five arguments, because they considered the first-order
case) have the following operational roles. Fml is the formula currently being
expanded (on a given branch), UnExp is the list of formulas on the branch that
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have not yet been considered, and Lits is the list of literals thus far discovered
to be on the branch. The first clause says: when considering a conjunction,
expand the first component, and add the second to the list of formulas to be
considered later—that is, if a conjunction is present on a branch, add expanded
versions of both components, and do so by considering the first component,
while reserving the second for later consideration. The second clause says a
dual thing about disjunction—there is a split into two cases. The next two
clauses have to do with branch closure. (Note that according to Prolog’s way
of considering clauses, we cannot get to either of the last two clauses unless Fml
is a literal.) Clause three says that if the formula under consideration directly
contradicts one of the literals we have already seen, the branch is closed (note
that there is a recursion through the literal list). Otherwise, clause four says we
should add the literal under current consideration to the list of literals we have
seen, and then go on.

To prove a propositional formula X using leanTAP, begin by negating it,
then convert the result to negation normal form, using the notation mentioned
above; call the result N. All this is pre-processing. Finally, issue the Prolog
query:

prove(N, [], []).

A few observations, before we turn to a more abstract formulation. First,
the Beckert and Posegga program keeps track of the literals encountered thus
far (on each branch), and checks for a contradiction between each new literal
and this list. It is at this point, during the contradiction check, that atomic
formulas are negated. This is mildly wasteful since the literal being checked
must be negated again and again as the list is traversed. It would be simpler
to remember, not the list of literals encountered, but their duals, thus negating
things once and for all, after which checks for closure just involve simple equality
testing. Thus we replace the last two clauses with the following three.

prove(Lit,_,[L|Lits]) :-
(Lit = L,!) ; prove(Lit,[],Lits).

prove(-Lit,[Next|UnExp],Lits) :- !,
prove(Next,UnExp,[Lit|Lits]).

prove(Lit,[Next|UnExp],Lits) :- !,
prove(Next,UnExp,[-Lit|Lits]).

Second, Beckert and Posegga assume formulas have been pre-processed into
negation normal form. To call attention to similarities with standard sequent
calculi, we incorporate this reduction into the algorithm itself, rather than sep-
arating it out. It imposes little additional complexity, and also, when dealing
with non-classical logics, such pre-processing may not be possible anyway. We
discuss in detail how such a modification affects the first clause, and sketch the
rest.
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We use the well-known α/β classification of Smullyan, [4, 3], in which α’s
are conjunctive and β’s are disjunctive. For each formula type, components are
defined. For instance, (X ∧ Y ) is an α, and its components are α1 = X and
α2 = Y . Likewise ¬(X ∨ Y ) is also an α, with components α1 = ¬X and
α2 = ¬Y . A table is given in the next section.

Now suppose we add to the program clauses like the following: type(X and
Y, conj, X, Y), and type(neg(X or Y), conj, neg X, neg Y), where and
and or have been defined to be infix, and neg prefix. Then the first clause of
the program is replaced with the following:

prove(Alpha,UnExp,Lits) :-
type(Alpha,conj,Alpha1,Alpha2), !,
prove(Alpha1,[Alpha2|UnExp],Lits).

and similarly for the second clause, which becomes the β case. We assume that
doubly negated formulas are a separate category, and so an additional clause
must be added to deal with them. (Smullyan considered them to be either α
or β as was convenient. While this is theoretically acceptable, it adds to the
overhead of an automated theorem-prover by duplicating formulas, which is why
we do not take this route.)

Finally, the distinction between the first and the second arguments of prove
has no logical role. The first argument is the formula we are currently consid-
ering, and the second is the list of remaining formulas. It would be simpler,
conceptually, to combine both into a single list, and assume we always expand
the head item. Thus we replace prove(Fml,UnExp,Lits) with a two-argument
version prove([Fml | UnExp], Lits). We make this modification throughout
the rest of the paper, essentially to make it easier to understand the program
and its variants. If it makes implementations faster one can, of course, go back
to the original version at the end.

3 The sequent calculus indseq

Let us assume the various modifications to leanTAP mentioned in the previous
section have been made. Now we reformulate the algorithm behind the method
more abstractly. We begin with the clauses for type, which are embodied in the
following standard tables. (They are slightly non-standard in that they include
cases for ≡, essentially thinking of it as a defined connective.)

α α1 α2

(X ∧ Y ) X Y
¬(X ∨ Y ) ¬X ¬Y
¬(X ⊃ Y ) X ¬Y

β β1 β2

(X ∨ Y ) X Y
¬(X ∧ Y ) ¬X ¬Y
(X ⊃ Y ) ¬X Y
(X ≡ Y ) X ∧ Y ¬X ∧ ¬Y
¬(X ≡ Y ) X ∧ ¬Y ¬X ∧ Y
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Now we give the sequent calculus itself. Often, with classical logic, structural
rules are suppressed and the left and the right of the arrow are taken as holding
sets of formulas. This was not Gentzen’s approach, and it is inappropriate for
systems like linear logic where the role of the structural rules is critical. In
our sequent calculus, as in Gentzen’s, sequences of formulas are to the left and
right of the arrow, not sets, but even so, there are no structural rules except
for a very restricted version of thinning. Furthermore, to the right of the arrow
appear only literals. The idea, quite simply, is that the sequent Γ → Λ should
correspond to prove(Γ, Λ) in the final version of the program given in the
previous section. Note: we use Γ to stand for an arbitrary sequence of formulas,
and Λ to stand for an arbitrary sequence of literals. Either may be empty. Also,
for a literal L, we use L for the complementary literal. Now, here is the system
indseq.

Axioms For a literal L, L,Γ→ L,Λ

Rules
Double Negation Rule

X,Γ→ Λ
¬¬X,Γ→ Λ

α-Rule
α1, α2,Γ→ Λ
α,Γ→ Λ

β-Rule

β1,Γ→ Λ β2,Γ→ Λ
β,Γ→ Λ

Thinning For a literal L2,
L1 → Λ

L1,Γ→ L2,Λ

Duality For a literal L,
Γ→ L,Λ
L,Γ→ Λ

To prove a formula X in this system, prove the sequent ¬X →, that is, refute
the formula ¬X. This system is a sound and complete sequent formulation
of classical propositional logic, though that fact may not be obvious at first
glance, because of the curious mix of sequences and lack of structural rules. We
show soundness and completeness for a dual system below. All we need at the
moment, however, is that the relationship between this sequent calculus and the
propositional leanTAP program should be apparent. We leave you to convince
yourselves of that.
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4 The sequent calculus dirseq

The propositional sequent calculus of the previous section, indseq, is a little
backward in its formulation, essentially because it arose from a Prolog program
that was modelled on a tableau system. But it is easy to turn it into a direct
version, one in which to prove X one proves → X, instead of one in which one
proves ¬X →. To do this, we simply dualize all the rules, getting the following
system, dirseq, in which only literals can appear to the left of the arrow.

Axioms For a literal L, L,Λ→ L,Γ

Rules
Double Negation Rule

Λ→ X,Γ
Λ→ ¬¬X,Γ

β-Rule

Λ→ β1, β2,Γ
Λ→ β,Γ

α-Rule

Λ→ α1,Γ Λ→ α2,Γ
Λ→ α,Γ

Thinning For a literal L1,
Λ→ L2

L1,Λ→ L2,Γ

Duality For a literal L,
L,Λ→ Γ
Λ→ L,Γ

As remarked above, to prove X in this system, we prove the sequent→ X. Note
that the Thinning rule in this system is different than in the indseq system of
the previous section, though the same name has been used for both. (I want to
thank Rajeev Goré for pointing out the inefficiencies of an earlier formulation
of the Thinning rule.)

Now we sketch proofs of the soundness and completeness of this system. The
proofs are direct, and do not reduce the issue to related facts about tableaus. It
is simpler this way, though the proofs, in fact, are adapted from similar proofs
about tableau systems.

Call a sequent Λ → Γ true under a Boolean valuation v if some member
of Λ is not true under v or some member of Γ is true under v. (This is the
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usual notion of truth for sequents.) Call a sequent valid if it is true under every
Boolean valuation.

Every axiom is valid, and the rules of inference preserve validity. Conse-
quently every provable sequent is valid. In particular, if → X is provable, it is
valid, and hence the formula X is also valid. This shows soundness of dirseq.

Completeness, as always, is more work. First, a few observations. Let us
call a generalized axiom any sequent of the form

Λ1, L,Λ2 → L,Γ

If Λ1 is empty this is, in fact, an axiom of dirseq. And if Λ1 is not empty, this
sequent is easily seen to be provable from an axiom using repeated applications
of the Thinning rule. Since all this is straightforward, we will simply allow the
use of generalized axioms for the time being, and ignore the role of Thinning.
Thus for the rest of this section Thinning is, in effect, not considered to be a
rule.

The second observation is equally simple. Since a formula must be exactly
one of: an α, a β, a double negation, or a literal, it follows that a sequent
Λ→ X,Γ can be the conclusion of exactly one rule—which one depends on the
formula X. (Recall, we are temporarily disallowing Thinning.)

Now, by a proof tree for a sequent Λ→ Γ we mean a tree with nodes labeled
by sequents, meeting the following conditions. The sequent Λ→ Γ is at the root.
For each node of the tree, with sequent N as its label, one of the following: If N
is a generalized axiom, the node is a leaf. If the right-hand side of N is empty,
the node is a leaf. If the right-hand side of N is not empty, and P/N is a rule
of dirseq, the node has one child, with P as label. If the right-hand side of N is
not empty, and (P Q)/N is a rule, the node has two children, with P and Q as
labels. Note that a sequent calculus proof is just a proof tree in which each leaf
is labeled with a generalized axiom.

Using the observations we made above, there is exactly one proof tree for
each sequent. As an example, here is a proof tree for the sequent→ (¬P∧Q)∨P ,
written upsidedown, with children above parents and the root at the bottoms.

P → P
→ ¬P, P

¬P,¬Q→
¬Q→ P

→ Q,P

→ ¬P ∧Q,P
→ (¬P ∧Q) ∨ P

A glance at the form of the rules shows that the child or children of a node
must be labeled with sequents whose right-hand sides contain one fewer formula
than the sequent labeling the parent, or the same number, with all formulas but
the first the same as the parent, but with the first being a simpler formula (for
this purpose it suffices to count the degree of X ≡ Y as that of X+ that of
Y + 4). It follows that a proof tree for a sequent must be finite.
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Suppose a node is labeled with a sequent of the form Λ→ L,Γ, where Λ is
a consistent sequence of literals and L is a literal. If this is not a generalized
axiom, the node has a child that is labeled with L,Λ → Γ. Obviously L,Λ
will again be consistent, or we would have had a generalized axiom before. It
follows that if we construct a proof tree for the sequent Λ → Γ, where Λ is
consistent, every node in the tree will be labeled with a sequent that has a
consistent left-hand side.

Now let X be a propositional formula, and suppose we construct a proof tree
for → X (a sequent which trivially has a consistent left-hand side). Either the
result is a proof (every leaf is a generalized axiom), and hence by the soundness
result above X is a tautology, or else at least one leaf is not a generalized
axiom. Such a leaf must be labeled with Λ →, where Λ is consistent. Then
some boolean valuation v maps every member of Λ to true, and consequently
falsifies the sequent Λ →. We leave it to you to check that v also falsifies the
label of every ancestor of this node, hence falsifies → X, hence falsifies X.

Stating the contrapositive, if X is a tautology, a proof tree for X will, in
fact, be a proof of X in dirseq, and so the sequent calculus is complete.

5 Back To an Implementation

The sequent calculus dirseq can easily be turned back into a Prolog program if
we reverse the steps by which it arose. The result, of course, is more complex
than leanTAP, since we have included parsing information. But the essential
style is the same, except that it is now, in a sense, a direct, rather than an
indirect theorem prover. We give it in full, not because it is non-obvious, but
because we can then proceed to discuss modifications to add modalities.

/*
First, the various operators.

*/

:-op(100, fy, neg).
:-op(110, yfx, and).
:-op(120, yfx, or).
:-op(130, xfy, imp).
:-op(130, xfy, iff).

/*
Next, a classification of formula types,
and instances.

*/
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type(X and Y, conj, X, Y).
type(neg(X and Y), disj, neg X, neg Y).
type(X or Y, disj, X, Y).
type(neg(X or Y), conj, neg X, neg Y).
type(X imp Y, disj, neg X, Y).
type(neg(X imp Y), conj, X, neg Y).
type(X iff Y, disj, X and Y, neg X and neg Y).
type(neg(X iff Y), disj, X and neg Y, neg X and Y).
type(neg (neg (X)), doub, X, _).

/*
Now the heart of the matter.
thm(Lambda, Gamma) :-
the sequent Lambda --> Gamma is provable.

*/

thm(Lambda, [Doubleneg | Gamma]) :-
type(Doubleneg, doub, X, _), !,
thm(Lambda, [X | Gamma]).

thm(Lambda, [Beta | Gamma]) :-
type(Beta, disj, Beta1, Beta2), !,
thm(Lambda, [Beta1, Beta2 | Gamma]).

thm(Lambda, [Alpha | Gamma]) :-
type(Alpha, conj, Alpha1, Alpha2), !,
thm(Lambda, [Alpha1 | Gamma]), !,
thm(Lambda, [Alpha2 | Gamma]).

thm([L1|Lambda], [L2|_]) :-
(L1 = L2, ! ; thm(Lambda, [L2])).

thm(Lambda, [neg L | Gamma]) :-
thm([L | Lambda], Gamma), !.

thm(Lambda, [L | Gamma]) :-
thm([neg L | Lambda], Gamma), !.

/*
Finally, the driver.

*/

tautology(X) :-
thm([], [X]).
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In the definition of a proof tree in the previous section, it was important that
a node labeled with a generalized axiom be a leaf—we did not want to apply
Duality to it. This is reflected in the program above, in the fact that the clause
testing for closure (essentially a test for being a generalized axiom)

thm([L1|Lambda], [L2|_]) :-
(L1 = L2, ! ; thm(Lambda, [L2])).

appears before the two clauses implementing Duality. Recall, Prolog tries
clauses in the order they appear in the program.

6 A Modal Calculus for K

We wish to formulate a version of dirseq for a few propositional modal logics,
and we begin with a version for the simplest normal modal logic, K. We call
the resulting sequent calculus dirseqK. We add ¤ and ♦ to the language, in the
usual way, and extend uniform notation to modal formulas, as follows.

ν ν0

¤X X
¬♦X ¬X

π π0

♦X X
¬¤X ¬X

These new types of formulas are not analyized using the machinery of Boolean
valuations—they require the possible world structures of a Kripke model. Con-
sequently we enhance the sequent calculus machinery of dirseq, specifically sep-
arating off the two new categories of formulas. A modal sequent is an expression
of the form:

Λ→ Γ‖∆‖Ω
where: Λ, Γ, ∆, and Ω are finite sequences of formulas, any of which may be
empty, and with Λ consisting only of literals. The intended interpretation of
such a modal sequent is as follows: We say it is true at a possible world of a
Kripke model provided: either some member of Λ is false at that world, or some
member of Γ is true, or some member of ∆ is necessary, or some member of Ω
is possible. (To say a formula X is necessary at a world is to say ¤X is true
there; likewise X is possible at a world if ♦X is true there.)

Sequent calculus rules are obvious modifications of the classical rules, insofar
as modal operators are not specifically involved—the necessary and the possible
formula lists are simply carried along unchanged. The four modal rules have a
justification which we give directly after we present the full system for dirseqK.

Axioms For a literal L, L,Λ→ L,Γ‖∆‖Ω

Rules
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Double Negation Rule

Λ→ X,Γ‖∆‖Ω
Λ→ ¬¬X,Γ‖∆‖Ω

β-Rule

Λ→ β1, β2,Γ‖∆‖Ω
Λ→ β,Γ‖∆‖Ω

α-Rule

Λ→ α1,Γ‖∆‖Ω Λ→ α2,Γ‖∆‖Ω
Λ→ α,Γ‖∆‖Ω

ν-Rule

Λ→ Γ‖ν0,∆‖Ω
Λ→ ν,Γ‖∆‖Ω

π-Rule

Λ→ Γ‖∆‖π0,Ω
Λ→ π,Γ‖∆‖Ω

Thinning For a literal L1,
Λ→ L2‖∆‖Ω

L1,Λ→ L2,Γ‖∆‖Ω

Duality For a literal L,
L,Λ→ Γ‖∆‖Ω
Λ→ L,Γ‖∆‖Ω

Necessitation

→ X,Ω‖ ‖
Λ→ ‖X,∆‖Ω

¤-Thinning

Λ→ ‖∆‖Ω
Λ→ ‖X,∆‖Ω



leanTAP Revisited 12

To prove a formula X in this system, prove the sequent → X‖ ‖.
Here are justifications for the modal rules. The ν-Rule is straightforward:

if ν0 is in the list of necessary formulas, we are saying ν0 is necessary, and this
is equivalent to saying ν is true. Similarly for the π rule. The ¤-Thinning
Rule is conceptually trivial. Finally, the Necessitation Rule is essentially a
standard result in disguised form. To see this suppose, for simplicity, that Λ
is the sequence A,B, ∆ is the sequence C,D, and Ω is the sequence E,F , and
modal sequents are interpreted as we said earlier. Then what we must show
is: If (X ∨ E ∨ F ) is true at all worlds of a Kripke model, so is (A ∧ B) ⊃
(¤X ∨¤C ∨¤D ∨♦E ∨♦F ). This is a consequence of the following argument,
in which each step is an easily justified modal or classical inference.

X ∨ E ∨ F
¬(E ∨ F ) ⊃ X
¤¬(E ∨ F ) ⊃ ¤X
¤X ∨ ¬¤¬(E ∨ F )
¤X ∨ ♦(E ∨ F )
¤X ∨ ♦E ∨ ♦F

(A ∧B) ⊃ (¤X ∨¤C ∨¤D ∨ ♦E ∨ ♦F )

Given these observations, a soundness proof is straightforward. We simply
verify that all axioms are true under the intended interpretation, at all worlds in
all Kripke models, and that rule applications preserve this property. We leave
this to you.

Here is an example of a proof in this system, of the familiar formula ¤(X ⊃
Y ) ⊃ (¤X ⊃ ¤Y ). By soundness, the formula must be K valid (which you
probably knew anyway).

X,¬Y → X‖ ‖
¬Y → ¬Y ‖ ‖
X,¬Y → ¬Y ‖ ‖ Thinning

X,¬Y → ¬(X ⊃ Y )‖ ‖ α

¬Y → ¬X,¬(X ⊃ Y )‖ ‖ Duality

→ Y,¬X,¬(X ⊃ Y )‖ ‖ Duality

→ ‖Y ‖¬X,¬(X ⊃ Y ) Necessitation

→ ¤Y ‖ ‖¬X,¬(X ⊃ Y )
ν

→ ¬¤X,¤Y ‖ ‖¬(X ⊃ Y )
π

→ ¤X ⊃ ¤Y ‖ ‖¬(X ⊃ Y )
β

→ ¬¤(X ⊃ Y ),¤X ⊃ ¤Y ‖ ‖ π

→ ¤(X ⊃ Y ) ⊃ (¤X ⊃ ¤Y )‖ ‖ β

Completeness is a more serious affair. We give a very brief sketch of the
argument, which unsurprisingly is along standard tableau lines.
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This time, by a generalized axiom we mean a sequent of the form

Λ1, L,Λ2 → L,Γ‖∆‖Ω
As before, we allow generalized axioms, and remove Thinning from the system.

Next, by a block we mean a portion of a proof attempt that does not use
either the Necessitation or the ¤-Thinning Rules (or the Thinning Rule). The
idea is to divide an unsuccessful proof attempt into blocks, with blocks connected
by Necessitation and ¤-Thinning Rule applications. Think of each block as a
possible world, and construct a Kripke model from what results. Rather than
give the argument in detail, we give an example that illustrates the general
ideas.

Suppose we try to prove the formula (P ∧¤(P ∨Q)) ⊃ (¤P ∨¤Q) in dirseqK.
The proof search begins with the following block.

P → ‖Q,P‖¬(P ∨Q)
P → ¤Q‖P‖¬(P ∨Q)

ν

P → ¤P,¤Q‖ ‖¬(P ∨Q)
ν

P → ¤P ∨¤Q‖ ‖¬(P ∨Q)
β

P → ¬¤(P ∨Q),¤P ∨¤Q‖ ‖ π

→ ¬P,¬¤(P ∨Q),¤P ∨¤Q‖ ‖ Duality

→ ¬(P ∧ (¤(P ∨Q)),¤P ∨¤Q‖ ‖ β

→ (P ∧¤(P ∨Q)) ⊃ (¤P ∨¤Q)‖ ‖ β

Let us call the display above block 1.
The initial sequent of block 1 is not an axiom. It is, however, the conclusion

of two different rules—Necessitation and ¤-Thinning. If we use Necessitation,
we proceed upward via the following step:

→ Q,¬(P ∨Q)‖ ‖
P → ‖Q,P‖¬(P ∨Q) Necessitation

Now we can continue upwards with the following block:

P,¬Q→ ‖ ‖
¬Q→ ¬P‖ ‖ Duality ¬Q→ ¬Q‖ ‖

¬Q→ ¬(P ∨Q)‖ ‖ α

→ Q,¬(P ∨Q)‖ ‖ Duality

Let us call this block 2. Notice that although one fork terminates in a generalized
axiom, the other does not—and no further rule is applicable.

On the other hand, we could have proceeded upward from block 1 using
¤-Thinning followed by Necessitation:

→ P,¬(P ∨Q)‖ ‖
P → ‖P‖¬(P ∨Q) Necessitation

P → ‖Q,P‖¬(P ∨Q)
¤-Thinning
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Then we could continue upward from here with the following block:

¬P → ¬P‖ ‖
Q,¬P → ‖ ‖
¬P → ¬Q‖ ‖ Duality

¬P → ¬(P ∨Q)‖ ‖ α

→ P,¬(P ∨Q)‖ ‖ Duality

Call this block 3. Again, while one fork terminates in a generalized axiom, the
other terminates in a sequent to which no rule is applicable.

Now, construct a Kripke model with worlds B1, B2, and B3, corresponding
respectively to blocks 1, 2 and 3. Set B2 and B3 to be accessible from B1,
corresponding to the fact that both blocks 2 and 3 yield block 1 in the proof
attempt via Necessitation Rule applications. Finally, define truth at each world
in accordance with initial sequents in the corresponding blocks that are not gen-
eralized axioms. Thus in B2 take P to be true and Q to be false, in accordance
with the sequent P,¬Q→ ‖ ‖ of block 2. Then in B2, every sequent of block 2
from this one down is falsified. Likewise in B3 take Q to be true and P to be
false, and every sequent from Q,¬P → ‖ ‖ down in block 3 will be falsified in
B3. Finally, at B1, take P to be true (and make an arbitrary choice for Q). It
is easy to check that every sequent in block 1 from P → ‖Q,P‖¬(P ∨Q) down
(in fact, every sequent) will be falsified in B1. Thus we have a Kripke model
showing the invalidity of (P ∧¤(P ∨Q)) ⊃ (¤P ∨¤Q).

Implementation is an easy matter, given the earlier discussion of the classical
case. Here it is.

/*
First, the various operators.

*/

:-op(100, fy, neg).
:-op(100, fy, box).
:-op(100, fy, dia).
:-op(110, yfx, and).
:-op(120, yfx, or).
:-op(130, xfy, imp).
:-op(130, xfy, iff).

/*
Next, a classification of formula types,
and instances.

*/

type(X and Y, conj, X, Y).
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type(neg(X and Y), disj, neg X, neg Y).
type(X or Y, disj, X, Y).
type(neg(X or Y), conj, neg X, neg Y).
type(X imp Y, disj, neg X, Y).
type(neg(X imp Y), conj, X, neg Y).
type(X iff Y, disj, X and Y, neg X and neg Y).
type(neg(X iff Y), disj, X and neg Y, neg X and Y).
type(neg (neg (X)), doub, X, _).
type(box X, nec, X, _).
type(neg box X, pos, neg X, _).
type(dia X, pos, X, _).
type(neg dia X, nec, neg X, _).

/*
thm(Lambda, Gamma, Delta, Omega) :-
the sequent
Lambda --> Gamma; Delta; Omega
is provable.

*/

thm(Lambda, [Doubleneg | Gamma], Delta, Omega) :-
type(Doubleneg, doub, X, _), !,
thm(Lambda, [X | Gamma], Delta, Omega).

thm(Lambda, [Beta | Gamma], Delta, Omega) :-
type(Beta, disj, Beta1, Beta2), !,
thm(Lambda, [Beta1, Beta2 | Gamma], Delta, Omega).

thm(Lambda, [Alpha | Gamma], Delta, Omega) :-
type(Alpha, conj, Alpha1, Alpha2), !,
thm(Lambda, [Alpha1 | Gamma], Delta, Omega), !,
thm(Lambda, [Alpha2 | Gamma], Delta, Omega).

thm(Lambda, [Nu | Gamma], Delta, Omega) :-
type(Nu, nec, Nu0, _), !,
thm(Lambda, Gamma, [Nu0 | Delta], Omega).

thm(Lambda, [Pi | Gamma], Delta, Omega) :-
type(Pi, pos, Pi0, _), !,
thm(Lambda, Gamma, Delta, [Pi0 | Omega]).

thm([L1 | Lambda], [L2 | _], Delta, Omega) :-
(L1 = L2, ! ; thm(Lambda, [L2], Delta, Omega)).



leanTAP Revisited 16

thm(Lambda, [neg L | Gamma], Delta, Omega) :-
thm([L | Lambda], Gamma, Delta, Omega), !.

thm(Lambda, [L | Gamma], Delta, Omega) :-
thm([neg L | Lambda], Gamma, Delta, Omega), !.

thm(Lambda, [], [X | Delta], Omega) :-
thm([], [X | Omega], [], []).

thm(Lambda, [], [X | Delta], Omega) :-
thm(Lambda, [], Delta, Omega), !.

/*
Finally, the driver.

*/

propk(X) :-
thm([], [X], [], []).

7 Other Modal Systems

Several other normal modal systems can be created by easy modifications to
the system presented in the previous section. The simplest is T—a sequent
calculus dirseqT results by just replacing the π-Rule with the following, which
corresponds to X ⊃ ♦X.

Λ→ π0,Γ‖∆‖π0,Ω
Λ→ π,Γ‖∆‖Ω

There is a corresponding single-clause change needed in the Prolog implemen-
tation.

For K4, the π-Rule is replaced with the following, which more-or-less builds
in the validity of ♦♦X ⊃ ♦X.

Λ→ Γ‖∆‖π0, π,Ω
Λ→ π,Γ‖∆‖Ω

And for S4, we use the following version of the π-Rule, which has the effect
of combining both the T and K4 changes.

Λ→ π0,Γ‖∆‖π0, π,Ω
Λ→ π,Γ‖∆‖Ω

Implementations for both K4 and S4 are a little more problematic however,
since it is possible to get stuck in a loop, as the following K4 proof fragment



leanTAP Revisited 17

shows.
→ P,¤P,♦¤P‖ ‖
¬P → ‖P‖¤P,♦¤P Necessity

¬P → ♦¤P‖P‖ π

¬P → ¤P,♦¤P‖ ‖ ν

→ P,¤P,♦¤P‖ ‖ Duality

To avoid this, one can impose a “modal depth” limit analogous to the depth-
bound that occurs in leanTAP to avoid a similar problem with quantification.

The quantifier machinery of leanTAP can be added to the modal systems
just outlined. One gets familiar quantified versions of the modal logics in which
the Barcan formula is not assumed. We do not persue these issues here, because
the development is relatively straightforward.

8 Conclusion

We have extracted an interesting sequent calculus from the Prolog program
leanTAP, and generalized it somewhat. On the one hand, such an approach
clarifies algorithms, and makes correctness and completeness proofs simpler. On
the other hand, we think the resulting formalisms are of intrinsic proof-theoretic
interest, and deserve further study as formal calculi.
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