
Tableaus for Logic Programming

Melvin Fitting
mlflc@cunyvm.cuny.edu

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

Depts. Computer Science, Philosophy, Mathematics
Graduate Center (CUNY), 33 West 42nd Street, NYC, NY 10036 ∗

May 19, 1993

Abstract

We present a logic programming language, which we call Proflog, with an operational se-
mantics based on tableaus, and a denotational semantics based on supervaluations. We show
the two agree. Negation is well-behaved, and semantic non-computability issues do not arise.
This is accomplished essentially by dropping a domain closure requirement. The cost is that
intuitions developed through the use of classical logic may need modification, though the system
is still classical at a level once removed. Implementation problems are discussed very briefly —
the thrust of the paper is primarily theoretical.

1 Introduction

Life would be almost perfect if we had a logic programming language that was efficient, treated
negation naturally, and had a semantics that exactly fit its computational mechanism. As we
all know, life is not almost perfect. But in the spirit of honest compromise, we propose a logic
programming language that goes part way towards meeting these ideal goals.

Over the years many semantical approaches have been introduced for logic programming. Often
these have been plagued with non-computability problems [2, 5, 12]. This is inevitable because we
are dealing with inductive definability over a fixed, infinite domain [8]. One solution is to relax
the domain closure condition — assume the universe is not just Herbrand. Kunen does this in
[6, 7]. We do it also, but in a different way, using the notion of supervaluations [11]. This yields a
semantics in which non-computability problems never arise. The cost is that negation is harder to
understand than in classical logic.

We propose a computational mechanism (operational semantics) based on semantic tableaus as
in [10, 4], enhanced by a rather natural notion of procedure call. This model of computation is easy
to understand, and it fits the proposed semantics exactly. The cost is that inefficiency is virtually
built in.

The basic ideas have appeared before [3], but it was presented as one of several candidates
for a logic programming semantics, so it was easily overlooked. This time we are directing things
towards a community with considerable experience with implementation. Is there the possibility
of imposing not unreasonable restrictions to produce an efficient language — much as Prolog was
∗Research partly supported by NSF Grant CCR-9104015.

1

2 Melvin Fitting

produced from an earlier abstract logic programming paradigm? How useful would such a language
be in practice? Also, it is clear that instead of classical tableaus, modal or many-valued ones could
be used. Although there have been some modal logic programming languages, we seem to have
here a uniform mechanism for introducing them. This is unexplored territory. We hope it does not
remain so.

When the system presented below was first considered, it was given a name, ‘Proflog,’ though
the name was never used in print. One could think of this as suggesting programming using first-
order logic. However we prefer to think of it as suggesting programming as done by a theoretically
oriented Professor: semantical correctness outweighs efficiency. But we encourage others not so
theoretically oriented to look at the ideas from the opposite point of view. What restrictions on
the language will lead to efficiency without loosing naturalness?

It should be noted that the use of full first-order logic as a programming language is not a new
idea. Both [1] and [9] propose versions, with the second explicitly using tableaus. The difference
here is that clauses are not thought of as simply first-order formulas, but as first-order formulas
plus a recursion mechanism, in which the attempt to close one tableau can cause the creation of
further tableaus. More details will have to wait until the formal presentation of the system below.

2 Syntax

Usually a program determines the content of the Herbrand universe. That is, the formal language
considered to be in use is the smallest language in which the program could be written. This
leads to problems when ‘irrelevant’ axioms are added to a program. We take an alternate route
— we fix a language, L, and then write a program in the language, possibly not using all of it.
This avoids some problems that might otherwise arise. In particular, the explicit specification of
language plays a role whose importance might be overlooked: during the course of a tableau proof,
typically, additional constant or function symbols are introduced. These can not appear in query
answers. A program, written in a language L, can only answer questions about things that have
names in L. This is a point that seems reasonable intuitively, but also it plays a role in ensuring
the soundness of the system presented below.

A language L is specified by giving its constant, function, and relation symbols. We assume
equality is always among the relation symbols. Then terms, atomic formulas, and formulas are built
up in the ways usual in first-order logic. We allow ∧, ∨, ¬, and ⊃ as propositional connectives, and
both ∀ and ∃ as quantifiers. We also allow true and false as propositional constants. We use the
word sentence for a formula with no free variables. We write ϕ(x1, . . . , xn) to indicate a formula
with all its free variables among x1,. . . ,xn. If t1,. . . ,tn are terms, we write ϕ(t1, . . . , tn) to indicate
the result of substituting t1, . . . , tn for all free occurrences of x1, . . . , xn in ϕ(x1, . . . , xn).

We now set up a general but rather rigid notion of program. We leave it to others to consider
more flexible versions.

Definition 2.1 By an L-clause we mean an expression of the form:

R(x1, . . . , xn)← ϕ(x1, . . . , xn)

where R(x1, . . . , xn) is an atomic formula of L and ϕ(x1, . . . , xn) is a formula of L. This L-clause
is said to be for the relation R. An L-program is a finite set of L-clauses containing at most one
for each relation symbol of L (except equality).

Tableaus for Logic Programming 3

Example Suppose L has 0 as a constant symbol, s as a one-place function symbol, and even and
odd, and of course = as relation symbols. Then the following is a program, intended to recognize
the even and the odd numbers, where the number n is identified with sn(0).

Program P1

even(x) ← x = 0 ∨ (∃y)[x = s(y) ∧ odd(y)]
odd(x) ← (∀y)[even(y) ⊃ ¬(x = y)]

Example This time suppose L has 0 as a constant symbol, s as a one-place function symbol, and
win as a relation symbol (and equality; we will not continue saying this). The program is for a
simple version of the game nim, in which there are two players, one starts with a positive integer
and, taking turns, a player lowers the number by either 1 or 2. The first player unable to move
looses.

Program P2

win(x) ← (∃y)[(x = s(y) ∨ x = s(s(y))) ∧ ¬win(y)]

Finally, a query is any ground literal of L. In the next few sections we say what it means for a
query to be a consequence of a program, semantically and operationally.

3 Semantics

Partly because of the problem of assigning meanings to programs with clauses like p← ¬p, three-
valued logic has played a role in the semantics of logic programming. One could say this is a natural
idea; one could say it is not natural; and one could have no opinion. We say it is natural, and
we make it the basis of our work here. In addition to true and false, there is a third truth value,
denoted ⊥, which is interpreted as undefined — if a sentence has ⊥ as its value it indicates that
when used as a query the program will not return a classical value because of infinite regress. But
there are several three-valued logics. Kleene’s strong three-valued logic has been the usual choice
in logic programming. Here we follow a different tradition, and base things on supervaluations [11].
We present the central ideas after some background.

We want the underlying logic to be classical, so we use models in the standard sense. The
following fixes the notation and terminology we will be using. A model for the language L is
a structure M = 〈D, I〉, where D is the domain of the model, and I is the interpretation. I
associates with each constant symbol c of L a member cI ∈ D; with each n-place function symbol
f of L a function fI : Dn → D; and with each n-ary relation symbol R of L an n-ary relation
RI ⊆ Dn. We assume the interpretation of the equality symbol, =I , is always the equality relation
on the domain, that is, all models are normal. We write M |= X to indicate that the sentence X
is true inM; similarly forM 6|= X. We will sometimes work with extensions of the language L —
the notion of a model is extended too, by broadening the interpretation to assign meanings to the
extra symbols of the language extension. All this is straightforward.

We are going to drop the domain closure condition: we will use models whose domains are
not the Herbrand universe — they must, however, contain at least the Herbrand universe. In the
Herbrand universe constant and function symbols of L are interpreted freely in the sense that terms
are not considered equal unless they are identical. We want our extensions of the Herbrand universe
to retain this feature.

Definition 3.1 A weak Herbrand model for a language L is a model M = 〈D, I〉 such that:

4 Melvin Fitting

1. fI is one-one in each of its arguments, for every function symbol f of L;

2. If f and g are distinct function symbols of L, fI and gI have non-overlapping ranges.

We think of constant symbols as 0-place function symbols. Thus item 2 includes, as special
cases, that distinct constant symbols have distinct interpretations, and it never happens that
fI(d1, . . . , dn) and cI are the same, where f is n-ary and c is a constant symbol. It is easy to
verify that every weak Herbrand model has a subdomain isomorphic to the usual Herbrand uni-
verse, but there may be other ‘non-standard’ items in it as well. It is this fact that allows us to
avoid non-computability problems.

What a program must do is tell us which ground atoms of L are to be taken as true. We are
not interested in possible non-standard items — in effect we do not know about them.

Definition 3.2 An L-valuation is a mapping from ground atoms of L (except those involving equal-
ity) to the space {false, true,⊥}. (We exclude ground atoms of the form t = u, since the interpre-
tation of = is fixed in all weak Herbrand models.)

The problem facing us now is how to extend the action of a valuation from ground atoms to
arbitrary sentences of L. It is here that weak Herbrand models play their role.

Definition 3.3 We say a weak Herbrand model M for L extends an L-valuation v provided, for
each ground atom A of L:

v(A) = true ⇒ M |= A
v(A) = false ⇒ M 6|= A

Thus a weak Herbrand model extends a valuation provided it agrees with the valuation whenever
the valuation assigns a classical truth value. Now the action of valuations is extended to the entire
language L by the simple device of requiring a consensus.

Definition 3.4 Let v be an L-valuation, and X be a sentence of L, not necessarily atomic.

v(X) =


true if M |= X for every M extending v
false if M 6|= X for every M extending v
⊥ otherwise

This is the supervaluation idea: if all models agree on a classical value, that is the value we use,
otherwise the value is undefined, or ⊥. It is important to note that the behavior of v on non-atomic
formulas is not truth-functional. That is, there are no truth tables that can be given to deter-
mine values for conjunctions, disjunctions, and the like, based on the values of their components.
Nonetheless, the assignment of truth values is classical at heart. Now, the primary notion.

Definition 3.5 Let P be a program in the language L, and let v be an L-valuation. We say v is a
supervaluation model for P if, for each L-clause R(x1, . . . , xn) ← ϕ(x1, . . . , xn) of P , and for all
ground terms t1,. . . ,tn of L:

v(R(t1, . . . , tn)) = v(ϕ(t1, . . . , tn)).

It is probably not clear that supervaluation models exist at all. In fact, not only is it the case,
but there is a smallest one, and a proof is sketched along the following lines. First, an ordering is
imposed on the truth values, denoted ≤k. It is displayed in Figure 1.

Next, this ordering is extended to the family of L-valuations by setting v1 ≤k v2 provided
v1(A) ≤k v2(A) for each ground atom A of L.

Tableaus for Logic Programming 5

≤k

6
truefalse

⊥
�
�
�
�
�
�
��

@
@

@
@

@
@
@@

Figure 1: The truth values, ordered

Lemma 3.6 If v1 ≤k v2 and X is any sentence of L, v1(X) ≤k v2(X).

Proof Assume v1 ≤k v2. It follows from the definitions that any weak Herbrand model extending
v2 also extends v1. The result follows immediately.

Now we define an operator mapping valuations to valuations. It is our version of the ‘single-step’
operator, usually denoted TP .

Definition 3.7 Let P be a program in the language L; the operator ΦP is defined as follows. For
an L-valuation v, and ground atom R(t1, . . . , tn) of L, ΦP (v)(R(t1, . . . , tn)) = v(ϕ(t1, . . . , tn)) if
there is a clause, R(x1, . . . , xn)← ϕ(x1, . . . , xn) in P , and ΦP (v)(R(t1, . . . , tn)) = ⊥ otherwise.

Lemma 3.8 If v1 ≤k v2 then ΦP (v1) ≤k ΦP (v2); that is, ΦP is monotonic.

Proof Immediate from Lemma 3.6.

The space of L-valuations, under ≤k, is a complete semi-lattice; in particular, sups of chains
exist. It follows that monotonic mappings on this space always have smallest fixed points. It is also
easy to see that any fixed point of ΦP is a supervaluation model for P . Consequently, supervaluation
models for P exist, and among them there is a smallest. It is this smallest supervaluation model
that we take as supplying the meaning for a program P .

Definition 3.9 For a program P , sP is the smallest supervaluation model for P .

In [3] the smallest supervaluation model provided what was called the weak model set semantics,
and it was contrasted with two other semantics which we do not consider here. One of the problems
mentioned earlier with other versions of logic programming is that the semantics often turns out to
be non-computable, and the operators associated with programs are non-continuous. This problem
does not arise here. The single-step operator ΦP is always continuous, and reaches its smallest
fixed point in ω steps, through an approximation sequence beginning at the smallest L-valuation
(mapping everything to ⊥). Further, the smallest fixed point, sP , is recursively enumerable. This
can be shown by relating the semantic definition to a computational procedure, as we will do below.

6 Melvin Fitting

Example Suppose L is a language with function symbol f and constant symbol c, and let ∅ be
the program in this language with no clauses — the empty program. The smallest supervaluation
model s∅ for the empty program is characterized quite simply. For ground terms t and u of
L, s∅(t = u) = true if t and u are identical, and s∅(t = u) = false otherwise. In particular,
t = f(t) is false for every ground term t. But surprisingly, s∅((∃x)(x = f(x))) = ⊥, so the smallest
supervaluation model remains uncommitted on the occurs check issue, even though it ‘behaves
correctly’ on each instance.

The argument to establish this is quite simple. First, if M is any weak Herbrand model, and
t and u are ground terms of L, it is easy to check that M |= t = u if and only if t and u are
identical, so the characterization of s∅ is correct. Furthermore, ifM1 is the weak Herbrand model
whose domain is exactly the ground terms of L, M1 |= ¬(∃x)(x = f(x)). Finally, let M2 be
the weak Herbrand model with domain the regular trees — this model also extends s∅, but in it
M2 |= (∃x)(x = f(x)). Consequently in s∅, (∃x)(x = f(x)) comes out ⊥.

Example Consider Program P1 from Section 2. In the smallest supervaluation model for this
program even(t) is true just of those closed terms of the form sn(0), where n is even. Likewise
odd(t) is true just of closed terms designating odd numbers. It is easiest to show this after a
computational mechanism has been introduced. The query (∀x)(even(x)∨¬even(x)) is true in the
semantics, for the simple reason that it is true in every weak Herbrand model. On the other hand,
(∀x)(even(x) ∨ odd(x)) is ⊥, essentially because there are weak Herbrand models in which there
are ‘non-standard’ members.

4 Semantic tableaus

We present a brief sketch of the basic semantic tableau proof procedure. More detailed treatments
can be found in [10, 4]. As originally developed, only sentences appeared in proofs, though they
could come from a possibly larger language. It occurred independently to several people that free
variables could be used instead, in a way that gave an important role to unification. Details of this
approach can be found in [4]. In this section we sketch the simpler version, without free variables.
It should be understood, however, that this is not suitable for automation as it stands.

For a given language L, by Lpar we mean the language arising from the addition to L of a
countable collection of new constant symbols. These new constant symbols are called parameters.
Tableau proofs are of sentences of L, but sentences of Lpar can appear in them.

It is convenient to use Smullyan’s device of grouping sentences into similarity classes. There
are four such: the α or conjunctive sentences; the β or disjunctive sentences; the γ or universal
sentences; and the δ or existential sentences. The α and β sentences, and their components, and
the γ and δ sentences, and their instances, are defined in Table 1.

Conjunctive Disjunctive Universal Existential
α α1 α2 β β1 β2 γ γ(t) δ δ(t)

(X ∧ Y) X Y ¬(X ∧ Y) ¬X ¬Y (∀x)Φ Φ(t) (∃x)Φ Φ(t)
¬(X ∨ Y) ¬X ¬Y (X ∨ Y) X Y ¬(∃x)Φ ¬Φ(t) ¬(∀x)Φ ¬Φ(t)
¬(X ⊃ Y) X ¬Y (X ⊃ Y) ¬X Y

Table 1: Sentence Categories

Now, a proof of a sentence X of L is a closed tableau for ¬X. A disproof of X is a closed
tableau for X itself. A tableau is a tree constructed using branch extension rules to be given in a

Tableaus for Logic Programming 7

moment. It is for Z if the sentence Z labels the root. The tableau is closed if each branch is closed,
and a branch is closed if it contains an explicit contradiction: false; or both A and ¬A for some
sentence A. Finally, there are five branch extension rules. One of these is: a branch containing a
sentence of type α can be extended by adding two extra nodes to the end, one labeled with α1, the
other labeled with α2. Another is: a branch containing a sentence of type β can be extended by
adding a left and a right child for its end node, with one labeled β1, the other labeled β2. These,
and the other three rules, are given schematically in Table 2.

¬¬Z
Z

¬true
false

¬false
true

α

α1

α2

β

β1 | β2

γ
γ(t)

δ
δ(p)

(for any closed (for a new
term t of Lpar) parameter p)

Table 2: Branch Extension Rules

In the δ rule, p is to be a parameter that has not previously occurred on the branch. This is
what is meant by calling it ‘new.’ We do not give examples of tableau proofs here. They can be
found readily in [10, 4].

5 Rules for equality

The tableau rules for equality that we need fall into two categories. There are general rules for
equality, and there are special rules arising from the requirements placed on the function symbols
of L in Definition 3.1. A fuller treatment of the general rules can be found in [4]. We begin with a
brief statement of these. Once again we remind you that we are not presenting a version suitable
for automation.

Reflexivity Rule For any closed term t of Lpar, t = t can be added to the end of any tableau
branch.

Substitutivity Rule Let X and X ′ be sentences of Lpar, where X ′ is like X except that an
occurrence of a closed term t in X has been replaced by an occurrence of the closed term u. Then,
if X and t = u occur on a tableau branch, X ′ can be added to the branch end.

The Substitutivity Rule allows left-right replacement. It is easy to show that right-left replace-
ment is a derivable rule. More generally, if a branch contains t = u, a derived rule allows us to add
u = t. We assume this when convenient. The tableau system of the previous section, together with
these two rules, provides a sound and complete proof system for classical logic with equality. Now
for the special equality rules arising from our restriction to weak Herbrand models.

Free Closure Rule A tableau branch is closed if it contains:

1. c = d where c and d are distinct constant symbols of L;

2. f(t1, . . . , tn) = c where f is a function symbol of L and c is a constant symbol of L;

3. f(t1, . . . , tn) = g(u1, . . . , uk) where f and g are distinct function symbols of L.

8 Melvin Fitting

One-One Rule If f is a function symbol of L, a branch containing f(t1, . . . , tn) = f(u1, . . . , un)
may be extended by adding ti = ui to the end, for any i = 1, . . . , n.

We again postpone giving tableau examples until the next section.

6 Semantic tableaus with program calls

So far in our discussion of tableaus, programs have played no role. It is time for that to change. A
program allows a tableau to call up other, subsidiary, tableaus in an attempt to close its branches.
For this section, P is a program in the language L.

Procedure Call Rule A tableau branch is closed if:

1. it contains a ground atom R(t1, . . . , tn) of L, there is a clause R(x1, . . . , xn)← ϕ(x1, . . . , xn)
in P , and there exists a closed tableau for ϕ(t1, . . . , tn);

2. it contains a negated ground atom ¬R(t1, . . . , tn) of L, there is a clause R(x1, . . . , xn) ←
ϕ(x1, . . . , xn) in P , and there exists a closed tableau for ¬ϕ(t1, . . . , tn).

Note that the ground atom R(t1, . . . , tn) or the negated ground atom ¬R(t1, . . . , tn), must be of L,
not of Lpar. The tableau construction may have introduced parameters to deal with existential
sentences, but the program P does not ‘know’ about them; it only ‘knows’ about the language L.

Definition 6.1 A P -tableau is a tableau constructed using the Branch Extension Rules of Sec-
tion 4, the Equality Rules of Section 5, and the Procedure Call Rule above. A query A succeeds
with program P if there is a closed P -tableau for ¬A. A query A fails with program P if there is a
closed P -tableau for A.

Notice that it is possible for a query A to neither succeed nor fail with program P — it just means
that P -tableaus for A and for ¬A do not close.

Example Consider the program P2 from Section 2. We show that for this choice of program, there
is a P2-closed tableau for win(s(s(s(0)))), and so win(s(s(s(0)))) fails.

We begin with a tableau having win(s(s(s(0)))) at its root. By the Procedure Call Rule, this
tableau closes provided there is a closed P2-tableau for (∃y)[(s(s(s(0))) = s(y) ∨ s(s(s(0))) =
s(s(y))) ∧ ¬win(y)], which leads to the following tableau (the numbers are for reference only).

(11) ¬win(s(0))
(10) s(0) = c

(9) s(s(0)) = s(c)
(8) s(s(s(0))) = s(s(c))

(7) ¬win(s(s(0)))
(6) s(s(0)) = c

(5) s(s(s(0))) = s(c)

c
c
c
c
c
c

#
#
#
#
#
#

(4) ¬win(c)
(3) (s(s(s(0))) = s(c) ∨ s(s(s(0))) = s(s(c)))
(2) (s(s(s(0))) = s(c) ∨ s(s(s(0))) = s(s(c))) ∧ ¬win(c)
(1) (∃y)[(s(s(s(0))) = s(y) ∨ s(s(s(0))) = s(s(y))) ∧ ¬win(y)]

Tableaus for Logic Programming 9

Line (2) is from (1) by the δ rule, introducing the new parameter c. Lines (3) and (4) are from (2)
by an α rule, and lines (5) and (8) are from (3) by β. Now (6) is from (5) by the One-One Rule, as
is (9) from (8), and (10) from (9). Finally (7) is from (4) and (6) using Substitutivity, and (11) is
from (4) and (10) for the same reason. Now the Procedure Call Rule can be applied to each of (7)
and (11). If closed tableaus result, the one above is closed and we are done. We begin with line (7),
which calls for the creation of a P2-tableau for ¬(∃y)[(s(s(0)) = s(y)∨s(s(0)) = s(s(y)))∧¬win(y)].

(8) win(0)
(7) ¬¬win(0)

(6) s(s(0)) = s(s(0))
(5) ¬s(s(0)) = s(s(0))
(4) ¬s(s(0)) = s(0)
(3) ¬(s(s(0)) = s(0) ∨ s(s(0)) = s(s(0)))

Q
Q
Q
Q
Q
Q

�
�

�
�
�
�

(2) ¬[(s(s(0)) = s(0) ∨ s(s(0)) = s(s(0))) ∧ ¬win(0)]
(1) ¬(∃y)[(s(s(0)) = s(y) ∨ s(s(0)) = s(s(y))) ∧ ¬win(y)]

Here line (2) is from (1) using the γ rule, with the term 0. Lines (3) and (7) are from (2) by β, and
(4) and (5) are from (3) by α. Line (6) is by the Reflexivity Rule, and this branch is closed. Line
(8) is from line (7) by the double negation rule. The Procedure Call Rule now is invoked on line
(8), starting the following P2-tableau.

(6) 0 = s(s(d))(5) 0 = s(d)

@
@
@@

�
�
��

(4) ¬win(d)
(3) 0 = s(d) ∨ 0 = s(s(d))
(2) (0 = s(d) ∨ 0 = s(s(d))) ∧ ¬win(d)
(1) (∃y)[(0 = s(y) ∨ 0 = s(s(y))) ∧ ¬win(y)]

Line (2) is from (1) by δ, introducing the parameter d. Lines (3) and (4) are from (2) by α, and (5)
and (6) are from (3) by β. Now both (5) and (6) close their branches, by the Free Closure Rule.

We have now verified that the left branch of our original extended tableau is closed by virtue of
its line (7). The right branch remains, and we leave it to you to carry out a Procedure Call Rule
application on line (11), ¬win(s(0)).

7 Soundness and completeness

We said the tableau rules presented in the last few sections exactly fit the supervaluation semantics.
In this section we present a proof of this.

10 Melvin Fitting

Definition 7.1 Let P be a program in the language L. We define a valuation tP as follows. For
a ground atom A of L:

tP (A) =


true if there is a closed P -tableau for ¬A
false if there is a closed P -tableau for A
⊥ otherwise

Now, the basic result of this section is easy to state.

Theorem 7.2 For a program P in the language L, tP = sP , the smallest supervaluation model for
P .

The rest of the section is given over to a proof of this Theorem.

Definition 7.3 Let v be a valuation. A set S of sentences of Lpar is v-satisfiable if there is a
weak Herbrand modelM extending v in which all members of S are true. A tableau is v-satisfiable
if one of its branches is; and a branch is if the set of sentences on it is.

The following is a modification of the usual preservation-of-satisfiability result that is at the heart
of proving tableau soundness.

Lemma 7.4 Let v be a valuation, and let T be a v-satisfiable P -tableau.

1. The result of applying any tableau rule except the Procedure Call Rule to T yields another
v-satisfiable P -tableau.

2. Suppose also that v is a supervaluation model for P (not necessarily the smallest) and
R(t1, . . . , tn)← ϕ(t1, . . . , tn) is a ground instance of a clause of P . Then:

(a) if R(t1, . . . , tn) occurs on a v-satisfiable branch of T , {ϕ(t1, . . . , tn)} is v-satisfiable.

(b) if ¬R(t1, . . . , tn) occurs on a v-satisfiable branch of T , {¬ϕ(t1, . . . , tn)} is v-satisfiable.

Proof Item 1 is essentially a standard argument (see [10, 4]) extended to handle the equality rules.
This is straightforward, and we omit the argument. The two parts of Item 2 have similar proofs;
we give the argument for the first part.

Suppose R(t1, . . . , tn) is a ground atom of L, and it occurs on branch θ of tableau T , where θ
is v-satisfiable in the weak Herbrand model M. Then M |= R(t1, . . . , tn), so v(R(t1, . . . , tn)) can
not be false; it must be either true or ⊥. Also suppose R(t1, . . . , tn) ← ϕ(t1, . . . , tn) is a ground
instance of a clause of P . Since v is a supervaluation model, v(R(t1, . . . , tn)) = v(ϕ(t1, . . . , tn)) so
v(ϕ(t1, . . . , tn)) is not false. Then there must be a weak Herbrand model M′ that extends v such
thatM′ |= ϕ(t1, . . . , tn), so {ϕ(t1, . . . , tn)} is v-satisfiable.

Lemma 7.5 If v is a supervaluation model for P , a v-satisfiable P -tableau is not closed.

Proof This is again standard, but extended to handle the Free Closure Rule and the Procedure
Call Rule. The Free Closure Rule is straightforward. The Procedure Call Rule uses Item 2 of the
preceding Lemma. We omit details.

Proposition 7.6 If v is any supervaluation model for P , tP ≤k v; in particular, tP ≤k sP .

Tableaus for Logic Programming 11

Proof Suppose tP 6≤k v. Then there is a ground atom A of L such that either 1) tP (A) = true but
v(A) 6= true, or 2) tP (A) = false but v(A) 6= false. Say it is 1); situation 2) is treated similarly.
Since tP (A) = true, there is a closed P -tableau for ¬A. Since v(A) 6= true there must be a weak
Herbrand modelM extending v such thatM 6|= A, and soM |= ¬A. This implies that the tableau
construction for ¬A begins with a v-satisfiable tableau. It follows from Lemma 7.4 that there must
exist a v-satisfiable tableau that is closed, and this contradicts Lemma 7.4.

Given this Proposition, to complete the proof of Theorem 7.2 it is enough to show tP is itself a
supervaluation model.

Proposition 7.7 If R(t1, . . . , tn)← ϕ(t1, . . . , tn) is a ground instance of a clause of P ,

tP (R(t1, . . . , tn)) = tP (ϕ(t1, . . . , tn)).

Proof Suppose first that tP (R(t1, . . . , tn)) = true but tP (ϕ(t1, . . . , tn)) 6= true; we derive a contra-
diction.

By definition of tP , there is a closed P -tableau for ¬R(t1, . . . , tn). Since R(t1, . . . , tn) is atomic,
the only applicable tableau rule is the Procedure Call Rule, so it must be that there is a closed
P -tableau for ¬ϕ(t1, . . . , tn). Also, since tP (ϕ(t1, . . . , tn)) 6= true, there must be a weak Herbrand
model M that extends tP such that M 6|= ϕ(t1, . . . , tn), so we start the tableau construction
for ¬ϕ(t1, . . . , tn) with a tP -satisfiable P -tableau. The branch extension rules only produce tP -
satisfiable tableaus, so the final, closed one, must be tP -satisfiable, say branch θ is tP -satisfiable.
It takes a small argument to show this is impossible (since we don’t know tP is a supervaluation
model, Lemma 7.5 is not applicable).

There are two basic reasons why tableau branch θ could be closed. One is that it contains
an ‘obvious’ contradiction, that is, it contains an atomic sentence and its negation, or something
violating one of the equality conditions. If θ is closed for this reason it cannot be satisfiable in
any weak Herbrand model, so it is not tP -satisfiable. The other basic reason θ could be closed is
because of the Procedure Call Rule. Say θ contains A, there is an L-instance A← B of a clause of
P , and there is a closed P -tableau for B. But if there is a closed P -tableau for B, there will also
be a closed P -tableau for A (via the Procedure Call Rule), so tP (A) = false. But then θ cannot
be satisfiable in a weak Herbrand model that extends tP , so again it is not tP -satisfiable. (The
argument is similar, of course, if ¬A occurs on θ.)

This contradiction establishes that

tP (R(t1, . . . , tn)) = true =⇒ tP (ϕ(t1, . . . , tn)) = true.

Now suppose that tP (ϕ(t1, . . . , tn)) = true but tP (R(t1, . . . , tn)) 6= true; again we derive a
contradiction. This time the argument is like the usual proof of tableau completeness.

Since tP (R(t1, . . . , tn)) 6= true, there is no closed P -tableau for ¬R(t1, . . . , tn), and by the
Procedure Call Rule, this implies there is no closed P -tableau for ¬ϕ(t1, . . . , tn). Suppose we adapt
a systematic tableau construction method, from [10] or [4], modifying it to take into account the
rules of Section 5 and Section 6. This is straightforward, and we skip the details. If we apply
this systematic construction to ¬ϕ(t1, . . . , tn) in the usual way, a (possibly) infinite tableau is
generated, with an open branch. The set of sentences on that branch, call the set S, will be a
first-order Hintikka set with equality, as defined in [4].

Suppose tP (A) = true, where A is a ground atom of L. Then there must be a closed tableau
for ¬A, so by the Procedure Call rule, ¬A cannot occur in S. Similarly, if tP (A) = false, A cannot
occur in S. By Hintikka’s Lemma, S is satisfiable, say in M. Moreover, we can arrange things

12 Melvin Fitting

so that if the atomic L-sentence A is not in S, A will be false in M, and if ¬A is not in S, A
will be true in M. Now, as usual, factor the domain of M using the equivalence relation that
calls terms t and u equivalent if t = u occurs in S. This converts M into a normal model, M′.
Further, because of the Free Closure and One-One Rules, M′ will be a weak Herbrand model for
the language L. Finally, by construction, if tP (A) = true, ¬A is not in S, so A is true in M and
hence in M′. Similarly if tP (A) = false. It follows that M′ extends tP . Since ¬ϕ(t1, . . . , tn) ∈ S,
M′ 6|= ϕ(t1, . . . , tn), and so tP (ϕ(t1, . . . , tn)) 6= true, which contradicts our original assumption.

This time we have shown that

tP (ϕ(t1, . . . , tn)) = true =⇒ tP (R(t1, . . . , tn)) = true

and so
tP (R(t1, . . . , tn)) = true⇐⇒ tP (ϕ(t1, . . . , tn)) = true.

In a similar way it can be established that

tP (R(t1, . . . , tn)) = false⇐⇒ tP (ϕ(t1, . . . , tn)) = false.

It follows from these equivalences that

tP (R(t1, . . . , tn)) = tP (ϕ(t1, . . . , tn)).

8 Implementation and Other Issues

Consider program P2 from Section 2. A more usual way of presenting this might be:

win(x) ← (∃y)[move(x, y) ∧ ¬win(y)]
move(x, y) ← x = s(y) ∨ x = s(s(y))

It is not hard to check that this does not work as expected. The reason is that, while the inter-
pretation of equality is fixed, the interpretation of move in a weak Herbrand model is not — there
could be non-standard moves. This means considerable care must be exercised in transporting
familiar Prolog programs to Proflog. We are at the point that logic programmers were years ago
with respect to Prolog: we need experience in order to develop a feeling for the characteristics of
the language.

As outlined above, the tableau-based logic programming mechanism is not suitable for imple-
mentation. Some of the reasons are well-known. We used the classical tableau rules as given in
[10]. In these, the gamma rule allows the introduction of any closed term, and there is the problem
of deciding what ones would be best to choose. This can be replaced by the introduction of a free
variable, followed by later unification to close branches, though this causes problems with the delta
rule. These problems in turn can be solved by Skolemizing ahead of time, or by using so-called
run-time Skolemization. A discussion of these problems and the solutions can be found in [4].

The introduction of free variables into the tableau mechanism is useful for another reason: it
makes it possible to ask queries with free variables in familiar Prolog style. But this carries a cost
with it. Suppose a branch θ of a P -tableau contains R(x), and R(x) ← ϕ(x) is a clause of P , a
program in the language L. Suppose further that a closed P -tableau can be constructed for ϕ(x),
during which x gets instantiated, via unification, to t. Does this mean the branch θ of the original

Tableaus for Logic Programming 13

tableau can be closed, after instantiating x to t? It does, but only provided that t is a term of
L, and not of the enlargement of L by Skolem functions. A mechanism for ensuring this must be
introduced, and it could prove to be a serious compliction.

Equality plays a significant role in the tableau system presented here, and equality rules add
considerable complexity to theorem proving. The Free Closure Rule from Section 5 adds still
another layer of complexity. When free variables are allowed, it becomes: a branch can be closed if
it contains t = u where t and u can be disunified. Disunification means there is a substitution that
will make t and u differ on a function symbol of L at corresponding points of the two terms. Now,
while there is a single most general unifier for two terms, there can be infinitely many disunifiers.
For instance, consider the terms f(g(f(x))) and f(y). Then {y → f(y1)} is a disunifier, but so is
{y → g(g(y1))}, and so is {y → g(f(f(y1))), x→ g(x1)}, etcetera. What is needed is a systematic
way of generating a sequence of disunifiers. But this sequence is, in fact, the source of multiple
answers to a query containing a free variable. The systematic generation of all disunifiers, and the
merging of such generation arising from more than one disunification problem, may turn out to be
the most intractable implementation issue, but it is clearly a central one.

Naturally, as with all real programming languages, some compromises must be made. Follow-
ing the lead of Prolog, an incomplete but efficient mechanism will serve, provided the sources of
the incompleteness are sufficiently well understood so that a programmer can still write satisfac-
tory programs. It is an interesting question: what are the most natural compromises to make in
implementing the system we have described. We hope others will explore this issue.

References

[1] Bowen, K. A. Programming with full first-order logic. In Machine Intelligence 10 (1982),
Hayes, Michie, and Pao, Eds., Ellis Horwood and John Wiley, pp. 421–440.

[2] Fitting, M. C. A Kripke/Kleene semantics for logic programs. Journal of Logic Programming
2 (1985), 295–312.

[3] Fitting, M. C. Partial models and logic programming. Theoretical Computer Science 48
(1987), 229–255.

[4] Fitting, M. C. First-Order Logic and Automated Theorem Proving. Springer-Verlag, 1990.

[5] Gelfond, M., and Lifschitz, V. The stable model semantics for logic programming. In
Proc. of the Fifth Logic Programming Symposium (Cambridge, MA, 1988), R. Kowalski and
K. Bowen, Eds., MIT Press, pp. 1070–1080.

[6] Kunen, K. Negation in logic programming. Journal of Logic Programming 4 (1987), 289–308.

[7] Kunen, K. Signed data dependencies in logic programming. Journal of Logic Programming
7 (1989), 231–245.

[8] Moschovakis, Y. N. Elementary Induction on Abstract Structures. North-Holland, 1974.

[9] Schönfeld, W. Prolog extensions based on tableau calculus. In Proc. of the Ninth Int. Joint
Conf. on Artificial Intelligence (1985), pp. 730–732.

[10] Smullyan, R. M. First-Order Logic. Springer-Verlag, 1968.

14 Melvin Fitting

[11] Van Fraassen, B. Singular terms, truth-value gaps, and free logic. Journal of Philosophy
63 (1966), 481–485.

[12] Van Gelder, A., Ross, K. A., and Schlipf, J. S. The well-founded semantics for general
logic programs. JACM 38 (1991), 620–650.

