I. LOGIC PROGRAMMING 1985:4:295-312 295

A KRIPKE-KLEENE SEMANTICS FOR LOGIC PROGRAMS*

MELVIN FITTING

1. INTRODUCTION

The use of conventional classical logic is misicading for characterizing the behavior
of logic programs because a logic program, when queried, will do one of three
things: succeed with the query, fail with it, or not respond because it has fallen into
infinite backtracking. In [7] Kleene proposed a three-valued logic for use in recursive
function theory. The so-called third truth value was really undefined. truth value not
determined. This logic is a useful tool in logic-program specification, and in
particular, for describing models. (See [11].)

Tarski showed that formal languages, like arithmetic, cannot contain their own
truth predicate because one could then construct a paradoxical sentence that
effectively asserts its own falsehood. Natural languages do allow the use of “is true”,
so by Tarski’s argument a semantics for natural language must leave truth-value
gaps: some sentences must fail to have a truth value. In [8] Kripke showed how a
model having truth-value gaps, using Kleene’s three-valued logic, could be specified.
The mechanism he used is a familiar one in program semantics: consider the least
fixed point of a certain monotone operator. But that operator must be defined on a
space involving three-valued logic, and for Kripke’s application it will not be
continuous.

We apply techniques similar to Kripke’s to logic programs. We associate with
each program a monotone operator on a space of three-valued logic interpretations,
or better partial interpretations. This space is not a complete lattice, and the
operators are not, in general, continuous. But least and other fixed points do exist.
These fixed points are shown to provide suitable three-valued program models. They
relate closely to the least and greatest fixed points of the operators used in [1].

Because of the extra machinery involved, our treatment allows for a natural
consideration of negation, and indeed, of the other propositional connectives as well.
And because of the elaborate structure of fixed points available, we are able to

Address correspondence to Melvin Fitting, Department of Mathematics and Computer Science,
Herbert H. Lehman College, Bedford Park Boulevard West, Bronx, NY 10468,
*Work partially snpported by NSF grant DCR-8304959.

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1985
52 Vanderbilt Ave., New York, NY 10017 (743-1066 /85 /$03.30

296 MELVIN FITTING

clearly differentiate between programs that “behave” the same but that we “feel” are
different.

Finally, we show the result is far too powerful. We can now write logic programs
semantically characterizing the II} relations, not just the recursively enumerable
cnes. Thus semantic behavior is not generally machine realizable. We take this as an
argument for imposing restrictions on logic programs, to weed out the “too
powerful” ones.

2. KLEENE’S THREE-VALUED LOGIC

We use a language I in which we have the propositional connectives A (and),
Vv (or), and — (not) as primitive. Alternatively we could take some as primitive and
define others via the usual definitions, which work even in Kleene’s three-valued
logic. We also allow quantifiers ¥ and 3, taking both as primitive. Quantifiers will
not be used in the actual writing of programs, only in their analysis.

We systematically use statement for formula with no free variables. For a formula
P, and a substitution &, P& is a closed instance of P if it is a statement. We
sometimes write P(x) to indicate that x is the only free variable of P, and P(t) for
the closed instance resulting from substituting ¢ for x.

The idea behind Kleene’s logic is simple. Say P is a statement with the informal
meaning f(3)=35, where f is a function we have a Turing machine to compute,
Similarly say ¢ means g(4)="7, where g is another Turing calculable function. By
running the Turing machines we may determine the truth or falsity of P and @, or
we may never learn anything if the machines fail to halt. So, use a logic with truth
values t (true), f (false), and u (undefined or undetermined) to mirror the situation,

In this logic, how should values be assigned to P A Q, say? Certainly in cases not
involving u, truth values should behave classically. Now say P has value f but Q is u.
Still @ “has” a truth value; we just don’t know what it is. Since P isf, P A Q will be
f no matter whether Q turns out to be t or f. Conseguently # A (is given the value f
in this case. On the other hand, say P has value t but @ is u If we eventually
discover that @ ist, P A @ will turn out to have value t. But if we discover @ is f,
P A-Q will be . Given no further information then, we must say the value of P A Q

is u.
Then a table for the connective A is as follows:
A | t f u
t t f u
f f f f
u u f u

Tables for the other connectives can be easily constructed (see [7]). But we prefer
a somewhat different approach.

3. SATURATED SETS

Rather than working with truth functions, Hintikka and others have popularized the
use of sets of statements, model sets. Being in the set corresponds to being true;
being out, to false. We extend this to the three-valued case by using Smullyan’s

A KRIPKE-KLEENE SEMANTICS FOR LOGIC PROGRAMS 297

device of prefixed formulas [13]. In effect we treat both known-to-be-true and
known-to-be-false as positive information, and undefined as absence of information.
What follows is essentially taken from [6].

We introduce two new symbols, T and F. If X is a formula, 7X and FX are
signed formulas. If S is a set of signed statements, we informally think about it in
the following way. TX € § means S says X is true. FX € § means § says X is false.
If neither TX € § nor FX € §, § says nothing about the truth value of X, or X has
truth value u. Of course we do not want both TX and FX in 5 then. We introduce
the following terminology.

Definitions. Let § be a set of signed statements.

(1) § is downward saturated if

(a) TXAYeES = TXeSand TYES,

(b FXAYES = FXESor FYES,

{c) TXvYeS = TXeSor TYES,

{(d) FXvYES = FXe&§ and FYES,

(e T-Xe§ = FXe§,

() F-Xe§ = TXe<S,

(g) T(Vx)P(x)e § = TP(r)E S for every closed term ¢,
(h) F(¥x)P(x)e S = FP(:)e S for some closed term ¢,
(i) TAx}P(x)e 8 = TP(r)= S for some closed term ¢,
() FAx)P(x)e S = FP(:)€ S for every closed term ¢.

(2) 8 is upward saturated if

(A TXsSand TYeS = TXAYES,

(B) FXe€Sor FYES = FXAYES,

(c) TXeESorTYeS = TXVYeES,

(d) FXYeSand FYeS = FXVYES,

(e) FXes = T-X€ES,

(HNTXeS = FLXES,

{g) TP(t) € § for every closed term ¢ = T(Vx)P(x)ES,

(h) FP(2)€ § for some closed term ¢ =» F(Vx)P(x)€ S,

(i) TP(:) = S for some cloged term ¢ = T(EAx)P(x)E §,

() FP(r)e § for every closed term ¢ = F(Hx)P(x)E S.
(3) § is satwrated if 8 is both downward and upward saturated.
(4) S is consisteni if not both TX, FX are in S, for any statement §.

(5) S is atomically consistent if not both TA, FA are in § for any atomic
statement A4.

(6) S is complete if either TX or FX is in § for every statement X.

(7) S is atomically complete if either T4 or FA isin § for every atomic statement
A.

(8) S is a model set if S is saturated, consistent and complete.

Saturated, consistent sets correspond exactly to valuations in Kleene’s three-val-
ued logic, in the following sense. Suppose S is a saturated, consistent set of signed

298

MELVIN FITTING

statements. Define a map v from statements to {t,f,u} as follows.
t if TXeS,
v(X)=:{f if FXeSs,
u otherwise.
v is a valuation in the Kleene three valued sense. Conversely, if we start with such a
valuation v, we can easily construct the corresponding saturated, consistent set S. In
the rest of this paper we will work exclusively with saturated, consistent sets, rather
than with three-valved mappings.
Note that adding a completeness requirement, that is, restricting consideration to
model sets, gives us the classical two-valued mappings.

Proposition 3.1. Let S be a set of signed statements. There is a smallest upward
saturated set extending S.

PROOF. Let C be the collection of upward saturated sets extending S. C is not
emptly, since it contains the set of all signed statements. So NC exists. It is easy to
check that it is upward saturated. It fulfills the other considerations, by definition.

(]

Definition. For a set § of signed statements, the smallest upward saturated set
extending S is called the upward saturated closure of §, and is denoted SY.

Proposition 3.2. Let A and B be sets of signed statements. Then
AcB = A4YcBY

PROOF. Let C, be the collection of upward saturated sets extending A, and similarly
for Cg. 1f AC B then CpC C,; hence NC, SNCp. But AY=NC, and BY=NC,.
C

Proposition 3.3. If § is downward saturated, SY is saturated.

PROOF. It is enough to show SV is downward saturated. Say TX is not in SY; we
show TX A Y is not in SY. The other cases are similar.

If TX is not in SY, we cannot have TX A YE §, because § is downward
saturated, so we would have TX€ S, but SC SY. Hence SCSY— (TX A Y). But
SY— {TX A Y} is still upward saturated. So SYC SV~ {TXA Y}. Then TXA Y is
notin S¥. 0O

Proposition 3.4. If S is downward saturated and atomically consistent, then both S and
SY are consistent.

PrOOF, Suppose § is downward saturated. Then it is easy to check that, if §
contains TX and FX, S must contain 7Y and FY for some subformula ¥ of X
Consequently if § is atomically consistent, it must be consistent,

Further, S and SY contain the same signed atomic statements, so if § is
atomically consistent, so is $Y. And by Proposition 3.3, if S is downward saturated,
so is SY. The consistency of S now follows by the same argument as that for §. O

Completeness issues play a minor role here, but we include the following, without
procf, for completeness’ sake.

A KRIPKE-KLEENE SEMANTICS FOR LOKGIC PROGRAMS 299

Proposition 3.5
(a) If S is atomically complete, then SY is complete.

(b} If § is downward saturated, atomically consistent, and atomically complete, then
SY is a model set.

(c} If § is downward saturated and atomically consistent, then S can be extended to
a model set.

4. LOGIC PROGRAMS—SYNTAX

We will only consider clauses with single atomic formula in the conclusion, but we
wish to allow arbitrary propositional connectives in the hypothesis. Accordingly we
define clause somewhat differently than usual. We assume the language L has some
fixed set of function, constant, and relation symbols, and formulas of L are defined
in the usnal way. Recall we take A, V, —, V¥, and 3 as primitive. We also assume
that = is a relation symbol of L, though we do not allow its use in logic programs.
Rather, like guantifiers, it comes up in their analysis.

Definition. A program is a possibly infinite set of clauses. A clause -is a pair
consisting of an atomic formula 4 of L and a finite set { B,,..., B,} (n = 0) of
quantifier free formulas of L, neither 4 nor {B,,..., B,} containing the symbol
=, written

A« B,,... B,

A is the conclusion and {B,,..., B,} is the premise of this clause.

5. SEMANTICS

We define the notion of a three-valued model (or better, a partial model) for 2 finite
logic program (or better, for the IFF formula associated with if). Such a model will
be a consistent set of signed atomic statements of L.

Definition. Let S be a consistent set of signed atomic statements of L. For a
statement A we say S makes A true (false) if T4 € SY (if FA € SY). For a finite
set {By,..., B,} of statements, S makes {B,,..., B,} true (false) if § makes
By A - -+ AB, true {false). Here we assume some arbitrary parenthesizing.

Since a consistent set of signed atomic statements S need not be complete, §
need not make every statement true or false. On the other hand, since members of §
are signed atomic statements, § is trivially downward saturated, hence SV is both
saturated and consistent, by Propositions 3.3 and 3.4.

The equality relation plays a somewhat special role, so we give it a special
treatment.

Definition. By a full set we mean a consisient set § of signed atomic statements of L
such that, for closed terms 7 and w, if = u then T(t =u)€ S, and if 7 # u then
F(t=wu)E S. By A basic set we mean a consistent set of signed atomic statements
not involving =.

300

MELVIN FITTING

It is trivial that any basic set S can be extended to a unique full set. We call it the
full set associated with S. In giving examples, we usually present a basic set that can
be extended to a full set, rather than specifying the full set in detail.

The connective = can be defined in the usual ways; for example, X = ¥ means
—~(XASY)A(YASX). But it is not strong enough for our purposes. For
instance. if § is a consistent set of signed atomic statements, § will make P=P
neither true nor false if § assigns no truth value to P itself. We introduce a
connective =, also from Kleene, which we only use in a restricted way, = is a
connective whose behavior cannot be defined from those introduced so far. Intui-
tively, X=Y is to mean X and Y have the same truth value from the set {t,f,u}.

Definition. For a consistent set S of signed atomic statements, we say:

S satisfies X = Y, where X and Y are statements (not containing =), provided S
makes both X and Y true, or § makes both X and Y false, or § assigns neither
X nor Y a truth value.

S satisfies X = Y, where X and Y are formulas, provided S satisfies every closed
mstance of X=Y.

S satisfies a conjunction of formulas of the form X = Y provided § satisfies each
one of them.

Now let P be a finite logic program. It is turned into a single formula in the
following familiar way. First, each clause

R(t,...,t,)«< B,,..., B,
is replaced by

R{x,,...,x,) = @yy...., ¥y J)[xy=0,A --- Ax,=t,AB, -+ AB,],
where x,,...,x, are new variables, and y,...,y, are all the variables of
tyse.s by Byy. .., B, Next, all rewritten clauses with the same conclusion

R+ D,

R D,,

R« D,
are replaced by the single expression R« D, v D, v «-- VD If R is a relation
symbol occurring in P with no clause in P of the form R(ty,...,¢t,)« B,,..., B,
add the expression —R(Xx;,..., x,). Then the resulting set of expressions is replaced
by its conjunction, Finally all occurrences of < are replaced by = . The resulting
formula is denoted D(P).

Finally, the main notion of this section.

Definition. A full set S is a parvial model for logic program P provided S satisfies
D(P). A basic set § is a partial model for P provided the full set associated with
S is a partial model for P.

Convention. In giving examples in this and later sections, we assume the language L
has the constant, function and relation symbols that actually occur in the

A KRIPKE-KLEENE SEMANTICS FOR LOGIC PROGRAMS 301

program under consideration, and no others. This is not necessary, but it is
convenient. Of course, when discussing the behavior of a program we may move
to a larger language involving =. It will be clear when this happens.

Example. Let P be the program
even(a) «
even(s(x)) « —even(x).
Then D(P) is the formula

even(y) = [y=aV(@x)(y=s(x) A-even(x)}].

Let § be the full set associated with {Teven(a), Feven(s(a)), Teven(s(s(a}}),
Feven(s(s(s(a)))),...}. § is a partial model for P. That is, § satisfies D{P). We
check one case; consider the closed instance of D(F):

even(s(a)) = [#(a) =a Vv (Ix)(s(a) = s(x) A —even(x)}].

Since s(a) and a are different terms, F(s(a)=a)e S SY. If ¢ is any closed
term other than a, then s(a) and s(¢) are different; hence F(s(a)=s(¢)) € S, and
hence by upward closure, F(s(a)=s(f)A—even(t))€ SY. And if ¢ is 4, then
Teven(1)€ 8, so F-even(t)€ SY, F(s(a)=s(t)A—even(r)) € SY. It follows that
F@Ax)(s(a)=s(x) A —even(x)) € §Y. Then finally, F[s(a)=aV @xXs(a)=s(x)
A —even(x))]€ SY, so § makes [s(a)=aV (Ax)}s(a)=s(x) A —even(x))] false.
Trivially § makes even(s(a)) false, so § satisfies even(s(a)}=[s(a)=a v (Ax(s(a)
= s(x) A —even(x))}

As another example, this time let P be the program

even(a) «

even(s{s(x))) « even(x)

even(x) « even(s(s(x)))

The basic set {Teven(a), Feven(s(a)), Teven(s(s(a))). Feven(s(s(s(a}))),...} is a
partial model, but so is { Teven{a), Teven(s(s(a))),... }.

6. MONOTONE MAPPINGS

We want to associate partial models for logic programs with fixed points of
operators. Now the intersection of any family of consistent sets of signed statements
is again a consistent set of signed statements, but the same is not true for union. We
do have that the union of a chain, and more generally, of a directed family of
consistent sets is a consistent set. This means we do not have a complete lattice, but
a weaker structure, called a complete semilattice here.

In a complete lattice, [14] guarantees that every monotone function has a smallest
and a greatest fixed point, and the collection of its fixed points itself constitutes a
complete lattice. In a complete semilattice things are a little more complicated. A
monotone function always has a smallest fixed point, though it may not have a
greatest, but several maximal ones instead. Among fixed points certain intrinsic or
optimal ones are singled out (definition below). There is a smallest and a greatest
intrinsic fixed point, and the intrinsic fixed points constitute a complete lattice.

Interast in the fixed-point structure of monotone maps on complete semilattices
was clearly rather broad in the mid 70s. [8] presented the essential facts (without

302

MELVIN FITTING

proof) and applied them to philosophical problems. [9] state and prove the same
results, in different terminology, and apply them to issues in compauter science, See-
also [10]. We use Kripke's term intrinsic rather than Manna and Shamir’s optimal.
And we present proofs of what we need, based on the proofs m [6].

Definition. (C, <) is a complete semilattice if
(1) C is partially ordered by <,

(2) every nonempty subset D of C has an inf, denoted ND (in particular, C has a
smallest member),

(3) every nonempty directed subset D of C has a sup, denoted UD. (A set S is
directed if, for any 4, B € S, there is some C€ S"with 4 < C and B<)

Lemma 6.1. Let (C, <) be a complete semilattice. Any nonemply subset of C having
an upper bound has a least upper bound.

PROOF. Let D C C, and suppose D has an npper bound. Set E={Xe C{X is an
upper bound for D}. By hypothesis E is not empty, 50 NE & C. It is straightforward
to check that (E is the least upper bound for D.

More defimitions. Let {(C, <) be a partial ordering. ©:C — C is monotone if A < B
= O(4)< O(B).
If ®{A)=A, then A is a fixed point of ®,
A, B € C are compatible if there is some CECwith 4 <Cand B<C.
I is an intrinsic fixed point of @ if I is a fixed point that is compatible with every
fixed point of @.

Proposition 6.2. Let {C, <) be a complete semilattice, and let & be monotone on C.

(1) If A < ®(A), then ® has a maximal fixed point above A.

(2} (a) If A < @(A), then ® has a smallest fixed point above A.
(b) If A < ®(A), A < B, and B(B)< B, then the smallest fixed point above A
will be below B,

(3) If ®(B)< B, then D has a largest fixed point below B.

ProoF. (1): Suppose 4 < ®(A4). Let D={Xe€C|4 < X and X < ®(X)}. We show
D has a maximal member and it is a fixed point of ®. Since every fixed point of ®
above A is in D, this will establish part (1).

Since 4 € D, D is not empty. We claim every chain in D has an upper bound in
D. Let KC D be a chain. Then K is a directed subset of C, so UK € C. Choose an
arbitrary Y € K. Then ¥ <K, so ®(Y)< ®UK). But Kc D, so Y < ®(¥). Then
Y < @(UK) and, since ¥ was arbitrary, UK < ®UK). Also A <UK; hence UK € D.

Since D is a nonempty partially ordered set in which each chain has an upper
bound, by Zorn’s lemma D has a maximal member, say M. Then M < §(M), so
also (M) < P(P(M)). Also A < M, so A < B(A)<P(M). Hence D(M)eD. If
M < (M), then ®(M) would dominate a maximal member of D; hence M = ®(M).

(2): Again suppose 4 < ®(A4). LetE={X € C| 4 < X and ®(X) < X }. We show
E has a smallest member and it is a fixed point of ®. Since every fixed point of @
above A is in E, this will establish part (2).

A KRIPKE-K1L.EENE SEMANTICS FOR LOGIC PROGRAMS 303

Let X< E. Then 4 < X, ®(4) < ®(X), and so A < ®(X). Further, ®(X) < X,
s0 B(B(X)) < B(X). It follows that ®(X) € E; E is closed under ®.

By part (1) E is not empty. Hence MNE € C. Certainly A <NE. Let Y € E. Then
NE<Y, so(E)<P(Y) < ¥. Since Y was arbitrary, ®("E) < NE; NE € E. Then
since E is closed under @, ®(NE) € E, so NE < ®("E). The conclusion now follows
easily.

(3): Suppose ®(B)< B. Let F= {Xe C|X< B and X < ®(X)). Since C has a
smallest member, F is not empty. And if is easy to check that F is closed under @.

F has an upper bound, B; hence by Lemma 6.1, UF & C. Trivially UF < B.
Suppose X €F. Then X < ®(X)=< ®(UF). Hence UF < ®(UF). We have UFeF.
Since F is closed under @, ®(UF)E€F, so ®(UF) <UF. Thus F contains the fixed
point UF. Since every fixed point below B is in F, UF must be the largest such. O

NOTE. Since a complete semilattice C must contain a smallest member, (1) and (2)
above guarantee the existence of a smallest and a maximal fixed point. There need
not be a largest member of C, so we cannot use (3) to conclude the existence of a
largest fixed point. The following proposition is as close as we can come,

Proposition 6.3. Let (C, < be a complete semilattice, and let ® be monotone on C.
Also let M be the family of maximal fixed points of P.

(1) A fixed point I of ® is intrinsic if and only if I <M.
(2} @ has a largest intrinsic fixed point.
(3) If A=®(A) and A <M, then the smallest fixed point of ® above A is
intrinsic,
(4) The family of intrinsic fixed points of ®, ordered by <, iy a complete lattice.
PROOCF. (1):

(a) Suppose 7 is an intrinsic fixed point of @. Choose an arbitrary member M of
M. Then I and M are compatible, so by Lemma 6.1, U{I, M} € C.

Now I=®(N<®U{L MDD and M=S(M)<dU{I, M}), soU{I, M}
< ®{1, M)). It follows by Proposition 6.1, part (1), that there is a maximal
fixed point, say N, above U{ I, M }.

M<U{I,M}<N, but M is maximal; hence M=U{I,M}=N. I<
U(1Z, M }; hence I < M. M was arbitrary; hence 7 <M.

(b) Suppose I is a fixed point of ® and 7 <M. We show I is intrinsic. Choose

: any fixed pomt F. Then F < ®(F), so by Proposition 6.1, part (1), there is a
maximal fixed point M above F. Then <M <M and F< M, so [and F
are compatible.

(2): Choose M € M. Then MM < M, so & M) < ®(M)= M. Thus &("M) < NM.
By Proposition 6.2, part (3), ¢ has a largest fixed point below (M, which is the
largest inirinsic fixed point by part (1).

(3): Suppose A <®(A) and A <M. As shown in the proof of part (2),
® (M) <M. Then Proposition 6.2, part (2Xb), says the smallest fixed point of &
above A will be below (M, and hence intrinsic by part (1).

(4): Let {I, <) be the family of intrinsic fixed points of @, ordered by the
ordering relation of {C, <) restricted to I. Note that M and U are defined in terms of
< and so do not necessarily have the same meaning in (I, <) as in {C, <).

304 MELVIN FITTING

We show every nonempty subset of I has a least upper bound in (I, <). Let
D € I be nonempty. It must be shown that there is in {C, <} a smallest intrinsic
fixed point above all members of D.

The argument in this paragraph takes place in {C, <). Since every member of D
is intrinsic, by part (2} D has an upper bound, and hence by Lemma 6.1 a least
upper bound UD € C. It is easy to show that UD < ®(UD) and UD <M. Also
& (M) < NM. Then Proposition 6.2, part (2}b), says ©® has a smallest fixed point,
D, in C above UD and which will be below MM, and hence intrinsic. Then D must
be the smallest intrinsic fixed point above all the membersof). O

Finally we discuss the notion of approximating to fixed points.

Proposition 6.4. Let {(C, <) be a complete semilattice and ® be monotone.

(1) Suppase S < ®(S).
(2) The following defines a sequence of members ®1°(S) of C for each
ordinal a:
©1°(8)=s,
e1rS)=2(21%(S)),
for limit ordinals A, ®1X8)= UJ ®1%(8).

a<k
{b) The sequence B 1 *(S) increases with & and converges to the smallest fixed
point of ® above .

(2) Suppose ®(S)< S.
(a) The following defimes a sequence of members ® | *(S) of C:
®.°%(s)=5,
21tH(s)=2(21%(S)),
for limit ordingls A, @ LX(S)= [®1(S).

a<A
(b) The sequence ® | (S) decreases as o increases and converges to the largest
fixed poimt of ® below 8.

PROOF, Omitted. O

Say L is the smallest member of C. Trivially L < ®(L), so by (1) the sequence
& 1 *(L) converges to the smallest fixed point of ®. The least ordinal a for which
® 1 *(L) is the least fixed point of ¥ is called the closwre ordinal of .

Again, say M is the family of maximal fixed points of ®. "M need not be a fixed
point (see Example IV in Section 8). But ®(NM) <M, so by Propositicn 6.3, part
(1), the sequence ® | *("M) converges to the largest intrinsic fixed point of ®.

7. OPERATORS ASSOCIATED WITH PROGRAMS

Let A be the collection of all basic sets. Then (A, €) is a partial ordering. And it is
easy to check that we have closure under infs, but not under sups, only under sups of
directed sets. Thus (A, €) is a complete semilattice.

A KRIPKE-KLEENE SEMANTICS FOR LOGIC PROGRAMS 305

If P is a logic program, we let P* be the program consisting of all clauses Cfl
where C € P, @ is a substitution, and C# is a statement (has no free variables). In
general P* will be infinite even if P is not.

Now, let P be a finite logic program; we associate with it an operator ®,:A— A
as follows. Let § € A, For an atomic statement A4 of L (not involving =),

TA € ®,(S) provided some clanse in P* has conclusion 4 and a premise that S
makes true;

FA € ©,(8) provided every clause in P* having conclusion A4 has a premise that
§ makes false,

If we had both T4, FA4 € ®,(5), then there would be some clause in P* whose
premise $ would make both true and false. If C is the conjunction of that premise,
TC = SY and FC € SY so by Proposition 3.4, § would not have been atomically
consistent. It follows that ®, maps members of A to members of A.

Lemma 7.1 Let 8§, and 8, be sets of signed atomic statements, and let X be a
statement. If S| makes X true (false) and S, C S,, then S, makes X true (false).

PROOF. Immediate from Proposition 3.2. [

It follows that for a logic program P, the operator @, is monoione, and hence the
results in Section 6 apply.

Exampie. Let P be the program
even(a) «
even(s(s(x))) « even(x)
even(x) « even{s{s(x)))-

For convenience we uses s” to denote n applications of s in what follows. Let
§ = {Teven(s(a)), Feven(a), Feven(s*(a))}. Then ®,(S)=
{Teven(a), Teven(s*(a)), Feven(s*(a))}.

The least fixed point of &, is {Teven(a), Teven(s’(a)), Teven(s*(a)),...}.
Also both of the following are fixed points:
{Teven(a), Teven(s%(a)), Teven(s*(a)),..., Teven(s(a)), Teven(s*(a)),...} and
{ Teven(a), Teven(s*(a)), Teven(s*(a)),..., Feven(s(a)), Feven(s*(a)),...}. Obvi-
ously both are maximal in A, so it follows by Proposition 6.3, part (1), that the
largest intrinsic fixed point of @, is alse its least fixed point.

Proposition 7.2. Let P be a finite logic program. S is a fixed point of ®, if and only if
S is a partial model for P.

PROOF. Straightforward, and omitted here. O
In [1] monotone operators of a different kind were associated with a narrower

class of logic programs than we are considering here. We look at the relationship
between the two kinds of operators on this class of programs.

306 MELVIN FITTING

Definition. A definite clause in the Apt-Van Emden sense is a clause of the form
A« B,...,B, nz,

where A, B,,..., B, are all atomic.

Apt and Van Emden associate an operator T, with a program P made up of
definite clauses in essentially the following way. Let § be a set of unsigned atomic
statements. Then, for an atomic statement A, 4 € T,(S) if there is some clause in
P+ of the form

A<B,...,B, with B,.. BES.
T, is monotone on (B, €3, where B is the collection of all sets of atomic
statements, a complete lattice.

Another definition from [1]. Let T be the operator associated with program P.
Then

TT.=T1%(2),
Tl . =T|%U),
where U is the set of all atomic statements, the top of (B, C), as @ is its bottom.

Proposition 7.3. For a logic program P made up of definite clauses, for all ordinals a,
(1) T1,={A[TA€ D, 1 (D)},
2 T, =U-{A|FA€®,1%2)).

PROOF. A straightforward inductionon . 0O

It follows from this and Apt and Van Emden’s paper that the finite failure set for
a program made up of definite clauses is { 4| F4 € @, T “(2)}.

8. EXAMPLES AND ANALOGIES

We give several simple logic programs that are useful for explicating the various
fixpoint notions introduced earlier. The program examples are closely related to
examples of statements given by Kripke to help illustrate the machinery of his theory
of truth. We point out resemblances as we go along,

Example I. Let P be the program
R(a) < R(a),

and let ®, be the associated aperator. Both {TR(a)} and { FR(a)} are maximal
fixed points of ®,. It follows by Proposition 6.3, part (1), that the only intrinsic fixed
point of &, is &, which is also the smallest fixed point.

The Kripke analog to this is the following statement (or rather, its formatized
counterpart):

R : Statement R is true.

In Kripke's theory some fixed points make statement R true, some make it false, so
it has no truth value in the least fixed point of Kripke’s operator.

A KRIPKE-KLEENE SEMANTICS FOR LOGIC PROGRAMS n7

Example II. This time let P be the program

R(a) < —R(a).
Let S be a fixed point of ®,. if TR(a)ES then F-R{a)=SY and hence
FR(a)€ ©p(S). Since § is a fixed point, FR{a}€ §. But since members of the
domain of @, are consistent sets of signed atomic statements, this is impossible.
Hence TR(a)¢ S. By a similar argument FR{a)& 8. Thus R(z) is given a truth
value in no fixed point for ®,; the only fixed point is @.

The Kripke analog now is the following statement:

R: Statement R is false.

Notice the essential difference between Examples I and II. In both cases R(a)
receives no truth value in the least fixed point. But in I it is because either value is
possible (in extensions of the least fixed point), while in I, neither value is possible,

Example II1. Let P be the program

R(a)« R{a) v -R(a).

The least fixed point of B, is easily seen to be @ ; hence in it, R(a) receives no truth
value. On the other hand, if M is a maximal fixed point, it will assign R(a) a truth
value; hence M will make R(a)V —R(a) true, and hence TR(a)E @, (M)= M.
Thus {TR(a)} is the only maximal fixed point, which is thus the largest intrinsic
fixed point.

The Kripke analog is the following:

R : Statement R is either true or false.

Example IV, Let P be the following program:

Q(a) < R{a)V-R(a)},

R{a)« R(a).

The least fixed point of ®,, once again, is <. Both {7Q(a), TR(e)} and
{TQ(a), FR(a)} are maximal fixed points. And it is easy to see that if M is any
maximal fixed point, either TR(¢)€M or FR(a)E M, and hence in any case
TQ(a)€ M. Thus, if M is the family of maximal fixed points, "M = {T0(a)}}.

On the other hand, if 7 is the largest (or any) intrinsic fixed peini, 7<M by
Proposition 6.3, part (1). Then I can assign no truth value to R{a). It follows that
®,(I) (that is, I) assigns no truth value to Q(a). Thus /=& and we have an
example in which the largest intrinsic fixed point 7 is strictly below MM.

The Kripke analog is the following pair of statements:

Q: Statement R is either true or false.

R: Statement R is true.

In Kripke's terms, ¢ is a statement that is true in every fixed point in which it has
a truth value, yet it has no infrinsic truth value.

The reader may enjoy determining the fixpoint structure of the operators associ-
ated with the following programs.
Example V.

Q(a}« R(a)V-R(a),

R{a) < =R(a).

308

MELVIN FITTING

Example V1,
Q(a) < R(a)V-R(a),
R(a) < ~0Q(a).
Example VII
Q(a) < —R(a),
R(a) < —Q(a).
Example VIII
Q(a) < R(a)V-R(a),
R(a)« @(a)v-0Q(a).
Finally, consider the following variation on Example IV; program P;:
R(a) < R{a)v-R(a),
R{a) <« R(a)-

We use this to give a simple example of Kleene logic manipulations.
As defined in Section 5, a partial model of P, is any basic set whose associated
full set satisfies D(P,), which is

R(x)={[x=aAR(a)] V[x=aA(R(a)V-R(a))]}.

Definition. Let us call a formula X = ¥ K-palid if every consistent set of signed
atomic statements satisfies X' =Y.

The following replacement resuli is easy to verify. It is dene by induction on
formula complexity, just as with the replacement theorem for classical logic.

If X, =X, is K-valid, and if Y, differs from Y, by the replacement of one or more
occurrences of X, by X,, then Y, = Y, is K-valid.

Also we have the following easy transitivity resnit,
If 8 satisfies X=Y and Y = Z, then § satisfies X = Z.

Now, the following are K-valid, where 4, B, and € are any formulas:
M (AAB)YV(AAC)=AA(BVO),
() Av(AvB)y=AVvB.

We give a small portion of the verification, by way of illustration. Suppose, for
simplicity, that A4, B, and C have no free variables, Let § be an arbitrary consistent
set of signed atomic statements, making the left-hand side of (1) false; we show §
also makes the right-hand side of § false.

By supposition, F(AAB)V(A A C)eSY. Since SY is downward saturated
(Proposition 3.3), F(4 A BYe SY and F(4 A C) €< SY. Again by downward satura-
tion, since F(A A BYE $Y, cither FA €SV or FBe SV, If F4 € SY, by upward
saturation, FA A (B V C)€ $Y, Suppose now that F4 & SY, Then FB< §Y, Simi-

A KRIPKE-KLEENE SEMANTICS FOR LOGIC FROGRAMS 309

larly FC € $Y. Then by upward saturation, FB vV C € SY; hence FA A (BV C)e §Y.
Thus in either case S makes A A (B v C) false.

Now, returning to the example. As special cases of (1) and (2), the following are
K-valid:

(AN (x=aAR(a)]V[x=a A(R{a)V - R(a))]

=x=aA[R(a)V(R(a)V —-R(a))],

(2) R(a)V (R(a)Y ~R(a))= R(a)V ~R(a).
It follows, using replacement and transitivity, that a full set S satisfies D(P,) if and
only if S satisfies

R(x)z=x=an(R(a)V-R(a)).
That is, S is a partial model for P, if and only if S is a partial model for

R{a)« R(a) Vv -R(a),
the program of Example III. Then, by Proposition 7.2, the operators associated with
P, and the program of Example III have the same fixed points.

Definition. We call two logic programs P, and P, equivalent if they have the same
partial models.

The logic programs of Examples I and II are not equivalent, though they have the
same smallest partial models. As we use it, equivalence requires that all partial
models be considered.

When converting one logic program into another using logic manipulations, the
possibility of no response must be taken into account. That is, three-valued logic
should be used. The rather trivial example above is sufficient to demonstrate that
such arguments are very much like classical ones, and are essentially no harder to
carry out. The reader may like to practice by establishing the equivalence of the
following two logic programs:

Q(a) < —R(a),

R(a) < -Q(a)
and

Q(a) < -R(a),

R{a) < R{a).

Finally, we use this notion of equivalence to establish a normal-form theorem.

Definition. A literal is an atomic formula or the negation of an atomic formula.

Proposition 8.1. Every logic program is equivalent to one in which clauses are of the
form .

A< B..., B,
where each of B,,..., B, is a literal.

PROOF. We give a series of replacements, each of which turns a program into an
equivalent one. We omit a proof of this equivalence. The replacements are the

310

MELVIN FITTING

expected ones; the point is, they preserve behavior in all partial models, not just in
the smallest ones, or in classical ones. The program

A<B,....B,CAD
can be replaced by

A«B,... ,B,CD.
The program

Ae<B,. ..., B, --C
can be replaced by

Ae«B,..B,C.
The program

A< B,,.... B ,~{CAD)
can be replaced by

A< By,...,B,,-C,

A<B,,...,B,,~D. O

9. EXCESS STRENGTH:

Izt [1] an example is given of a logic program for which the closure ordinal, in their
sense, is not « but @ + . The example carries over directly to the present setting.
The program is the following:

P(a) < P(x),Q(x),
P(s(x)) < P(x),
2(b) <,
Q(s(x)) < 2(x).

Let @ be the operator associated with this program. It is easily verified that, for
a<w,

@1 %(2)= {10(s*(b)), FQ(s*(a)), FP(s*(b))[k < o}
and
btet(g)=01 ‘“(Q)U{FP(sk(a))!k-(a}.

The least fixed pointis ® 1 “*“(3).

This example can be generalized, raising the closure ordinal. The question is, how
high can it be pushed? In fact, it follows from [2] that the limit is Church-Kleene &,
the first nonrecursive ordinal. We sketch an alternate proof that the machinery
introduced here allows the semantic characterization of the IT! relations, and thus is
much too powerful for computational purposes.

In [12] Smullyan presented elementary formal systems as a mechanism for defining
and proving things about the recursively enumerable relations. Elementary formal
systems are essentially notational variants of the definite clauses of Section 7. In [5]
the elementary-formal-system machinery was generalized in several directions. In

A KRIPKE-KLEENE SEMANTICS FOR LOGIC PROGRAMS 311

one, arbitrary data structures were allowed, and a connection with search compu-
tability established. In another, universal quantifiers were allowed (in premise parts
only), creating what were called w elementary formal systems. Connections were
established between w elementary formal systems and hyperelementary theory, a
generalization of hyperarithmetic theory. In particular, for a data structure of
numbers (or of terms that are Godel numberable), it was shown that the relations
characterizable by « elementary formal systems are the IT} relations (also see [4]).

Consequently, to establish our claim here it is enough to show how w elementary
formal systems can be translated into logic programs. In fact, all the elementary-for-
mal-system machinery is directly available. What remains is to show how to simulate
universal quantifiers, and that is straightforward. The following illusirates how it is
done. Consider the program

A(x) < —B(x),
B(x) < C(x,),
C(x, p)« =D(x, y).

It is easily verified that, if § is any partial model for this program, § satisfies
A{x)=(¥y)D(x, y).

We note that Kripke’s theory of truth displayed a similar Church-Kleene «,
phenomenon. See the remarks at the end of [8].

Let {C, <) be a complete semilattice. If D C C is directed and @ is monotone on
C, then {®(D)| D € D} is directed. We say @ is continuous if, for any directed set
D, ®(UD)=U{®(D)| D € D}. In the case of interest to us here—(A, C) where A
is the collection of consistent sets of signed atomic statements—continuity takes on
a simple character. For every S€A, {§,C 5|5, is finite} is directed, and S=
U{S, € S|, is finite}. So, if ¥ is monotone and continuous, Z< B(8) = Z = B(S,)
for some finite S, ¢ S. Conversely, if a mapping ® meets this condition, it follows
that it is monotone and continuous. Finally, such mappings have closure ordinal .

In more conventional programming languages, only programming constructs
whose interpretation is continuous are available. This is simply not the case with the
logic-programming machinery considered here. Continuity must be imposed as a
separate condition. We propose the following.

Cali a logic program P acceptable if ®, is a continuous map. Only acceptable
logic programs should be considered acceptable.

We conclude with the following, somewhat vague questions:

What are syntactic criteria for recognizing acceptable programs?

What is the relationship between a program being acceptable and Clark’s notion
of an allowed querry [3]?

What useful notions can be developed that are similar to acceptability, but
weaker? For example, if P is a program in which negation is not used, the
closure ordinal of @, need not be w, but the problem is with F-signed
statements. TX is in the least fixed point of @, if and only if TX € @, 1 “(J).
Are there other *“semiacceptable” notions like this?

312

MELVIN FITTING

REFERENCES

1.

[~ -]

10.

11.

12,

13
14,

Apt, K. R, and Van Emden, M. H., Contributions to the Theory of Logic Programming,
J. Assoc. Comput. Mach. 29:341-862 (1982).

. Blair, H., The Recursion-Theosetic Complexity of the Semantics of Predicate Logic as a

Programming Language, Inform. and Control 54:25-47 (1982).

. Clark, K. L, Negation as failure, in H. Gallaire and J. Minker (eds.), Logic and Data

Bases, Plenum, New York, 1978, pp. 293322,

. Fitting, M., Elementary Formal Systems for Hyperarithmetical Relations, Z. Marh.

Logik Grundlag. Math. 24:25-30 (1978).

. Fitting, M., Fundamentals of Generalized Recursion Theory, North-Holland, Amsterdam,

1981.

. Fitting, M., Notes on the Mathematical Aspects of Kripke’s Theory of Truth, Notre

Dame J. Formal Logic, to appear.

. Kleene, S. C., Introduction To Metamaithematics, Van Nostrand, New York, 1952,
. Kripke, 8., Outline of a Theory of Truth, J. Philos. 72:690-716 (1975).
, Manna, Z. and Shamir, A, The Theoretical Aspeci of the Optimal Fixed Point, SI4AM J.

Comput. 5:414--426 (1976).

Manna, Z. and Shamir, A., The optimal approach to recursive programs, Comm. ACM
20:824-831 (1977).

Mycroft, A., Logic Programs and Many-Valued Logic, in: M. Fontet and K. Mehlhorn
{eds.), STACS 84, Symposium of Theoretical Aspects of Computer Science, Proceedings,
Springer Lecture Notes in Computer Science, 166, pp. 274-286.

S;?su]lyan, R. M., Theory of Formal Systems, revised edition, Princeton U.P., Princeton,
1961.

Smullyan, R. M., First-Order Logic, Springer, Berlin, 1968,

Tarski, A, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math.
5:285--309 (1955).

