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Fixpoint Theories of Truth:
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Melvin Fitting

Abstract Kripke’s work on modal logic has been immensely influential. It hardly
needs remarking that this is not his only work. Here we address his pioneering
applications of fixpoint constructions to the theory of truth, and related work by
others. In his fundamental paper on this he explicitly described a modal version,
applying a fixpoint construction world by world within a modal frame. This can
certainly be carried out, and doubtless has been somewhere. Others have suggested a
variety of other extensions such as using the unit interval as the underlying space of
truth values, or using a four valued logic instead of three, or various combinations of
these. When many similar formal constructions have been proposed, one naturally
asks what is the common core. Is there some setting in which things can be proved
once and for all, with the various specific proposals seen as applications of this
common core. In fact this is the case, with bilattices providing the desired structure.
Much of such a development has already appeared in some form or other. It is the
purpose of this article to bring everything together, and also add a few things. We
present general results that, more or less, have everything currently in the fixpoint
literature as special cases. Fortunately this does not make things more complicated,
since the underlying proofs are essentially the same as they have always been. It is
just that they are being carried out in generality rather than in specificity.

1 Introduction

In some areas of philosophy it is not uncommon to call on mathematical tools to
help elucidate things. Saul Kripke is a master at this. Possible world semantics and
fixed point theories of truth are two famous examples. They do not really solve
philosophical problems themselves but, once having been introduced, they set the
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language and the conceptual structures we all use when these problems are debated.
When philosophical disagreements about modality or about a truth predicate arise
thesemathematical constructions generally serve the role of ground bass abovewhich
discussions play themselves out. Personally, I have always had an interest in tools as
such, and that is my subject now. This is most decidedly a technical paper.

The famous paper on truth, Kripke (1975), introduced a kind of truth revision
operator with the idea that fixed points of the operator were natural candidates for
ways an “is true” predicate might behave. Roughly, fixed points are interpretations of
a truth predicate that can not be bettered using the information they contain. A similar
idea appeared, essentially simultaneously, inMartin andWoodruff (1975). This paper
built on Kleene’s weak three valued logic, and used what are called maximal fixed
points. Kripke took a broader view and examined three different logics: Kleene’s
strong three valued logic, Kleene’s weak three valued logic, and supervaluations. In
addition he investigated a range of different kinds of fixed points, with particular
emphasis on the least one, but with the entire family playing a significant role. Both
1975 papers thought of classical logic as being at the heart of what they were doing,
but Kripke noted that further extensions could be made.

The present approach can be applied to languages containing modal operators. In this case
we do not merely consider truth, but we are given, in the usual style of modal model theory, a
system of possible worlds, and evaluate truth andT (x) in each possible world. The inductive
definition of the languages Lα approximating to the minimal fixed point must be modified
accordingly. We cannot give details here. Kripke (1975, pp. 712-713)

The choice of a three valued logic, while natural, has some technical draw-
backs. The underlying truth value structure is not that of a complete lattice, but
rather of a complete partial ordering. This makes the mathematics somewhat more
complicated—detailed machinery needed for the Kripke version can be found in
Fitting (1986). Visser (1984) built on the idea that the Belnap-Dunn four-valued
semantics for first degree entailment was an alternate, and better, setting for a fixed
point approach. Here the structure is a complete lattice, and this allows the use of the
remarkably simple Knaster-Tarski fixed point theorem. In addition the four-valued
semantics includes within its structure both Kleene’s strong three-valued logic and
Graham Priest’s logic of paradox, LP, which is also suitable for a Kripke-style de-
velopment. There have also been fixed point versions in which the underlying truth
value space was fuzzy. And this does not exhaust the list of similar developments.

In every variation or extension of the 1975 papers, results similar to those have
been shown, by similar methods. Whenever a mathematician sees formal structures
with similarities, about which similar things are established by similar methods,
that mathematician will ask, “what is the common ground of this similarity?” That
common ground should be defined as an object of interest in its own right, and all
these similar results should be proven just once, with all the rest as instances. For
fixed point theories of truth this common ground is the bilattice. Why bilattices?

Bilattices are structures with two interconnected ordering relations. One of the
relations can be used to give interpretations for logical connectives and quantifiers.
These interpretations turn out to bemonotonicwith respect to the other order relation,
and this fact can be used to show the existence fixed points for truth revision operators.
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Kripke’s work essentially took place in the simplest such example. He had only three
truth values, roughly, true, false, and no-value-yet-assigned. This is actually not quite
a full bilattice but it is the “consistent” part of the simplest one. In his setting one of
the ordering relations was simply: false is less than true, with no-value-yet-assigned
in between. Roughly speaking, this degree of truth ordering can be described by
saying that an overall increase is either a decrease of falsehood or an increase of
truth. The second ordering relation, the one for which monotonicity results obtain,
is that no-value-yet-assigned is below both false and true, in effect a degree of
information ordering.

Bilattices generalize the degree of truth and the degree of information orderings
mentioned above. It will be seen that the bilattice family includes many natural
examples that allow us to bring in modal logic, fuzzy logic, and other logics of
interest as particular applications of general results. Some years ago I made use of
bilattices in exactly this way in a series of papers: Fitting (1989, 1991, 1993, 1997,
2006), but things were rather spread out. The purpose of the present paper is to give
a unified presentation, in full generality, with the items just mentioned as special
cases, and with further applications provided as well.

The general structure of this paper is as follows.
In Sections 2 through 4 the essential facts about bilattices are presented, important

examples are given, and methods of constructing them are discussed. It is shown
how propositional logic, first order logic, and modal logics can be semantically
interpreted using bilattices as many valued truth value spaces.

In Section 5 several fixed point theorems are proved, all following from the
Knaster-Tarski theorem. This is not quite the fixed point theorem used by Kripke,
since his underlying algebraic structures were not complete lattices while ours are.
Moving to complete lattices has the advantage of simplifying the mathematics, while
still allowing the construction to proceed more or less as Kripke did it.

Section 6 adds a truth predicate to the language of logic we are using. The
fundamental monotonicity theorems are then proved.

Kripke worked with three valued logics. These can be thought of as based on
the consistent values of the four-valued Belnap-Dunn structure. In Section 7 the
notion of consistent value is generalized to bilattices, along with the notions of exact
(a generalization of the classical truth values), and anticonsistent (dual to that of
consistent).

Section 8 finally brings all the preceding together, extending Kripke’s treatments
of fixed point truth predicates using generalizations of Kleene’s strong and Kleene’s
weak three valued logics, and generalizations of supervaluations, as well as a brief
discussion involving asymmetric logics.

Section 9 examines some more specialized fixed point work, generalizing the
notions of intrinsic and maximal. It also brings in so-called alternating fixed points,
which actually first arose in computer science, but which have significance here as
well.
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2 Bilattices

There is an important feature common to fixpoint theories of truth generally: two
partial orderings are involved. There is a space of truth values, with its ordering on
degree of truth (or falsehood). There is also some truth revision operator involved,
for which one wants fixed points, so some notion of approximation to a fixed point
is desired. This always involves an ordering on what might be called the degree of
information. The structure common to fixpoint truth theories, then, has two partial
orderings, truth and information, somehow interconnected—and this is a bilattice.

Bilattices can have various conditions imposed. What we need here are bilattices
with quite a bit of structure. They should be complete, infinitarily interlaced bilattices,
with a negation and a conflation that commute. This is a lot of terminology, but the
underlying ideas are all quite natural and are explained below. But as background
we need lattices, bounded, and complete, so let us start there.

Definition 2.1 (Lattices) A partially ordered set is a a set with a binary relation, ≤,
that is reflexive (x ≤ x), transitive (x ≤ y and y ≤ z imply x ≤ z), and anti-symmetric
(x ≤ y and y ≤ x imply x = y).

A lattice is a partial ordering in which every pair of elements has a unique least
upper bound (join) and a unique greatest lower bound (meet). (It follows that least
upper and greatest lower bounds exist for every finite, non-empty set).

A bounded lattice is a lattice with a unique largest and a unique smallest element,
usually called top and bottom.

A lattice is complete if every set (not just the finite ones) has a unique least upper
bound and a unique greatest lower bound. (This implies boundedness, since the
greatest lower bound of the empty set is top, and the least upper bound of the empty
set is bottom.)

Now we move to our real subject, bilattices. A pre-bilattice is simply a structure
with two orderings. Once conditions connecting the two orderings are postulated, it
is standard to drop the ‘pre’ qualification.

Definition 2.2 (Bilattices) Terminology is as follows.

Pre-Bilattice: A pre-bilattice is a structure B = 〈B, ≤t, ≤k〉 with two lattice
orderings; informally ≤t is on degree of truth and ≤k is on degree of information.
Extreme Elements: It is common to assume each lattice ordering is bounded, with
a top and a bottom. We do so here. The smallest and largest members with
respect to the truth ordering ≤t will be denoted f and t, and with respect to the
information ordering ≤k , ⊥ and >.
Bilattice Operations: For x, y ∈ B their meet with respect to ≤t is denoted x ∧ y

(“∧” is simply read “and”), the join is denoted x ∨ y (“∨” is read “or”). With
respect to ≤k the meet is x ⊗ y (“⊗” is read “consensus”), and join is x ⊕ y

(“⊕” is read “gullability” or “accept all”).
Interlaced: It follows from the definitions of least upper and greatest lower bounds,
that each of the four bilattice operations is monotone with respect to its ordering.
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For example, if x ≤k x ′ and y ≤k y′ then x⊗y ≤k x ′⊗y′. A bilattice is interlaced
if each operation is monotone with respect to both orderings. As one example,
x ≤t x ′ and y ≤t y

′ then x ⊗ y ≤t x ′ ⊗ y′.
Negation: A bilattice has a negation if there is an involution ¬ : B → B that
reverses the truth ordering and leaves intact the information ordering. Thus
¬¬x = x and x ≤t y implies ¬y ≤t ¬x and x ≤k y implies ¬x ≤k ¬y.
Conflation: A bilattice has a conflation if there is an involution − : B → B that
reverses the information ordering and leaves intact the truth ordering. Thus
−− x = x and x ≤k y implies −y ≤k −x and x ≤t y implies −x ≤t −y. Negation
and conflation commute if always ¬ − x = −¬x.
Completeness: A bilattice is complete if both 〈B, ≤t〉 and 〈B, ≤k〉 are complete
lattices. We write

∧
S and

∨
S for the meet and join of set S with respect to the

≤t ordering, and
∏

S and
∑

S for meet and join with respect to the ≤k ordering.
Infinitarily Interlaced: A bilattice is infinitarily interlaced if all meets and joins
with respect to each ordering are monotone with respect to the other ordering,
as well as to their own. As one example, suppose we have an indexing set I, both
{ai | i ∈ I} and {bi | i ∈ I} are subsets of B, and ai ≤t bi for each i ∈ I. Then∏

i ai ≤t
∏

i bi .

The conditions above are not all independent. Completeness implies the existence
of tops and bottoms for both orderings, and infinitarily interlaced implies interlaced.
For applications in other areas not all of the conditions may be required, but we
will want all of them except sometimes conflation. It is a lot to keep saying that we
have a pre-bilattice that is interlaced, has a negation and a conflation that commute,
is complete, and is infinitarily interlaced. Consequently we specialize terminology
here. When reading other papers, please check usage there, to avoid confusion.

Terminology Convention 2.3 From now on a bilattice meeting all the conditions
above, omitting conflation, will simply be referred to here as a bilattice. This is
an abuse of terminology, to be sure, but it simplifies verbiage and should cause no
general problems. By a bilattice with conflation we mean a bilattice in which there
is a conflation operation that commutes with negation.

Thinking of a bilattice as a space of truth values, logical connectives for conjunc-
tion, disjunction, and negation can be interpreted using the truth operations of the
bilattice. It should be no problem if we use “∧” for both the logical connective and
for the bilattice operation, since context will sort things out. Similarly for “∨” and
“¬”. Quantifiers will be interpreted using the infinitary meet, “

∧
”, and join, “

∨
”,

operations of the truth ordering. The information operations will be used too, but for
purposes other than directly interpreting logical operations.

Example 2.4 Figure 1 shows an example of a bilattice with conflation, the simplest
one since it has only the four extreme values which every bilattice must have. It
is certainly the most important example, and we refer to Arieli and Avron (1998)
for some of the reasons why. It is standard to display bilattices using a double
Hasse diagram. The truth ordering is from left to right, and the information ordering
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is from bottom upwards. The bilattice FOUR derives from Belnap and Dunn,
see Belnap (1977), and its truth ordering provides the standard semantics for first
degree entailment (which will not play a role here). It is actually an example of
a distributive bilattice, that is, each operation distributes over all the others. For
instance, x∧(y⊕ z) = (x∧y)⊕(x∧z). It is not hard to show that distributivity implies
interlacing. The converse is not true. We will not mention distributivity further since
interlacing has turned out to be the more important concept for bilattices. Since
FOUR is interlaced it is trivially infinitarily interlaced, being finite. Negation is
left-right symmetry. Conflation is vertical symmetry. We will revisit this example
from time to time.

Fig. 1: The Bilattice FOUR

Proposition 2.5 (DeMorganLaws) In the following the left entries for are bilattices
generally, and the right are for bilattices with conflation. For a set S of bilattice
members we write ¬S for {¬x | x ∈ S}, and similarly for −S.

¬(x ∧ y) = ¬x ∨ ¬y

¬(x ∨ y) = ¬x ∧ ¬y

¬(x ⊗ y) = ¬x ⊗ ¬y

¬(x ⊕ y) = ¬x ⊕ ¬y

¬
∧

S =
∨
¬S

¬
∨

S =
∧
¬S

¬
∏

S =
∏
¬S

¬
∑

S =
∑
¬S

−(x ∧ y) = −x ∧ −y

−(x ∨ y) = −x ∨ −y

−(x ⊗ y) = −x ⊕ −y

−(x ⊕ y) = −x ⊗ −y

−
∧

S =
∧
−S

−
∨

S =
∨
−S

−
∏

S =
∑
−S

−
∑

S =
∏
−S

The following says the four extreme members of a bilattice are always tightly
connected. It can be proved directly but here it is a special case of Proposition 5.8.

Proposition 2.6 In any bilattice: t ⊗ f = ⊥, t ⊕ f = >, > ∧ ⊥ = f, and > ∨ ⊥ = t.
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3 Constructing Bilattices

There is a universal way of constructing bilattices, and also a function space con-
struction that is not universal but is essential for what we will do. This does not
exhaust the subject of bilattice constructions, but is sufficient for our needs here.

3.1 Bilattice Products

We are about to present an intuitive and universal construction for bilattices. It
entered the bilattice community, with various names, through Ginsberg (1988),
Fitting (1990, 1991), Avron (1996), Pynko (2000). It turns out that, in fact, it was
previously known using different terminology and in a different context, see Gargov
(1999), Davey (2013). We are primarily interested in a special case here, because of
our Terminology Convention 2.3, but we do mention more general versions. In the
following, note the reversal involving the second component, for the ≤t ordering.

Definition 3.1 (Bilattice Product) Let L1 = 〈L1, ≤1〉 and L2 = 〈L2 ≤2〉 be two
lattices. The bilattice product, L1 � L2, is the structure 〈L1 × L2, ≤t, ≤k〉 where

1. 〈x1, y1〉 ≤t 〈x2, y2〉 if x1 ≤1 x2 and y2 ≤2 y1,
2. 〈x1, y1〉 ≤k 〈x2, y2〉 if x1 ≤1 x2 and y1 ≤2 y2.

There is a natural intuition behind this. Think of L1 as representing degree of
evidence for some proposition, and L2 as representing degree of evidence against.
These need not be measured the same way. A value in a bilattice product separately
records evidence for and evidence against. Degree of information (the ≤k ordering)
goes up if we have the same or more evidence both for and against. Degree of truth
(the ≤t ordering) goes up if evidence for goes up while evidence against goes down.

The bilattice product construction is quite versatile. In the following discussion
we use u1 and t1 for meet and join of lattice L1 and u2 and t2 for meet and join
of lattice L2. Likewise if the lattices are bounded, we use 01 and 11 for bottom and
top of L1, and similarly for L2. If the lattices are complete we use ⊔1 and ⊔

1 for the
meet and join of arbitrary subsets of L1 and similarly for L2.

1. L1 � L2 is a lattice with respect to both orderings, with the following operations.

〈x1, y1〉 ⊕ 〈x2, y2〉 = 〈x1 t1 x2, y1 t2 y2〉

〈x1, y1〉 ⊗ 〈x2, y2〉 = 〈x1 u1 x2, y1 u2 y2〉

〈x1, y1〉 ∨ 〈x2, y2〉 = 〈x1 t1 x2, y1 u2 y2〉

〈x1, y1〉 ∧ 〈x2, y2〉 = 〈x1 u1 x2, y1 t2 y2〉

2. L1 � L2 always meets the interlacing conditions.
3. If L1 and L2 are bounded lattices L1 � L2 has extreme elements: 〈01, 02〉 and
〈11, 12〉 for the information ordering; 〈01, 12〉 and 〈11, 02〉 for the truth ordering.
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4. If L1 and L2 are complete lattices then L1 � L2 is a complete bilattice, with the
following infinitary operations.∑

S = 〈
⊔

1{x | 〈x, y〉 ∈ S where y ∈ L2},
⊔

2{y | 〈x, y〉 ∈ S where x ∈ L1}〉∏
S = 〈 ⊔1{x | 〈x, y〉 ∈ S where y ∈ L2}, ⊔2{y | 〈x, y〉 ∈ S where x ∈ L1}〉∨
S = 〈

⊔
1{x | 〈x, y〉 ∈ S where y ∈ L2}, ⊔2{y | 〈x, y〉 ∈ S where x ∈ L1}〉∧

S = 〈 ⊔1{x | 〈x, y〉 ∈ S where y ∈ L2},
⊔

2{y | 〈x, y〉 ∈ S where x ∈ L1}〉

5. If L1 and L2 are complete lattices then L1 � L2 is infinitarily interlaced.
6. If L1 = L2 = L, that is, if the two lattices are the same, then L� L has a negation,
¬〈x, y〉 = 〈y, x〉.

Conflation needs some additional machinery.

Definition 3.2 (De Morgan Lattice) A De Morgan lattice is a bounded distributive
lattice (Definition 2.1) with a De Morgan involution operation x 7→ x that is order
reversing, x ≤ y implies y ≤ x, and is an involution, x = x. Since we will never need
distributivity, we call a structure a non-distributive De Morgan lattice if it meets all
the conditions except possibly for the distributive laws.

It is easy to show DeMorgan laws hold in any non-distributive DeMorgan lattice.
One more item is now added to the list above.

7. If L1 = L2 = L is a non-distributive De Morgan lattice, then L � L has a
conflation, −〈x, y〉 = 〈y, x〉, and it commutes with negation, item 6.

We now have a simple way of constructing bilattices. It is completely general. For
instance, consider items 2 and 3. In the converse direction it can be shown that every
bilattice with extreme elements that meets the interlacing conditions is isomorphic
to L1 � L2 where both L1 and L2 are bounded lattices. And so on. Thus we actually
have full representation theorems.

3.2 Function Space Bilattices

This is another way of constructing bilattices that will be of much use to us. It is
not universal, unlike bilattice product, but it does help to unify several constructions
that have appeared in the literature on fixed point theories of truth.

Definition 3.3 (Function Space Bilattice) Let B = 〈B, ≤t, ≤k〉 be a bilattice, and
A be a non-empty set. The function space BA = 〈BA, ≤t, ≤k〉 is a bilattice in which
we take as domain the set consisting of all functions fromA toB, and with orderings
that are pointwise, which means that for f , g ∈ BA:

1. f ≤t g iff f (x) ≤t g(x) for all x ∈ A,
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2. f ≤k g iff f (x) ≤k g(x) for all x ∈ A.

Notice that we have used ≤t and ≤k to denote partial orderings in both B and
BA . This keeps notation relatively simple, and context should always clarify which
bilattice is meant. A function space bilattice inherits properties from the underlying
bilattice. We leave verifications of the following to you.

1. BA is a lattice with respect to both orderings. For instance, the meet with respect
to ≤k is easily verified to be the function given by ( f ⊕ g)(x) = f (x) ⊕ g(x), and
similarly with the other meet and both joins.

2. BA is interlaced (since B is).
3. BA is bounded with respect to both orderings. For instance, the least member

of BA in the pointwise ≤k ordering is the function that is identically ⊥ on A,
where ⊥ is the least member of B in the ≤k ordering on B. Similarly for the
other three extreme elements.

4. BA is a complete bilattice (since B is). If S ⊆ BA ,
∑

S is the function such that
(
∑

S)(x) =
∑
{ f (x) | f ∈ S}, and similarly for the other cases.

5. BA is infinitarily interlaced.
6. BA has a negation,and (¬ f )(x) = ¬( f (x)).
7. If B has a conflation that commutes with negation, the same is true of BA ,and
(− f )(x) = −( f (x)).

If we have a space of truth values that constitutes a bilattice, such as FOUR, the
space of valuations in this bilattice, which is a function space, is actually a bilattice.
It is here that most of the fixpoint machinery is actually used.

4 Bilattice Examples

We have already seen the most basic bilattice example, FOUR, in Figure 1, which is
an easy bilattice product construction. Start with the simplest Boolean algebra with
underlying space {0, 1}, and with 0 ≤ 1. Identifying 0 with falsehood and 1 with
truth, the meet and join are those of classical propositional logic. There is a natural
De Morgan involution, switch 0 and 1—this corresponds to classical negation. The
bilattice product of this structure with itself is, isomorphically, FOUR, with ⊥
being 〈0, 0〉, > being 〈1, 1〉, f as 〈0, 1〉 and t as 〈1, 0〉. We now move on to several
less familiar examples.

Example 4.1 (Bilattices of Sets of Agents) Suppose we have two sets of agents,
L1 and L2. Members of L1 get to vote that a particular informal proof of some
proposition is correct, or else offer no opinion. Members of L2 play a similar role
with respect to the correctness of some informally presented countermodel to the
proposition. These are our ‘for’ and ‘against’ agents. The two kinds of agents could
even be drawn from different populations. A natural lattice ordering relation is simply
subset, so degree goes up if more agents join a group. We have no requirement that
everybody speaks up on every proposition; indeed there might be no agents either for
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or against some proposition. We have no requirement that agents be consistent, some
might belong to both groups and decide to accept both a proof and a countermodel.
This can easily happen since both proofs and countermodels might be allowed to
be informal, so there is the possibility of error or misunderstanding. At any rate, a
member of the bilattice product L1 � L2 encodes what set of agents is for, and what
set is against.

Degree of information increases if more agents join one or another (or both) of
the sets. Degree of truth goes up if more join the set for or leave the set against. The
bottom in the truth ordering is 〈∅, L2〉, nobody accepts an informal proof, everybody
accepts a countermodel. Similarly for the other extreme bilattice values.

If the sets of agents, for and against, are drawn from the same population, that
is if L1 = L2, then negation simply reverses the positions of those who are for and
those who are against. Further, if L1 = L2 the appropriate De Morgan involution is
relative compliment with respect to the entire set of agents. Then conflation in the
bilattice product of agents replaces the set of agents for something with the set of
those who were not against it, and the set against with the set of those who were not
for.
FOUR can be thought of as an agent bilattice with a single agent. There are two

agent subsets, none and all, and these can be identified with the members of {0, 1}.

Fig. 2: The Bilattice NINE
Fig. 3: The Bilattice SIXTEEN

Example 4.2 (Bilattice NINE) This example is similar to FOUR, but now start
with the space {0, 1

2, 1} with the standard numerical ordering. The bilattice product
of this with itself is in Figure 2. Properties are similar to those of FOUR. It can be
thought of as a bilttice built on Kleene’s strong three valued logic, or Priest’s logic
of paradox.

Example 4.3 (Bilattice SIXTEEN ) Start with the lattice from FOUR just using
the ≤t ordering. The bilattice product of this with itself is shown in Figure 3. It has
features of interest that will be discussed from time to time.
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Example 4.4 (A Fuzzy Bilattice) Examples so far have been finite. All have been
complete bilattices, simply because they are finite. Nowwe look at a ‘fuzzy’ example.
Consider the closed unit real interval, [0, 1], with the usual numerical ordering. Form
the bilattice product of this with itself, so a bilattice truth value is a pair 〈x, y〉where x
can be thought of as a degree of belief in some proposition, and y as a corresponding
degree of doubt. (Think of belief and doubt as being independently arrived at.)
Loosely, one can think of it as FOUR, but ‘filled in’. This is a bilattice that is
complete, not because it is finite, but because the unit interval ordering is a complete
one. It is also a bilattice with conflation, where −〈x, y〉 = 〈1 − y, 1 − x〉.

Example 4.5 (Propositional Valuations) The previous examples made use of bi-
lattice products. Function space bilattices also arise quite naturally. Let A be a
set of propositional atoms, from which formulas of propositional language L are
built using connectives ∧, ∨, and ¬. Let our space of truth values be a bilattice B,
for instance any of the examples discussed above. A propositional valuation is any
mapping from the set of atoms A, to the bilattice B, an arbitrary member of BA .
This gives us a bilattice, 〈BA, ≤t, ≤k〉, using pointwise orderings as described in
Section 3.2. For propositional valuations v and w we have v ≤k w if v(P) ≤k w(P)
for every propositional letter P, and similarly for ≤t .

One could also consider a function space bilattice BL , where L is the entire set
of propositional formulas, and not just the atomic ones. This is not of much interest
as a whole, but it does have an important subspace. Each propositional valuation
extends to all formulas in a unique way so that the following conditions are met,
using the truth operations from the bilattice B in place of conventional truth tables.

v(X ∧ Y ) = v(X) ∧ v(Y )

v(X ∨ Y ) = v(X) ∨ v(Y )

v(¬X) = ¬v(X).

On the left we have operation symbols of the languageL, and on the right operations
from the truth ordering in the bilatticeB. Note that we have used the same notation for
valuations in BA and for their extensions in BL , relying on context to clarify which
is meant. Valuations, extended as above to mappings on all formulas, constitute an
obvious natural subspace of the bilatticeBL . Of the two bilattice orderings restricted
to this subspace, ≤t is not interesting (because of the behavior of negation), but ≤k
most decidedly is of interest.

Proposition 4.6 (Propositional Monotonicity) For propositional valuations
v,w ∈ BA ,

v ≤k w in BA if and only if v ≤k w in BL .

Stated more explicitly, for valuations v and w, extended to all formulas as above,
v(P) ≤k w(P) for all propositional atoms P if and only if v(X) ≤k w(X) for all
formulas X . The implication from right to left is trivial. The implication from left to
right is shown by a simple induction on formula complexity, and we leave it to you.
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Example 4.7 (Quantificational Valuations) Let formal language L now be first-
order, with relation symbols but no constant or function symbols (for convenience
only). Assume language L has both universal and existential quantifiers. Let D
be some non-empty domain, which we think of quantifiers as ranging over. Doing
things a little differently from the standard (but following Smullyan (1968)) rather
than allowing free variables to occur in formulas and working with a function
assigning members of the domain to those free variables, we simply allow members
of the domain to occur directly in formulas. By a D sentence we mean a formula
of L in which all free variable occurrences have been replaced with members of
D—we write L(D) for the set of all D sentences. Atomic D sentences are of the
form P(a1, . . . , an) where P is a relation symbol and a1, . . . , an are members of D.
We call the set of atomic D sentences A(D).

Let B be a bilattice of intended truth values. A quantificational valuation in B is
a mapping from atomic D sentences to members of B, a member of function space
bilattice BA(D). Quantificational valuation v can be extended to all D sentences,
that is, to a mapping in BL(D). Propositional connectives are handled exactly as in
Example 4.5. The quantificational cases are as follows.

v(∀xF(x)) =
∧
{v(F(d)) | d ∈ D}

v(∃xF(x)) =
∨
{v(F(d)) | d ∈ D}

Proposition 4.6 extends to the following, whose proof we again leave to you.

Proposition 4.8 (Quantificational Monotonicity) For quantificational valuations
v,w ∈ BA(D),

v ≤k w in BA(D) if and only if v ≤k w in BL(D).

Example 4.9 (Modal Valuations) Both propositional and quantified languages ex-
tend to include modal operators. We only discuss the quantified version, and we
assume we have constant domain models. Modifying the work to allow varying
domain is not hard, but the essential ideas are more easily discerned in the present,
simpler, setting.We start with the first-order machinery of Example 4.7, a bilatticeB,
a domainD of quantification, and a setA(D) of atomicD sentences incorporating
members ofD directly. The first-order language is extended with modal operators �
and ♦ in the usual way. We continue to use L(D) for the set ofD sentences, but now
allowing modal operators. As new semantic machinery suppose we have a modal
frame, F = 〈G,R〉, where G is a non-empty set of possible worlds and R is a binary
accessibility relation. We assume the basics of possible world semantics for modal
logics are understood.

Form the function space bilattice BG , with pointwise orderings. Since BG is a
bilattice, (BG)A(D) is also a bilattice, of the kind discussed in Example 4.7 except
that the underlying bilattice is now itself a function space bilattice. A member of
this bilattice is a valuation function v : A(D) → (G → B) that assigns to each
atomicD sentence, and each possible world, a truth value in the bilattice B. We call
members of this quantificational modal valuations.
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Suppose v ∈ (BG)A(D); in Example 4.5 we said how to extend v at the atomic
level, adding cases involving propositional connectives, and this carries over to here.
We sketch how it gives us the appropriate behavior for propositional connectives in
the modal setting as well. Suppose that v ∈ (BG)L(D) meets the conditions for ∧,
∨, and ¬ from Example 4.5. Then v(X ∧ Y ) = v(X) ∧ v(Y ). But v maps to BG , so
v(X ∧ Y ) is a function from G to B, and similarly for v(X) and v(Y ). Then for a
possible world Γ ∈ G, v(X ∧ Y )(Γ) = (v(X) ∧ v(Y ))(Γ). The ∧ on the right is an
operator of BG , and behaves pointwise, so (v(X) ∧ v(Y ))(Γ) = v(X)(Γ) ∧ v(Y )(Γ).
Thus we have v(X ∧ Y )(Γ) = v(X)(Γ) ∧ v(Y )(Γ). This is the usual way conjunction
is understood in a possible world model. Disjunction and negation are similar.

The quantificational cases are as in Example 4.7, and here too we inherit appro-
priate world by world behavior automatically. For instance, we have the following:
v(∀xϕ(x))(Γ) =

∧
{v(ϕ(d))(Γ) | d ∈ D}, and similarly for ∃.

What must be added is extension conditions to cover the modal operators. Recall,
we are working with respect to a frame F = 〈G,R〉. We now add the following, for
each Γ ∈ G, each v ∈ (BG)A(D) and each D sentence X .

v(�X)(Γ) =
∧
{v(X)(∆) | ∆ ∈ G and ΓR∆}

v(♦X)(Γ) =
∨
{v(X)(∆) | ∆ ∈ G and ΓR∆}

We have covered all cases for extending a quantificational modal valuation v ∈

(BG)A(D) to v ∈ (BG)L(D), allowing modal operators. It would be a good exercise
to show that v(¬�¬X)(Γ) = v(♦X)(Γ) for every D sentence X and every Γ ∈ G.

Propositions 4.6 and 4.8 now easily extend to the following.

Proposition 4.10 (ModalMonotonicity)Using a modal first-order languageL and
a frame F = 〈G,R〉, for modal valuations v,w ∈ (BG)A(D),

v ≤k w in (BG)A(D) if and only if v ≤k w in (BG)L(D).

It is clear that a rich variety of bilattices is available. FOUR and its various
subspaces is often the setting for fixed point theories of truth but as we will see,
essentially all thework applies quite generally.We suggest that Example 4.1 involving
sets of agents is worth considering as a possible setting for thinking about the
mutual understanding of a truth predicate in a community. This might be particularly
interesting when the language involves modalities, perhaps even multimodalities,
with a knowledge modal operator for each agent. Combining modal models with
fuzzy bilattices, Example 4.4, is worth investigating. We leave such things to others.

5 Some Fixed Point Theorems

The application of fixed point theorems to theories of truth originated in Kripke
(1975) and Martin and Woodruff (1975), but details are quite different between the
two papers. Kripke used a least fixed point construction while Martin and Woodruff
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relied onmaximal fixed points. Neither worked in a full bilattice setting, but rather in
a substructure of FOUR that we will be generalizing here. In a bilattice framework
the simple and elegant fixed point result of Knaster and Tarski is the one that is most
pertinent, and is what we will use here. This has, for its setting, a complete lattice,
see Definition 2.1. In this section we begin with lattices, then move to bilattices. On
the one hand we do not need the full Knaster-Tarski theorem, which has to do with
the structure of the entire set of fixed points of a monotone mapping. All we need
are greatest and least fixed points, and we skip the rest. On the other hand we will
need both the original version and some simple generalizations.

Definition 5.1 Let 〈L, ≤〉 be a lattice. A mapping f : L → L is monotone if it is
order preserving, that is, if x ≤ y then f (x) ≤ f (y). A member x ∈ L is: a fixed point
of f if f (x) = x, a pre-fixed point if f (x) ≤ x, and a post-fixed point if x ≤ f (x).

Proposition 5.2 (Knaster-Tarski) Let f be a monotone mapping on a complete
lattice. Then:

1. f has a smallest and a greatest fixed point.
2. If a is a post-fixed point of f then there is a fixed point of f , least above a.
3. If b is a pre-fixed point of f then there is a fixed point of f , greatest below b.

The Knaster-Tarski theorem has two quite different proofs. One is short, self-
contained, and somewhat magical; the other is substantially longer but provides more
intuition. It is not self-contained, making use of facts from set theory concerning
ordinal numbers.We sketch the longer proof, summarizing things properly belonging
to set theory. We begin with ordinal numbers.

Proof Sketch The sequence of ordinals starts with the natural numbers, 0, 1, 2, . . .,
followed by the smallest infinite ordinal, ω, which is followed by ω + 1, ω + 2 and
so on. After these come the second infinite ordinal, ω · 2, then ω · 2 + 1, ω · 2 + 2,
and so on (a phrase that covers a lot). The ordinal ω is the first limit ordinal, ω · 2
is the second, with infinitely many limit ordinals beyond. Ordinals divide into three
groups: successor ordinals, which can be written as α + 1 where α is the immediate
predecessor; limit ordinals, with predecessors but no immediate one; and 0, the
only ordinal that is neither a limit ordinal nor a successor ordinal. The sequence of
ordinals is not itself a set and so cannot be placed in a 1-1 correspondence with any
set.

We begin with part 2. Let 〈L, ≤〉 be a complete lattice (assumed to be a set), with
f : L → L a monotone function, and a a post-fixed point of f , that is a ≤ f (a). We
sketch why there is a fixed point for f above a, least among fixed points above a.

Use transfinite recursion to define a mapping ϕ from the class of ordinals to L,
call it an ordinal sequence.

ϕ(0) = a a post-fixed point of f

ϕ(α + 1) = f (ϕ(α)) for a successor ordinal α + 1

ϕ(λ) =
∨
{ϕ(α) | α < λ} for a limit ordinal λ
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The key fact about ϕ is that it is monotonic, in the sense that if α and β are ordinals
and α ≤ β, then in lattice L we have ϕ(α) ≤ ϕ(β). The proof of this is set theoretic
and a bit technical so we omit it. It follows that the sequence ϕ(α) increases in L
as ordinal α increases. That increase cannot be strict because otherwise we would
be pairing the ordinals up in a 1-1 fashion with a subset of L, but the collection of
ordinals cannot be paired up with the members of a set. Then at some point we must
have ϕ(α) = ϕ(α+1). Let α0 be the least ordinal for which this happens. Then ϕ(α0)
is a fixed point of f because f (ϕ(α0)) = ϕ(α0 + 1) = ϕ(α0). Further, ϕ(α0) is the
least fixed point for f above a, because if F is any fixed point of f above a then
ϕ(α) ≤ F for all ordinals, so in particular, ϕ(α0) ≤ F. This is shown by transfinite
induction on α, and again we omit the set theoretic proof.

Part 3 has a similar proof, but with everything dualized.
Part 1 now follows since ⊥ is a post-fixed point of f with every member of the

lattice above it, and dually > is a pre-fixed point with every member below it. �

We not only have the existence of least and greatest fixed points in a complete
lattice, but a way of proving that they have certain properties. Standard terminology:
in a partial ordering two members x and y are called comparable if x ≤ y or y ≤ x,
and a subset is a chain if any two members are comparable.

Definition 5.3 Let 〈L, ≤〉 be a complete lattice, f be a monotone function on L, a
be a post-fixed point of f , and P be a subset of L. We say P is f -inductive starting
at a if:

1. a ∈ P;
2. If x ∈ P then f (x) ∈ P;
3. P is closed under chain sups, meaning that if S ⊆ P and S is a chain then∨

S ∈ P.

Corollary 5.4 If f is a monotone function on complete lattice L, a is a post-fixed
point of f , and P ⊆ L is f -inductive starting at a, then the least fixed point of f
above a is in P.

Proof Here is the idea. Using the hypotheses it is not hard to show all members of
the ordinal sequence constructed in the proof of Proposition 5.2 are in P, so then the
least fixed point of f above a is in P, since it is in the ordinal sequence. �

We note without proof that the Corollary dualizes to greatest fixed points.

There is a variation on the Knaster-Tarski result that we will need. Instead of
finding a fixed point for a function, one seeks two values between which it oscillates.
This requires not monotonicity, but anti-monotonicity.

Definition 5.5 Let 〈L, ≤〉 be a lattice. A mapping f : L → L is anti-monotone if
it is order reversing, x ≤ y implies f (y) ≤ f (x). An alternating fixpoint pair for f
is a pair x and y such that f (x) = y and f (y) = x. An alternating fixpoint pair is
extremal if any other alternating fixpoint pair is between them.
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Proposition 5.6 Every anti-monotonemapping on a complete lattice has an extremal
alternating fixpoint pair.

Proof This can be proved directly, but there is a simple derivation from Proposi-
tion 5.2. Let 〈L, ≤〉 be a complete lattice and f : L → L be anti-monotone. The
function f 2(x) = f ( f (x)) is obviously monotone, and so has fixed points; call the set
of them F . Since f 2 has a least and a greatest fixed point then F has a least member,
s, and a greatest, S. We show these are an extremal alternating fixpoint pair for f .

We first show that f maps F to F . For, suppose x ∈ F ; then f 2( f (x)) =
f ( f 2(x)) = f (x), so f (x) is a fixed point of f 2, and hence in F .

Since s ∈ F then f (s) ∈ F . We show f (s) is largest in F , and hence is S. Let x
be an arbitrary member of F . Then f (x) ∈ F , so s ≤ f (x). By anti-monotonicity,
f ( f (x)) ≤ f (s), so x ≤ f (s). Since x was arbitrary, f (s) = S. Then also f (S) =
f ( f (s)) = s, so f alternates between s and S.

Finally s and S are extremal. Suppose x and y are an alternating fixpoint pair for
f . Then f 2(x) = f ( f (x)) = f (y) = x so x is a fixpoint of f 2. Similarly for y. Then
x and y are in F and so are between s and S. �

We now move on to our main subject, bilattices. Recall we understand the term
to include completeness with respect to each lattice order, as well as infinitary
interlacing conditions connecting the orderings. We begin with a technical lemma
whose proof is a prime example of interlacing conditions at work. It is essential for
the subsequent results.

Lemma 5.7 (From Avron (1996)) In a bilattice B:

1. For any a ≤t b we have a ≤t x ≤t b if and only if a ⊗ b ≤k x ≤k a ⊕ b;
2. For any a ≤k b we have a ≤k x ≤k b if and only if a ∧ b ≤t x ≤t a ∨ b.

Proof We show the first item; the second is similar. Assume throughout that a ≤t b.

1. left-right: Suppose a ≤t x ≤t b. By interlacing, a ⊗ (a ⊗ b) ≤t x ⊗ (a ⊗ b) ≤t
b ⊗ (a ⊗ b), or a ⊗ b ≤t x ⊗ (a ⊗ b) ≤t a ⊗ b. Then x ⊗ (a ⊗ b) = a ⊗ b, and so
a ⊗ b ≤k x. Similarly x ≤k a ⊕ b by an argument using ⊕ instead of ⊗.

2. right-left: Suppose a ⊗ b ≤k x ≤k a ⊕ b. By interlacing, a ∧ (a ⊗ b) ≤k
a ∧ x ≤k a ∧ (a ⊕ b). Since a ≤t b, by interlacing a ⊗ a ≤t a ⊗ b, or a ≤t a ⊗ b,
and hence a ∧ (a ⊗ b) = a. Similarly a ∧ (a ⊕ b) = a. Combining all this,
a = a∧ (a ⊗ b) ≤k a∧ x ≤k a∧ (a ⊕ b) = a. Then a∧ x = a, and hence a ≤t x.
There is a similar proof that x ≤t b. �

Proposition 5.8 Suppose 〈B, ≤t, ≤k〉 is a bilattice, and f : B → B is a mapping
that is monotone in both orderings. By the Knaster-Tarski theorem f has a least and
greatest fixed point with respect to each ordering. We use pt , Pt for smallest and
biggest fixed point with respect to ≤t , and pk , Pk for smallest and biggest with respect
to ≤k . The following hold: Pt ⊗ pt = pk , Pt ⊕ pt = Pk , Pk ∧ pk = pt , Pk ∨ pk = Pt .
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Proof pt and Pt are least and greatest fixed points with respect to ≤t , and pk is a
fixed point, so pt ≤t pk ≤t Pt . By Lemma 5.7, pt ⊗ Pt ≤k pk ≤k pt ⊕ Pt . Since pk
is least fixed point under ≤k , and pt and Pt are fixed points, pk ≤k pt and pk ≤k Pt ,
so pk ≤k pt ⊗ Pt . Combining, Pt ⊗ pt = pk . The other three are similar. �

As a special case of Proposition 5.8, let f be the identity map on B. Obviously
this is monotone in both bilattice orderings, and everything is a fixed point, so the
least and greatest fixed points under ≤t are f and t, while least and greatest under ≤k
are ⊥ and >. Now Proposition 2.6 is an immediate consequence.

A version of Proposition 5.8 that we will need in Section 9.3 can now be obtained
for the alternating case.

Proposition 5.9 Suppose 〈B, ≤t, ≤k〉 is a bilattice and f : B → B is a mapping
that is monotone with respect to ≤k but anti-monotone with respect to ≤t . Let pk and
Pk be the least and greatest fixed points with respect to ≤k , and let pt and Pt be the
smaller and the larger of the extremal alternating fixpoint pair with respect to ≤t .
The following hold: Pt ⊗ pt = pk , Pt ⊕ pt = Pk . Pk ∧ pk = pt , Pk ∨ pk = Pt .

Proof Very simply, the mapping f 2 is monotone with respect to both orderings, and
now use Proposition 5.8. �

6 Adding a Truth Predicate

We want to have a formal language that can speak about its own syntax. There are
several ways of doing this; we use the traditional one, with an arithmetic language
that talks about itself via Gödel numbering. Details are not particularly important.
We take advantage of a point that Kripke has emphasized, and use relation symbols
for addition and multiplication instead of function symbols. This has the nice con-
sequence that every number has a unique term in the language that names it. In the
following discussion we use symbols informally as names for themselves.

From now on assume L is a first-order language with a constant symbol 0 and a
unary function symbol for successor—we write successor of t as t+. The only terms
of the language are the open ones, x++· · ·+ where x is a variable, and the closed ones,
0++· · ·+, numerals. The number of successor symbols is allowed to be 0. We also
assume we have a binary relation symbol =, and two ternary relation symbols A and
M , intended to represent addition and multiplication.

First-order formulas are built up using propositional connectives, ∧, ∨, ¬, and
quantifiers, ∀, ∃, in the standard way and, if modality is being considered, also using
� and ♦. When evaluating formulas we will make use of the standard model of
arithmetic to assign meaning to the non-logical symbols, and to supply the range
for the quantifiers. It is possible to have additional symbols to represent ‘real world’
things or relations, but this adds complexity without providing any fundamental new
insights, so we avoid it here. Truth values for sentences of L will be in a bilattice,
whose choice can be quite arbitrary. Keep FOUR in mind as an example.
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In addition to the machinery described above, L has a unary predicate symbol, T,
intended to represent is true. Using itL can “talk about” the truth of its own sentences,
using Gödel numbering. We ignore the details of Gödel numbering except that, for
convenience, we assume every sentence (closed formula) has a Gödel number, and
every number is the Gödel number of some sentence of L. Numerals, 0, 0+, 0++,
. . . , provide a unique representation for all numbers and so, via Gödel numbering, of
every sentence. Let X be a sentence ofL; by pXq wemean the numeral representing
the Gödel number of X . If T is to act like a truth predicate we should have equivalence
of X and T(pXq) for every sentence X , that is, they should always have the same
value in the bilattice that supplies our truth values. Since we have enough machinery
to construct a liar sentence asserting its own non-truth, this can’t be done if we use
classical logic. Hence the historic move to three-valued logics, and here to bilattices.

Examples 4.7 and 4.9 looked at bilattices and first-order languages. In those
examples we allowed members of domains to appear in sentences, as a convenient
way of handling satisfiability. We no longer need to do this. We have numerals in
L, the natural numbers are the only domain we are interested in, and so we have
names in L for the entire domain. Further, since arithmetic machinery will always
be understood as if in the standard model for arithmetic, it is only the truth predicate
T that can vary. So valuations will not assign values to all atomic sentences, but only
to those involving T.

Definition 6.1 (T Valuation) A(T) is the set of atomic sentences of the form
T(0++...+) in the language L. For any bilattice B, a T valuation in B is a mem-
ber of the function space bilattice BA(T) (Definition 3.3),

A T valuation in B simply assigns a truth value in B to every atomic sentence
involving T. Example 4.9 illustrates how the definition above covers the modal case,
since the bilattice to which T valuations map can be of the form BG where G is
the set of possible worlds of a modal frame. We will assume that if a language L
includes modal operators, then the underlying bilattices are of this form.

Examples 4.7 and 4.9 showed how valuations extend from the atomic level to
all sentences, that is, to members of the function space bilattice BL . But in Kripke
(1975) three different extensions were discussed, these have generalizations here,
and others are possible. The following allows us flexibility while placing minimal
requirements on extensions. Specific examples come in Section 8.

Definition 6.2 (Valuation Extension) A valuation extension in bilattice B is a map-
ping e : BA(T) → BL , where L is understood to be the set of sentences of our
formal language. For v ∈ BA(T) we write the image under e as ve.

Our goal is to show that for several intuitively acceptable valuation extensions e
there are valuations v ∈ BA(T) such that for each sentence X , ve(X) and ve(T(pXq))
are the same. If we can do this then we have ways in which T can behave like a truth
predicate. Following ideas that started with Kripke (1975) and Martin and Woodruff
(1975), we use what is often called a truth revision operator where, if v is a T
valuation, then applying a truth revision operator to v produces another T valuation
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that explicitly incorporates some of the information that was implicit in v itself. We
then look for valuations that are unchanged by this process.

Definition 6.3 (Truth Revision Operator) Let e be a valuation extension in B.
An e truth revision operator on bilattice B is a mapping ϕe

B
: BA(T) → BA(T)

such that for each T valuation v in B, ϕe
B
(v) is the T valuation in B such that

ϕe
B
(v)(T(pXq)) = ve(X) for every sentence X of L.

A fixed point of truth revision operator ϕe
B
is a T valuation v such that v = ϕe

B
(v)

and thus, for every sentence X , v(T(pXq)) = ϕe
B
(v)(T(pXq)) = ve(X). Then with

respect to fixed point valuations, the truth predicate T does have the fundamental
property we want a truth predicate to have. Of course liar sentences show this can’t
happen in a classical framework, but the additional machinery of bilattices gives
us exactly what we need. To show fixed points exist in a bilattice, the key thing
needed is monotonicity, and then we can make use of Knaster-Tarski. We saw results
called monotonicity in Propositions 4.6, 4.8, and 4.10. The following is a general
characterization, bringing the T predicate into things.

Definition 6.4 (Monotonicity Property) We say the monotonicity property holds
for valuation extension e in bilattice B provided, for any T valuations, if v1 ≤k v2 in
BA(T) then ve1 ≤k ve2 in BL .

Proposition 6.5 If valuation extension e has the monotonicity property in bilattice
B then the truth revision operator ϕe

B
is monotonic in the information ordering in

BA(T), that is, v1 ≤k v2 implies ϕeB(v1) ≤k ϕ
e
B
(v2).

Proof Assume e has the monotonicity property, and v1 ≤k v2. To show that
ϕe
B
(v1) ≤k ϕ

e
B
(v2) we show that for every sentence X we have ϕe

B
(v1)(T(pXq)) ≤k

ϕe
B
(v2)(T(pXq)). But by Definition 6.3, this is equivalent to ve1 (X) ≤k ve2 (X), and

we have this by the monotonicity property, Definition 6.4, since we have v1 ≤k v2.�

Corollary 6.6 In bilattice B, if valuation extension e has the monotonicity property
then the corresponding truth revision operator ϕe

B
has fixed points, in particular it

has smallest and greatest ones with respect to the ≤k bilattice ordering.

This Corollary is immediate by the Knaster-Tarski result, Proposition 5.2, though
at the moment we don’t officially know that there are valuation extensions having
the monotonicity property. In fact there are several, as will be shown in Section 8.

7 Conflation and Consistency

When looking at FOUR in Figure 1 certain substructures naturally present them-
selves. The subset {f, t} suggests classical logic; the truth operations∧,∨,¬ restricted
to {f, t} have exactly the classical behavior. Similarly the subset {f,⊥, t} behaves like
the strong Kleene logic K3. Dually, the subset {f,>, t} can be thought of as like
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Priest’s logic of paradox LP. In some sense the lower values in FOUR represent
consistency, while the upper values represent a kind of dual notion. (We will use
“lower” and “upper” informally here, corresponding to position in the ≤k bilattice
ordering.) As it turns out, analogs of these structures can be found in bilattices gen-
erally provided we have a conflation operator, something that has played little role
for us up to this point.

As motivation let S be a set of agents (recall Example 4.1), with P(S) as the
collection of all subsets, and with ⊆ as a partial ordering. This is a DeMorgan lattice
with complementation, X 7→ (S − X), as involution (Definition 3.2). The bilattice
product, P(S) � P(S), is a bilattice with conflation. In it a value is a pair 〈F, A〉
where F is the set of agents with an opinion for some proposition, and A is the set
with an opinion against. An agent may have an opinion both for and against, in which
case 〈F, A〉 can be thought of as representing an inconsistency. An agent may have
no opinion either way, in which case 〈F, A〉 is an incomplete bilattice value. Or it
may be that every agent falls into exactly one of F or A, and so we have a kind of
exactness of opinions. We incorporate these ideas into bilattices in a structural way.
If every agent falls into exactly one of the for or against categories the corresponding
bilattice value is of the form 〈F, F〉, and values like these are their own conflations.
If no agent is both for and against, the bilattice value is of the form 〈F, A〉 where
F ∩ A = ∅, or equivalently where F ⊆ A, or A ⊆ F. Using conflation this can
be expressed quite simply as 〈F, A〉 ≤k −〈F, A〉. That some agent is both for and
against corresponds to −〈F, A〉 ≤k 〈F, A〉 but −〈F, A〉 , 〈F, A〉. This leads us to the
following.

Definition 7.1 (Consistent, Exact, Anticonsistent) A member x of a bilattice with
conflation is consistent if x ≤k −x, anticonsistent if −x ≤k x, and exact if x = −x.

This three way division does not always exhaust a bilattice. SIXTEEN , in
Figure 3, has a conflation, 〈⊥,>〉 and 〈>,⊥〉 are conflations of each other but
are not comparable in the ≤k ordering, and so are neither exact, consistent, nor
anticonsistent. Such values merit further investigation, but not here. In FOUR
the consistent members correspond to K3, the anticonsistent members to LP, and
the exact members to classical logic. The results that follow say these categories,
exhaustive or not, always give us coherent subsystems of bilattices with conflation.

Proposition 7.2 In a bilattice with conflation we have the following.

1. Each of the consistent, anticonsistent, and exact subsets are closed under truth
operations ∧, ∨, and ¬, as well as under infinitary operations

∧
and

∨
.

2. The consistent values are closed under chain supswith respect to the≤k ordering,
Definition 5.3.

3. Dually the anticonsistent values are closed under chain infs.
4. Anything below a consistent value, in the ≤k ordering, is consistent.

Proof We work in a biattice with conflation.

1. If x and y are consistent, x ≤k −x and y ≤k −y, then by interlacing, x ∧ y ≤k
−x ∧−y, and by Proposition 2.5 −x ∧−y = −(x ∧ y), so x ∧ y ≤k −(x ∧ y), and
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hence x ∧ y is consistent. Using infinitary interlacing a similar proof gives that
if every member of S is consistent then

∧
S is consistent. The cases with ∨ and∨

are similar. If x ≤k −x then ¬x ≤k ¬ − x, so ¬x ≤k −¬x since negation and
conflation commute, so ¬x is consistent. Anticonsistent and exact are similar.

2. Suppose S is a chain of consistent bilattice values. We first show that for any
a, b ∈ S we have a ≤k −b. Since both a and b are in the chain S, either a ≤k b
or b ≤k a. Since members of S are consistent, a ≤k −a and b ≤ −b. If a ≤k b,
since b ≤k −b, then a ≤k −b. If b ≤k a, since a ≤k −a, then b ≤k −a so
a ≤k −b. Then either way, a ≤k −b.
Let −S = {−x | x ∈ S}. Now let a and b be arbitrary members of S. Then −b
is an arbitrary member of −S, and by what was just shown, a ≤k −b. Since
−b is arbitrary, a ≤ −b for every −b ∈ −S, so a is a lower bound for −S, and
hence a ≤k

∏
−S. Since a was arbitrary,

∏
−S is an upper bound for S, and so∑

S ≤k
∏
−S. Then by Proposition 2.5,

∑
S ≤k −

∑
S, and so

∑
S is consistent.

3. By an argument dual to the previous one.
4. Suppose a is consistent (so a ≤k −a) and b ≤k a (and so −a ≤k −b). Then

b ≤k a ≤k −a ≤k −b, so b is consistent. �

Next, something that will play a role when we come to supervaluations in Sec-
tion 8.4.

Proposition 7.3 In a bilattice with conflation, if x is consistent then x ≤k y for some
exact y, and x =

∏
{y | y is exact and x ≤k y}.

Proof A direct proof of the second part is possible but ornate, to say the least. In
Section 3.1 we noted that the bilattice product construction was universal. Then if
we prove the result for product bilattices L � L, where L is any non-distributive De
Morgan lattice, we have the result generally.

Assume 〈x1, x2〉 ∈ L � L, as in Definition 3.1, and is consistent, so 〈x1, x2〉 ≤k
−〈x1, x2〉 = 〈x2, x1〉, which unwinds to x1 ≤ x2, or equivalently, x2 ≤ x1. Let
S = {〈y1, y2〉 | 〈y1, y2〉 is exact and 〈x1, x2〉 ≤k 〈y1, y2〉}. We show 〈x1, x2〉 =

∏
S.

Trivially 〈x1, x2〉 ≤k
∏

S. Also 〈x1, x1〉 is easily seen to be exact and 〈x1, x2〉 ≤k
〈x1, x1〉 because x2 ≤ x1, so 〈x1, x1〉 ∈ S (incidentally giving the first part of the
Proposition). Similarly 〈x2, x2〉 ∈ S. And 〈x1, x1〉 ⊗ 〈x2, x2〉 = 〈x1 u x2, x1 u x2〉 =
〈x1, x2〉 because x1 ≤ x2. Then

∏
S ≤k 〈x1, x1〉 ⊗ 〈x2, x2〉 = 〈x1, x2〉.

Part 1 of Proposition 7.2 says that bilattices with conflation have subsystems that
are natural generalizations of K3, LP, and classical logic. Kripke’s work was entirely
within the consistent part of FOUR. We now discuss what is needed to recover his
results—what conditions keep us within the consistent parts of bilattices. Note that if
B is a bilattice with conflation, so is BA(T); and v ∈ BA(T) is consistent if and only if
v(T(0++...+)) is consistent in B for every numeral, and similarly for anticonsistency.

Definition 7.4 Let B be a bilattice with conflation. Valuation extension e preserves
consistency if, for every consistent v ∈ BA(T), the T valuation ϕe

B
(v) is consistent,

where ϕe
B
is the truth revision operator. Similarly for preserving anticonsistency.
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Proposition 7.5 Let B be a bilattice with conflation. If valuation extension e pre-
serves consistency then the least fixed point of operator ϕe

B
is consistent in BA(T).

Similarly if e preserves anticonsistency then the greatest fixed point is anticonsistent.

Proof We show the set of consistent members of the bilattice BA(T) is ϕe
B
inductive

starting at ⊥ (using the ≤k ordering), Definition 5.3.
The least member ⊥ of BA(T) is consistent because it is below everything, in

particular its conflation. If v is a T valuation that is consistent in BA(T) then ϕe
B
(v)

is consistent because we are assuming preservation of consistency. Finally the con-
sistent values are closed under chain sups by part 2 of Proposition 7.2.

The result follows by Corollary 5.4. And the entire argument dualizes. �

8 Particular Valuation Extensions

Valuation extensions were introduced in Section 6, specifically in Definition 6.2.
Many different ones are plausible and interesting. We look at four of them.

8.1 Kleene’s Strong Three Valued Logic, Generalized

We use s for the valuation extension map introduced below to suggest strong, as in
Kleene’s strong three valued logic, K3. We emphasize the Kleene logic since it played
a big role in Kripke (1975), but what we do also generalizes Graham Priest’s three-
valued Logic of Paradox, LP, and the Belnap-Dunn FOUR. It might be helpful to
review Example 4.9.

Definition 8.1 (Generalized StrongKleene) LetB be a bilattice. The strong Kleene
valuation extension is the mapping s : BA(T) → BL where, for v ∈ BA(T), vs ∈ BL
simply uses the operations of B from the ≤t ordering, plus arithmetic facts.

1. For atomic sentences involving T, vs(T(0++...+)) = v(T(0++...+)).
2. If X is an atomic sentence not involving T, it will be a sentence of arithmetic. It

is understood as in the standard model for arithmetic. Specifically, for a, b, and
c being numerals that name numbers a◦, b◦, and c◦ in the standard model:

a. vs(A(a, b, c)) = t in B if a◦ + b◦ = c◦, and otherwise vs(A(a, b, c)) = f;
b. vs(M(a, b, c)) = t in B if a◦ × b◦ = c◦, and otherwise vs(M(a, b, c)) = f;
c. vs(a = b) = t if a◦ = b◦, and otherwise vs(a = b) = f.

3. vs(X ∧ Y ) = vs(X) ∧ vs(Y )
4. vs(X ∨ Y ) = vs(X) ∨ vs(Y )
5. vs(¬X) = ¬vs(X)
6. vs(∀xF(x)) =

∧
{vs(F(t)) | t is a numeral}

7. vs(∃xF(x)) =
∨
{vs(F(t)) | t is a numeral}
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If language L is modal, we add the following, for F = 〈G,R〉 a modal frame.

8. vs(�X)(Γ) =
∧
{vs(X)(∆) | ∆ ∈ G and ΓR∆}

9. vs(♦X)(Γ) =
∨
{vs(X)(∆) | ∆ ∈ G and ΓR∆}

This gives us the monotonicity we need, with or without modal operators, Defi-
nition 6.4. Note that v and vs agree on atomic sentences T(0++...+).

Lemma 8.2 (Strong Kleene Monotonicity) If v1 ≤k v2 in BA(T), then vs1 ≤k vs2 in
BL .

Proof Assume v1 ≤k v2 and show vs1(X) ≤k vs2(X) by induction on the complexity
of sentence X .

At the atomic level we have the result for sentences of the form T(0++...+) because
v1 ≤k v2. We have it for arithmetic sentences because vs1 and vs2 agree on them.

For the induction step, if we have X ∧ Y and the result is known for simpler
formulas, then using the interlacing conditions, vs1(X ∧ Y ) = vs1(X) ∧ vs1(Y ) ≤k
vs2(X) ∧ vs2(Y ) = vs2(X ∧ Y ). Similarly for ∨, while ¬ follows using the negation
condition that x ≤k y implies ¬x ≤k ¬y. The result follows in the quantifier cases
using infinitary interlacing, and similarly for the modal cases. �

Now by Corollary 6.6, a strong Kleene truth revision operator has a smallest and
a biggest fixed point in the bilattice BA(T) of T valuations in a bilattice B. We can
go further. The first part of what follows covers Kripke’s use of Kleene’s K3, and the
second part says how Priest’s LP figures in.

Proposition 8.3 For a bilattice B with conflation, the least fixed point of the strong
Kleene truth revision operator is consistent and the greatest is anticonsistent.

Proof Using Proposition 7.5, for the first part it is enough to show that ϕs
B
preserves

consistency, and for the second part that it preserves anticonsistency.
Suppose v is a T valuation that is consistent. To show ϕs

B
(v) is consistent we

show that, for every sentence X , ϕs
B
(v)(T(pXq)) is a consistent member of B. Since

v is consistent then v(T(t)) is a consistent member of B for each numeral t. The
value of v on atomic sentences of arithmetic must be either t or f, both of which are
consistent. Then vs maps all atomic sentences to consistent values in B, so using
Proposition 7.2 part 1, vs maps every sentence of L to a consistent truth value. In
particular, vs(X) is consistent, but this is ϕs

B
(v)(T(pXq)).

Anticonsistency is similar and is omitted. �

We now look at what the strong Kleene fixed points can be like for some of the
bilattices from Section 4. Since arithmetic always behaves as it does in the standard
model, we can use the Gödel fixed point theorem: for any formula F(x) of language
L having one free variable, a sentence X can be constructed such that F(pXq) and
X are equivalent, in the sense that they always have the same value under vs for any
valuation v in a bilattice.

A liar sentence L is equivalent to ¬T(pLq)—a Gödel fixed point of ¬T(x). In
any bilattice B, for any valuation v that is a fixed point of truth revision operator
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ϕs
B
, it must be the case that vs assigns to L a bilattice value that is its own negation.

For, suppose v were a fixed point valuation. Then vs(T(pLq)) = v(T(pLq)) =
ϕs
B
(v)(T(pLq)) = vs(L). But since L and ¬T(pLq) are equivalent, vs(¬T(pLq)) =

vs(L), so vs(L) = ¬vs(T(pLq)). Then vs(L) = ¬vs(L). It follows that in no bilatticeB
can truth revision operator ϕs

B
have a fixed point valuation in which the liar sentence

L takes on either value f or t, for neither of these are negations of themselves.
In FOUR, by the Knaster-Tarski theorem the strong Kleene truth revision oper-

ator has a smallest and a greatest fixed point under ≤k . The liar sentence L cannot be
assigned either t or f by fixed points, so the values assigned to the liar inFOURmust
be ⊥ or >. The smallest fixed point is consistent and the biggest is anticonsistent.

More complicated bilattices than FOUR have technical interest and may have
philosophical interest as well. Consider Figure 2 showing the bilattice NINE.
In this the smallest and biggest fixed point valuations still give the liar the values
⊥ = 〈0, 0〉 and > = 〈1, 1〉, as they did in FOUR. But in NINE there is one more
value that is its own negation, 〈 12,

1
2 〉, which suggests it is a value that the liar could

take on in some fixpoint. In fact this happens, and thus in NINE there are at least
three fixpoint valuations that handle the liar. To show there actually is such a fixed
point we can use the Knaster-Tarski Theorem 5.2. Here is the construction.

Suppose L and ¬T(pLq) are equivalent. Let v be the valuation in NINE such
that v(T(pLq)) = 〈 12,

1
2 〉, and for every sentence X other than L, v(T(pXq)) = 〈0, 0〉,

that is, the value is ⊥ of NINE. To keep notation uncluttered, let ϕ = ϕs
NINE

be the strong Kleene truth revision operator for NINE. Then ϕ(v)(T(pLq)) =
vs(L) = vs(¬T(pLq)) = ¬vs(T(pLq)) = ¬〈 12,

1
2 〉 = 〈

1
2,

1
2 〉 = v(T(pLq)), so

v(T(pLq)) = ϕ(v)(T(pLq)). On all other sentences X , v(T(pXq)) ≤k ϕ(v)(T(pXq))
since v(T(pXq)) = ⊥. Then v ≤k ϕ(v). Now by Knaster-Tarski 5.2, part 2, there is
a fixed point valuation v f of ϕ above v in the ≤k ordering. It is easy to check that
every valuation in the Ordinal Sequence approximating to v f will assign 〈 12,

1
2 〉 to

pLq, hence this is what v f assigns.
In Example 4.4 we briefly discussed a Fuzzy Bilattice, the bilattice product of the

closed unit interval with itself. Taking this as the space of truth values gives us a kind
of ‘degree of confidence’ structure. The truth revision operator in the bilattice of
valuations in this structure has fixpoints. The construction just presented forNINE
can easily be transferred. Every fuzzy truth value of the form 〈a, a〉 is a value the
liar sentence can take on in some strong Kleene fixpoint using the fuzzy bilattice.

8.2 Kleene’s Weak Three Valued Logic, Generalized

A three valued logic that originated in Bochvar (1938) was introduced independently
in Kleene (1950) with a different motivation. Commonly called Kleene’s weak three
valued logic, it was one of the logics employed in Kripke (1975), and the only
logic used in Martin and Woodruff (1975). It behaves classically on classical truth
values, but simply assigns ⊥ to any formula under a valuation whenever any atomic
subformula is assigned ⊥ by that valuation. It can be reformulated in a way that
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has an intuition extending beyond the three valued setting. This was foreshadowed
in Fitting (1994), and given its present form in Fitting (2006) under the name “cut
down operations”. For recent work on cut down operations, see Ferguson (2015).

As motivation we turn once again to bilattices arising from the opinions of sets
of agents, continuing the discussions from Section 7 and Example 4.1. Recall that
the setting is a product bilattice P(S) � P(S), where P is the power set operation,
S is a set of agents, and the ordering on P(S) is ⊆. In this bilattice a truth value is
〈F, A〉 with the F values informally thought of as those agents for and the A values
as those against some proposition. But now in evaluating, say, X ∧ Y suppose we
only want to consider the opinions of agents on Y who have actually expressed an
opinion on X , and similarly the other way around. That is, we want to “cut down” the
sets of agents to the completely active ones. Suppose the truth value assigned to X is
〈F, A〉; then the active agents on X are F ∪ A. The consensus of 〈F ∪ A, F ∪ A〉 with
the truth value assigned to Y would give us the kind of restriction we need. But also,
〈F ∪ A, F ∪ A〉 = 〈F, A〉 ⊕ 〈A, F〉 = 〈F, A〉 ⊕ ¬〈F, A〉. This leads us to the following,
where the superscript w is meant to suggest weak, as in Kleene’s weak logic.

Definition 8.4 (CutDownOperations)LetB be a bilatticewith x and y asmembers,
and S as a set of members.

1. ‖x‖ = x ⊕ ¬x
2. x ∧w y = (x ∧ y) ⊗ ‖x‖ ⊗ ‖y‖
3. x ∨w y = (x ∨ y) ⊗ ‖x‖ ⊗ ‖y‖
4.

∧w S = (
∧

S) ⊗
∏
{‖x‖ | x ∈ S}

5.
∨w S = (

∨
S) ⊗

∏
{‖x‖ | x ∈ S}

Wedid not define a weak negation. If we had, it would have been¬w x = ¬x⊗‖x‖,
but this is easily seen to be the same as ¬x.

The cut down operations restricted to the consistent part of FOUR, {f,⊥, t}, are
exactly the weak Kleene or Bochvar operations. Indeed, the motivation for the cut
down operations suggests this should be so since this is the one agent case, and if
the agent has no opinion about something, that lack of opinion propagates through
any application of the weak operations. Of course our logic operations are actually
on the whole of FOUR, and the extension follows the familiar pattern. Throughout
FOUR, ∧w and ∨w behave the same as ∧ and ∨, except that any conjunction or
disjunction with a component evaluating to ⊥ itself evaluates to ⊥.

Proposition 8.5 In any bilattice with conflation the set of consistent values is closed
under the truth operations ∧w , ∨w , and under the infinitary operations

∧w and
∨w .

Proof Suppose both x and y are consistent. By Proposition 7.1, x ∧ y is consistent
and so x ∧ y ≤k −(x ∧ y). Then,
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x ∧w y = (x ∧ y) ⊗ ‖x‖ ⊗ ‖y‖

≤k (x ∧ y) ≤k −(x ∧ y)

≤k −(x ∧ y) ⊕ −‖x‖ ⊕ −‖y‖

= −[(x ∧ y) ⊗ ‖x‖ ⊗ ‖y‖]

= −(x ∧w y)

so x ∧w y is consistent. The other cases are similar. �

Note that, unlike with our strong Kleene generalization in Proposition 7.2, we did
not claim closure of the anticonsistent or exact part under our weak logic connectives.

Example 8.6 In the bilattice SIXTEEN from Figure 3 neither the anticonsistent
nor the exact values are closed under ∧w . Recall, this is the bilattice product of
FOUR from Figure 1 with itself, using the ≤t lattice ordering for FOUR. With
this ordering, FOUR is a De Morgan lattice with > = >, ⊥ = ⊥, t = f, and f = t.

In SIXTEEN −〈⊥,⊥〉 = 〈⊥,⊥〉 = 〈⊥,⊥〉 and similarly −〈>,>〉 = 〈>,>〉, so
both 〈⊥,⊥〉 and 〈>,>〉 are exact, and hence are both anticonsistent and consistent as
well. Now 〈⊥,⊥〉 ∧w 〈>,>〉 = (〈⊥,⊥〉 ∧ 〈>,>〉) ⊗ ‖〈⊥,⊥〉‖ ⊗ ‖〈>,>〉‖ = 〈f, t〉 ⊗
〈⊥,⊥〉 ⊗ 〈>,>〉 = 〈f, f〉. But −〈f, f〉 = 〈f, f〉 = 〈t, t〉 so 〈f, f〉 is not exact, and it is
not anticonsistent since 〈t, t〉 �k 〈f, f〉. In accord with Proposition 8.5, it should be
consistent and, in fact, we do have 〈f, f〉 ≤k 〈t, t〉.

More generally, suppose L � L is a bilattice product, where L is a non-distributive
De Morgan lattice. It can be shown that, in L � L, the exact values are closed under
the weak logic connectives ∧w and ∨w if and only if, in L, x ∨ x = 1 and x ∧ x = 0
for all x. This also allows us to conclude that the exact values of SIXTEEN are
not closed under ∧w and ∨w .

We now define the obvious weak Kleene valuation extension, an instance of
Definition 6.2. It is well behaved on the consistent part of a bilattice with conflation
and at least makes sense outside that range, but its behavior there has not been
investigated. The definition has been dualized in Szmuc (2018), producing what are
called track down operations. These are well behaved on the anticonsistent part, and
so produce a weak generalization of Priest’s LP.

Definition 8.7 (Generalized Weak Kleene) Let B be a bilattice. The weak Kleene
valuation extension is the map w : BA(T) → BL where, for v ∈ BA(T), vw ∈ BL
uses the cut down operations on B.

1. For atomic sentences involvingT, vw(T(0++...+)) = vs(T(0++...+)) = v(T(0++...+)).
2. For numerals a, b, and c:

a. vw(A(a, b, c)) = vs(A(a, b, c));
b. vw(M(a, b, c)) = vs(M(a, b, c));
c. vw(a = b) = vs(a = b).

3. vw(X ∧ Y ) = vw(X) ∧w vw(Y )
4. vw(X ∨ Y ) = vw(X) ∨w vw(Y )
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5. vw(¬X) = ¬vw(X)
6. vw(∀xF(x)) =

∧w{vw(F(t)) | t is a numeral}
7. vw(∃xF(x)) =

∨w{vw(F(t)) | t is a numeral}

If language L is modal, we add the following, where F = 〈G,R〉 is a modal frame.

8. vw(�X)(Γ) =
∧w{vw(X)(∆) | ∆ ∈ G and ΓR∆}

9. vw(♦X)(Γ) =
∨w{vw(X)(∆) | ∆ ∈ G and ΓR∆}

As with strong Kleene, v and vw agree on atomic sentences T(0++...+). We now
have the Monotonicity Property, Definition 6.4 by the following.

Lemma 8.8 (Weak Kleene Monotonicity) If v1 ≤k v2 in BA(T), then vw1 ≤k vw2 in
BL .

Proof Assume v1 ≤k v2. We show vw1 (X) ≤k vw2 (X) by induction on the complexity
of sentence X . We only sketch one case and leave the rest to the reader. Suppose
vw1 (X) ≤k vw2 (X) and vw1 (Y ) ≤k vw2 (Y ). We verify that vw1 (X ∧ Y ) ≤k vw2 (X ∧ Y ). In
the following the inequality step is by the induction hypothesis, the lattice properties
of ⊕ and ⊗, the behavior of ¬ with respect to ≤k , and the interlacing conditions.

vw1 (X ∧ Y ) = vw1 (X) ∧
w vw1 (Y )

= [vw1 (X) ∧ vw1 (Y )] ⊗ ‖v
w
1 (X)‖ ⊗ ‖v

w
1 (Y )‖

= [vw1 (X) ∧ vw1 (Y )] ⊗ [v
w
1 (X) ⊕ ¬v

w
1 (X)] ⊗ [v

w
1 (Y ) ⊕ ¬v

w
1 (Y )]

≤k [v
w
2 (X) ∧ vw2 (Y )] ⊗ [v

w
2 (X) ⊕ ¬v

w
2 (X)] ⊗ [v

w
2 (Y ) ⊕ ¬v

w
2 (Y )]

= vw2 (X) ∧ vw2 (Y )

�

Now we have a weak Kleene truth revision operator ϕw
B
, from Definition 6.3.

By Proposition 6.5, ϕw
B
is monotonic, and hence has least and greatest fixed points.

Using Propositions 8.5 and 8.3, the least fixed point of ϕw
B
is consistent in a bilattice

with conflation. Unlike with strong Kleene, however, the anticonsistent members of
a bilattice are not always closed under the extended weak Kleene operations, so we
have no general conclusions concerning the greatest fixed point.

Track down operations were mentioned earlier in this section, Szmuc (2018).
Since their general behavior is dual to cut down operations, it is likely that they will
yield a version of a fixed point truth theory generalizing one based on a weak version
of Priest’s LP. This does not seem to have been investigated yet.

8.3 Asymmetric Logics

There is a natural propositional three valued asymmetric logic that partially general-
izes to bilattices. It seems to have had minimal discussion in the literature on theories
of truth, though Kripke and others have talked about it informally, and tableau rules
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were considered in Fitting (1994). It is, in fact, common in programming languages,
where it is generally connected with lazy evaluation. Suppose we have X ∧Y , where
the values of X and Y are to be determined by calls on procedures which may or
may not terminate, and so may or may not return a value. Lazy evaluation calls on
the X routine first and if that returns f then the Y routine is not called, but instead
the overall program concludes the conjunction is false. If the X routine returns t,
only then is a further call on the Y routine made. Either the X or the Y routine
may not terminate, but because lazy evaluation works from left to right there is an
asymmetric difference between the two. If X does not terminate there is no final
value for the conjunction, but if X returns f, even if theY routine does not terminate,
the conjunction has value f. It is a logic in which commutativity does not hold.

It is possible to define natural generalizations of propositional connectives for
an asymmetric logic using the cut down ideas from Section 8.2. Recall our earlier
discussion involving a group of agents. In these terms, for the conjunction X ∧ Y ,
asymmetry would have us only considering the opinions of experts on Y who have
said something about X , but not the other way around. This idea gives us the
following, where the a is for asymmetric. (Again negation does not need any special
treatment.)

Definition 8.9 (Asymmetric Operations) Let x, y ∈ B whereB is a bilattice. Using
Definition 8.4 part 1:

1. x ∧a y = (x ∧ y) ⊗ ‖x‖
2. x ∨a y = (x ∨ y) ⊗ ‖x‖

Figure 4 gives tables for ∧a and ∨a when the bilattice is FOUR. Curiously,
restricted to the consistent values {f,⊥, t} the distributive laws hold, something that
programmers make use of all the time. But with all four values present distributivity
fails. For instance, A∧a (B ∨a C) and (A∧a C) ∨a (B ∧a C) differ if A has value >,
B has value ⊥, and C is either > or t.

∧a > t f ⊥
> > > f f
t > t f ⊥
f f f f f
⊥ ⊥ ⊥ ⊥ ⊥

∨a > t f ⊥
> > t > t
t t t t t
f > t f ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Fig. 4: Four-valued Tables for ∧a and ∨a

Quantifiers are a problem. Since our domains are, by convention, the natural
numbers and we want a left/right bias, we might think of ∀xF(x) as if it were
F(0) ∧a F(1) ∧a F(2) ∧a . . .. But numbers code sentences, so the simple 0, 1, 2, . . .
order of evaluationmight not be what wewant at all. To allow full flexibility we could
think of quantification as infinite conjunction and disjunction with an order specified.
Formally, remove quantifiers from L and introduce infinitary connectives,

∧
i∈ω Ai

and
∨

i∈ω Ai , where the indexing specifies an ordering. We could then think of the
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infinitary conjunction as being interpreted asymmetrically as A1 ∧
a (A2 ⊗ ‖A1‖) ∧

a

(A3 ⊗ ‖A1‖ ⊗ ‖A2‖) ∧
a . . .. Similarly for disjunction. More formally, for a sequence

x1, x2, x3, . . . ∈ B where B is a bilattice, we could introduce the infinitary operations∧a
i∈ω xi =

∧
i∈ω{xi⊗

∏
{‖xj ‖ | j < i}} and

∨a
i∈ω xi =

∨
i∈ω{xi⊗

∏
{‖xj ‖ | j < i}}.

(If i = 1,
∏
∅ occurs. This is >, and x1 ⊗ > = x1.)

The asymmetric propositional operations from Definition 8.9 combined with the
infinitary asymmetric replacements for quantification as just described work well up
to a point. It is easy to show we have monotonicity results similar to Lemmas 8.2
and 8.8. But we can not define a monotone truth revision operator, Definition 6.3,
for the elementary reason that infinitary conjunctions and disjunctions do not have
Gödel numbers, and so a truth revision definition can’t get off the ground.

Finite asymmetric conjunctions and disjunctions have some applications in natural
languages. One might plausibly add them to the strong or weak Kleene systems,
getting more expressive languages still having the same general fixed point behavior.
One might allow infinite conjunctions whose conjuncts are given by a recursive
function. Gödel numbering could perhaps then be reintroduced. We leave further
investigation of this to others.

8.4 Supervaluations, Generalized

The least familiar three-valued logic used in Kripke (1975) is based on supervalua-
tions, introduced in Van Fraassen (1966). Neither of Kleene’s weak or strong three
valued logics validate any classical tautologies since, for both logics, if all atomic
formulas are assigned⊥ so is every formula. Supervaluations are specially crafted to
validate tautologies, but the price paid is that supervaluations are not truth functional.
We do not calculate via truth tables, but rather by a more complex method.

Kleene’s strong logic, K3, is three valued, but it extends naturally to all of the
Belnap-Dunn four valued logic FOUR. Moreover, every bilattice with conflation
has a consistent substructure that generalizes K3, and this always is a natual part
of the entire of the bilattice. Kleene’s weak three valued logic has generalizations
that are most well-behaved on the consistent parts of bilattices with conflation, but
the generalizations make sense for the entirety of bilattices. But supervaluation,
in its original sense, is inherently a three valued logic. It lives on the consistent
part of FOUR, and makes no sense at all on the whole of it. There is a natural
generalization of supervaluation to an arbitrary bilattice with conflation, but again
only to the consistent part. Since we would like to have a complete lattice so that the
Knaster-Tarski theorem can be applied, we will artificially extend our supervaluation
generalization beyond the consistent part of a bilattice, to the entire structure. This
does simplify the mathematics, but we are actually interested in behavior only on
consistent values.

Here is the original version of supervaluations from Van Fraassen (1966), as used
by Kripke. Suppose we have a K3 valuation v mapping atomic sentences to {f,⊥, t}.
That valuation can be ‘raised’ to a purely classical one by changing it on every atom
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that maps to ⊥ so that instead the valuation maps the atom to one of the classical
values, f or t. Call such a valuation a totally defined extension of v. For any given
sentence X , the supervaluation value assigned to X by v is t if every totally defined
extension of v maps X to t, the value is f if every totally defined extension of v maps
X to f, and the value is⊥ otherwise, that is, when totally defined extensions disagree
on X . To use bilattice terminology, we are working with valuations in the consistent
part of FOUR, and totally defined extensions map just to the exact part of FOUR.
Notice that if v is consistent in the bilattice of valuations in FOUR and w is a totally
defined extension of v thenw is exact and v ≤k w. And the idea of valuations agreeing
or disagreeing can be seen as an application of the bilattice consensus operation,
⊗. This should help motivate our generalization, which originated in Fitting (2006).
Recall that outside the consistent part we will simply assign an arbitrary value, with
> being the appropriate choice.

Definition 8.10 (Generalized Supervaluations) Let B be a bilattice. The superval-
uation extension is the map sv : BA(T) → BL where, for v ∈ BA(T), vsv ∈ BL
(using sv for supervaluation) is defined as follows.

vsv =


∏
{ws | w ∈ BA(T) is exact and v ≤k w} if v is consistent

> if v is not consistent

In the non-consistent case,> is that ofBL , the function onL that is identically the
> element ofB. In the consistent case this definition builds on top of the strongKleene
valuation extension. Recall that v is consistent inBA(T) if v(T(0++...+)) is consistent in
B for every numeral 0++...+. In the consistent case the infinitary consensus operation
is applied to a non-empty set by Proposition 7.3. We are not really interested in
valuations that are not consistent—this case is here for technical reasons. But in the
consistent case the output value, vsv , will be consistent because, more generally, if
S is any non-empty set of exact bilattice members,

∏
S is consistent. Very simply, S

is non-empty, so let s ∈ S. Since s is exact it is consistent and since
∏

S ≤k s,
∏

S
is consistent by Proposition 7.2 part 4. Also, in the consistent case vsv assigns to
arithmetic sentences the values they have in the standard model, because all strong
Kleene extensions do this, and we have Proposition 7.3.

Lemma 8.11 (SupervaluationMonotonicity) If v1 ≤k v2 inBA(T), then vsv1 ≤k vsv2
in BL .

Proof Assume v1 ≤k v2. If v2 is not consistent, vsv2 (X) = > for every X , so trivially
vsv1 (X) ≤k vsv2 (X) for all sentences X . If v2 is consistent so is v1, by Proposition 7.2
part 4, so the first case of Definition 8.10 is used for both vsv1 and vsv2 . If w is an
exact valuation and v2 ≤k w, then also v1 ≤k w, so

{w ∈ BA(T) | w is exact and v2 ≤k w} ⊆ {w ∈ BA(T) | w is exact and v1 ≤k w}

and so
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vsv1 (X) =
∏
{ws(X) | w ∈ BA(T) and w is exact and v1 ≤k w}

≤k

∏
{ws(X) | w ∈ BA(T) and w is exact and v2 ≤k w}

= vsv2 (X).

�

The supervaluation truth revision operator using bilattice B (Definition 6.3) is
denoted ϕsv

B
. It is monotone by Proposition 6.5, and has a smallest and a greatest

fixed point under the ≤k ordering, by Corollary 6.6. The greatest fixed point of
ϕsv
B

is artificial, but the least fixed is consistent in a bilattice with conflation. In
the consistent part of FOUR this treatment coincides with supervaluations as in
Kripke, but the version here applies more generally, including to modal examples.

Supervaluations, in their original three-valued version, map every tautology to
t. Things are not so simple for our generalization. Use the bilattice NINE from
Example 4.2, let P be atomic, and consider the tautology P∨¬P under the valuation
v that maps P to 〈0, 1

2 〉. The exact values above 〈0,
1
2 〉 are 〈0, 1〉 and 〈

1
2,

1
2 〉. Let w1 be

an exact valuation mapping P to the first of these, and w2 be one mapping P to the
second. Thenws

1(P∨¬P) = 〈0, 1〉∨¬〈0, 1〉 = 〈0, 1〉∨〈1, 0〉 = 〈1, 0〉 andws
2(P∨¬P) =

〈 12,
1
2 〉∨¬〈

1
2,

1
2 〉 = 〈

1
2,

1
2 〉. But then (w

s
1⊗w

s
2)(P∨¬P) = 〈1, 0〉⊗〈 12,

1
2 〉 = 〈

1
2, 0〉, which

is not even exact. Further study of generalized supervaluations may be warranted.
As pointed out by a referee, there is a supervaluation dual called subvaluation—

see Cobreros (2013) and Teijeiro (2020 forthcoming). It has been discussed for its
applications to vagueness, which also supplied early motivation for supervaluations.
It is likely that, when examined in the bilattice context, it will have behavior dual to
that of supervaluations. So far there seems to have been no work that has been done
on this.

9 Specialized Fixed Points

Wehave concentrated on least and greatest fixed points of truth revision operators, but
there are other interesting varieties. Kripke (1975) introduced intrinsic fixed points,
which also independently appeared in Manna and Shamir (1977) in a computer
science context. Maximal fixed points were central in Martin and Woodruff (1975).
Alternating fixed points come from Yablo (1985). There are probably others out
there but these, at least, generalize to the bilattice family. Both Kripke (1975) and
Martin and Woodruff (1975) worked with three valued logics. The counterpart to
that in our approach is the consistent part of a bilattice, and a consistency restriction
is noted in several parts of this section.

Terminology Convention 9.1 To keep clutter down we announce that throughout
this entire section B is a bilattice with conflation. Also, throughout, we always
assume that e is a valuation extension that has the monotonicity property (Defini-
tion 6.4) and preserves consistency (Definition 7.4). This includes generalized strong
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Kleene, generalized weak Kleene, and generalized supervaluations. We assume ϕe
B

is the corresponding truth revision operator. Finally L is our first-order arithmetic
language, extended with T, and which may or may not contain modal operators.

9.1 Consistent Maximal Fixed Points

What we call consistent maximal fixed points are interesting in their own right, and
play an important role with respect to intrinsic fixed points, which are discussed in
Section 9.2.

Definition 9.2 (ConsistentMaximal Fixed Point)A fixed point v of ϕe
B
is consistent

maximal if it is consistent, and there is no other consistent fixed point w with v ≤k w.

The main thing we need is that there actually are consistent maximal fixed points.
We recall Definition 7.4.

Proposition 9.3 If v is a consistent T valuation for which v ≤k ϕ
e
B
(v) (a post-fixed

point), then there is a consistent maximal fixed point of ϕe
B
above v, and so consistent

maximal fixed points exist.

Proof Let F = {w ∈ BA(T) | w is consistent and w ≤k ϕe
B
(w)}. We show every

member of F is below a consistent maximal fixed point, giving us the first part of
the Proposition. The second part follows since ⊥ is a post-fixed point.

Every chain in F has an upper bound in F ; in fact it has a least upper bound. Here
is the argument. Let C be a chain in F . Then

∑
C is consistent by Proposition 7.2

part 2. Suppose w ∈ C; then w ≤k
∑
C, so by monotonicity, ϕe

B
(w) ≤k ϕ

e
B
(
∑
C).

Since w ∈ C ⊆ F , w ≤k ϕeB(w), so it follows that w ≤k ϕeB(
∑
C) for every w ∈ C,

and consequently
∑
C ≤k ϕ

e
B
(
∑
C). Then

∑
C ∈ F , so C has an upper bound in F .

The ordering ≤k , restricted to F , is still a partial order, so F is a partially ordered
set in which each chain has an upper bound. By Zorn’s Lemma each member of F
extends to a maximal member of F . Finally we show that all consistent fixed points
of ϕe

B
are in F , and that maximal members of F are themselves consistent fixed

points. Then every maximal member of F will be a consistent maximal fixed point.
If a is a consistent fixed point of ϕe

B
then, trivially, a ≤k ϕeB(a), so a ∈ F . Suppose

m is any maximal member of F . By definition it is consistent. Also m ≤k ϕeB(m)
so by monotonicity, ϕe

B
(m) ≤k ϕeB(ϕ

e
B
(m)), and by the preservation of consistency

property, ϕe
B
(m) is consistent. Then ϕe

B
(m) ∈ F . Since m is maximal in F and

m ≤k ϕeB(m), it follows that m = ϕe
B
(m), so m is a fixed point. �

9.2 Intrinsic Fixed Points

Kripke singled out an interesting subclass of fixed points for particular attention,
the intrinsic ones, which are those compatible with every fixed point. An equivalent
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characterization also appeared independently in Manna and Shamir (1977). Here is
a bilattice generalization that agrees with these on the consistent part of FOUR.

Definition 9.4 (Intrinsic Fixed Point) A fixed point v of ϕe
B
is intrinsic if v ⊕ w is

consistent, for every consistent fixed point w of ϕe
B
.

There are intrinsic fixed points, and we have already seen one.

Proposition 9.5 The smallest fixed point of ϕe
B
is intrinsic, and every intrinsic fixed

point is consistent.

Proof Let v be the smallest fixed point with respect to ≤k . If w is any consistent
fixed point then v ≤k w so v ⊕ w = w which is consistent. Hence v is intrinsic.

Let w be any intrinsic fixed point. Since the smallest fixed point v is consistent,
v⊕wmust be consistent becausew is intrinsic. But v⊕w isw, hencew is consistent.�

There is a direct connection between intrinsic fixed points and the consistent
maximal ones of Section 9.1.

Proposition 9.6 A fixed point v of ϕe
B
is intrinsic if and only if v ≤k m for every

consistent maximal fixed point if and only if v ≤k
∏
M whereM is the set of all

consistent maximal fixed points.

Proof The if direction and the only if direction have different arguments.

1. Let v be an intrinsic fixed point, and m be a consistent maximal fixed point; we
show v ≤k m. Since v is intrinsic, v ⊕ m is consistent. Since v ≤k v ⊕ m, by
monotonicity ϕe

B
(v) ≤k ϕe

B
(v ⊕ m). Then v ≤k ϕe

B
(v ⊕ m) since v is a fixed

point. Similarly m ≤k ϕeB(v ⊕ m), so v ⊕ m ≤k ϕeB(v ⊕ m). By Proposition 9.3
there is a consistent maximal fixed point m′ above v ⊕ m, that is, v ⊕ m ≤k m′.
Then m ≤k v ⊕m ≤k m′. Since m is maximal, m = m′, and so v ≤k v ⊕m ≤k m.

2. Let v be a fixed point that is below every consistent maximal fixed point; we
show v is intrinsic. Let w be an arbitrary consistent fixed point of ϕe

B
; we show

v ⊕ w is consistent. Since w is a fixed point, w ≤k ϕeB(w), so by Proposition 9.3
w ≤k m for some consistent maximal fixed point m. v ≤k m by hypothesis. Then
v ⊕w ≤k m ⊕m = m, so also −m ≤k −(v ⊕w). Since m is consistent, m ≤k −m.
Then (v ⊕ w) ≤k m ≤k −m ≤k −(v ⊕ w), so v ⊕ w is consistent. �

In bilattices there is a largest as well as a smallest fixed point for truth revision
operators. Confined to the consistent part there is no largest, though there aremaximal
ones. Confined further to the intrinsic fixed points there is a largest again, as was
noted in Kripke (1975). The following includes some ideas from Fitting (1986) as
well.

Proposition 9.7 There is a largest intrinsic fixed point of ϕe
B
. It is

∑
I whereI is the

set of all intrinsic fixed points. An ordinal sequence constructed using ϕe
B
as sketched

in the proof of Proposition 5.2, starting at
∏
M, whereM is the set of consistent

maximal fixed points, proceeds downward in the ≤k ordering and converges to the
largest intrinsic fixed point.
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Fig. 5: Maximal and Intrinsic Fixed Points

Proof Figure 5 shows the overall relationships between the various kinds of fixed
points of ϕe

B
that will be established here. Keep in mind that it is highly schematic.

The bilattice with conflation that is shown is a space of valuations; only the extremal
values are shown explicitly. All our work is confined to the consistent part of it,
which is shown lightly shaded. Two subsets of the consistent valuations are shown
shaded darker. I is the set of intrinsic fixed points, which includes the least fixed
point.M is the set of consistent maximal fixed points.

First we show that
∑
I ≤k

∏
M. Let v be an arbitrary member of I. Since v

is an intrinsic fixed point of ϕe
B
then v ≤k

∏
M by Proposition 9.6. Since v was

arbitrary,
∑
I ≤k

∏
M.

Next we show that if v is a fixed point of ϕe
B
and

∑
I ≤k v ≤k

∏
M then v is

in fact the largest intrinsic fixed point and v =
∑
I. Very simply, v is intrinsic by

Proposition 9.6, and v is largest because, if w is any intrinsic fixed point, w ∈ I and
so w ≤k

∑
I ≤k v. Finally since v is intrinsic, v ∈ I so v ≤k

∑
I, and so v =

∑
I.

Finally we show a fixed point between
∑
I and

∏
M exists. This can be done in

two different ways, and we sketch both.
For the first way,

∑
I is a post-fixed point of ϕe

B
by the following argument. For

every w ∈ I we have w ≤k
∑
I so by monotonicity, ϕe

B
(w) ≤k ϕ

e
B
(
∑
I), and so

w ≤k ϕ
e
B
(
∑
I) since w is a fixed point. Since w was arbitrary,

∑
I ≤k ϕ

e
B
(
∑
I).

Then by Proposition 5.2 part 2, there is a fixed point that is least above
∑
I and,

using Corollary 5.4, it is easy to show it is below
∏
M.

For the second way,
∏
M is a pre-fixed point of ϕe

B
, with a proof dual to that for∑

I above. Using Proposition 5.2 part 3, there is a fixed point that is greatest below∏
M and, using Corollary 5.4 dualized, one shows it is above

∑
I.
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The first of the two proofs just sketched involves an ordinal sequence that, ostensi-
bly, moves upward from

∑
I, but in fact it is actually constant. The second argument

uses an ordinal sequence that proceeds downward from
∏
M, approximating to

∑
I

from above. This is suggested by the dashed arrow in the figure. �

9.3 Alternating Fixed Points

A very different class of fixed points was introduced in Yablo (1985), making use of
alternating fixed points, Definition 5.5. These are closely related to the stable model
semantics of logic programming, Gelfond and Lifschitz (1988), Fine (1989), and to
well-founded semantics, Van Gelder (1989), Van Gelder, Ross, and Schlipf (1988,
1991). The treatment here is derived from Fitting (1993) on the logic programming
side, and Fitting (1997) on the philosophical logic side.

A truth revision operator is monotone with respect to the ≤k ordering, but not in
the ≤t ordering because of negation. It is possible, however, to localize this problem.
Sentences of languageL can have their negations pushed in to the atomic level using
the various De Morgan laws. If this has been done we can think of occurrences of
¬T(x) as if they were occurrences of a new atom, a falsehood atom, that can behave
independently of T(x).

Terminology Convention 9.8 For this subsection only, a sentence must be in nega-
tion normal form, and so all occurrences of the negation symbol are at the atomic
level.

The following introduces a mapping taking two valuations as input and producing
what we call a pseudo valuation as output, where this independently maps positive
and negative literals involving T to bilattice values.

Definition 9.9 (Pseudo-Valuations)A(¬T) is the set of negated atomic sentences in
the languageL of the form ¬T(0++...+). The map 4 : BA(T)×BA(T) → BA(T)∪A(¬T)

is defined by the following conditions (where we write 4 in infix position):

(v14v2)(T(0++...+)) = v1(T(0++...+))
(v14v2)(¬T(0++...+)) = ¬v2(T(0++...+)).

(v14v2) is the pseudo-valuation of valuations v1 and v2.

We had various ways of extending valuations to all formulas, and it is the same
for pseudo-valuations. The following is the counterpart of Definitions 6.2 and 6.4.

Definition 9.10 (Pseudo-Valuation Extension) A pseudo-valuation extension is a
mapping 4e : BA(T)×BA(T) → BL (whereL is here the set of sentences in negation
normal form). The monotonicity/anti-monotonicity property holds for 4e if:

1. k Monotonicity in Both Inputs: v1 ≤k v2 and w1 ≤k w2 implies (v14
ew1) ≤k

(v24
ew2).
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2. t Monotonicity in First Input: v1 ≤t v2 implies (v14
ew) ≤t (v24

ew).
3. t Anti-Monotonicity in Second Input: w1 ≤t w2 implies (v4ew1) ≥t (v4

ew2).

Both strong Kleene and weak Kleene provide obvious pseudo-valuation exten-
sions. For instance, Definition 8.7 for weak Kleene valuations, becomes the follow-
ing, in bilattice B.

1. For L being an atomic sentence or its negation, involving T, (v14
wv2)(L) =

(v14v2)(L).
2. For numerals a, b, and c:

a. (v14
wv2)(A(a, b, c)) = vw1 (A(a, b, c)) = vw2 (A(a, b, c));

b. (v14
wv2)(M(a, b, c)) = vw1 (M(a, b, c)) = vw2 (M(a, b, c));

c. (v14
wv2)(a = b) = vw1 (a = b) = vw2 (a = b).

3. (v14
wv2)(X ∧ Y ) = (v14

wv2)(X) ∧w (v14
wv2)(Y )

4. (v14
wv2)(X ∨ Y ) = (v14

wv2)(X) ∨w (v14
wv2)(Y )

5. There is no separate negation case since formulas are in negation normal form.
6. (v14

wv2)(∀xF(x)) =
∧w{(v14

wv2)(F(t)) | t is a numeral}
7. (v14

wv2)(∃xF(x)) =
∨w{(v14

wv2)(F(t)) | t is a numeral}

If language L is modal, we add the following, where F = 〈G,R〉 is a modal frame.

8. (v14
wv2)(�X)(Γ) =

∧w{(v14
wv2)(X)(∆) | ∆ ∈ G and ΓR∆}

9. (v14
wv2)(♦X)(Γ) =

∨w{(v14
wv2)(X)(∆) | ∆ ∈ G and ΓR∆}

Similarly for strong Kleene. We omit details. Pseudo-valuation extensions of strong
Kleene and weak Kleene both meet the monotonicity/anti-monotonicity conditions.
This is straighhtforward to check, and we leave it to the reader. The status of pseudo-
valuation extensions for supervaluations has not been investigated.

The following is the counterpart of Definition 6.3, for Truth Revision Operators.

Definition 9.11 (Two Input TruthRevisionOperator) Let4 be a pseudo-valuation
and 4e be an extension. Then ψe

B
(v1, v2) : BA(T) × BA(T) → BA(T) is the mapping

such that for T valuations v1, v2 in B,

ψe
B
(v1, v2)(T(pXq)) = (v14

ev2)(X) for every negation normal form sentence X .

The following is an easily proved counterpart to Proposition 6.5.

Proposition 9.12 If the 4e monotonicity/anti-monotonicity property holds (Defini-
tion 9.10). Then the two input truth revision operatorψe

B
has the following properties.

1. k Monotonicity in Both Inputs: if v1 ≤k v2 and w1 ≤k w2 then ψe
B
(v1,w1) ≤k

ψe
B
(v2,w2).

2. t Monotonicity in First Input: if v1 ≤t v2 then ψe
B
(v1,w) ≤t ψ

e
B
(v2,w).

3. t Anti-Monotonicity in Second Input: if w1 ≤t w2 then ψe
B
(v,w1) ≥t ψ

e
B
(v,w2).
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The original motivation comes from logic programming.Make a guess at negative
values, somehow choosing a valuation v to tell us how occurrences of ¬T(t) behave.
Relative to this guess, the least fixed point of λx.ψe

B
(x, v) tells a plausible way that

positive T(t) atoms could then behave. If this turns out to be the guess we began
with, then v was a good guess. Here the ≤t ordering plays a fundamental role. This
suggest the following analog of Truth Revision Operators, Definition 6.3.

Definition 9.13 (Derived Operator) The derived operator of the two input truth
revision operator ψe

B
is the single input function ψ̂e

B
where ψ̂e

B
(v) is the smallest

fixed point, in the ≤t ordering, of the function λx.ψe
B
(x, v).

Proposition 9.14 Assuming monotonicity/anti-monotonicity for 4e, the function ψ̂e
B

is well-defined, is monotonic in ≤k , and anti-monotonic in ≤t .

Proof Assume ψe
B
has the properties specified in Proposition 9.12.

ψ̂e
B
is well-defined. The smallest fixed point required in the definition of ψ̂e

B
exists

because ψe
B
is monotonic in its first input under ≤t .

Monotonicity in the ≤k ordering. Assume v1 ≤k v2. We define two ordinal se-
quences F andG by transfinite recursion. Both sequences consist of T valuations,
members of BA(T). Also f is the T valuation that takes the value f ∈ B on every
input, α + 1 is an arbitrary successor ordinal, and λ is an arbitrary limit ordinal.

F(0) = f
F(α + 1) = ψe

B
(F(α), v1)

F(λ) =
∨
{F(α) | α < λ}

G(0) = f
G(α + 1) = ψe

B
(F(α), v2)

G(λ) =
∨
{G(α) | α < λ}

From the proof of Proposition 5.2, both ordinal sequences are increasing, and
both are constant from some point on, the first settling on the least fixed point of
λx.ψe

B
(x, v1) in the ≤t ordering, and hence to ψ̂e

B
(v1), and the second to ψ̂e

B
(v2).

To prove ψ̂e
B
(v1) ≤k ψ̂

e
B
(v2) we show that, for each ordinal α, F(α) ≤k G(α).

F(α) ≤ G(α) is trivially true for α = 0. If it is true for all α < λ, a limit ordinal, it
is true for λ using infinitary interlacing. This leaves the successor step. Suppose
F(α) ≤k G(α). Then F(α + 1) = ψe

B
(F(α), v1) ≤k ψe

B
(G(α), v2) = G(α + 1)

using k monotonicity in both inputs.
Anti-monotonicity in the ≤t ordering. Assume v1 ≤t v2; show ψ̂e

B
(v2) ≤t ψ̂

e
B
(v1).

ψe
B
is anti-monotonic in its second argument under ≤t , so ψe

B
(ψ̂e
B
(v1), v2) ≤t

ψe
B
(ψ̂e
B
(v1), v1). Then ψe

B
(ψ̂e
B
(v1), v2) ≤t ψ̂

e
B
(v1) because ψ̂e

B
(v1) is a fixed point

of λx.ψe
B
(x, v1). But then ψ̂e

B
(v1) is a pre-fixed point of λx.ψe

B
(x, v2) in the ≤t

ordering, so there is a fixed point of λx.ψe
B
(x, v2), call it a, below ψ̂e

B
(v1). Since

ψ̂e
B
(v2) is the least fixed point of λx.ψe

B
(x, v2), then ψ̂e

B
(v2) ≤t a ≤t ψ̂e

B
(v1). �

Definition 9.15 (Stable Fixed Points) Let ψe
B
be a two input truth revision operator,

and let ψ̂e
B
be the corresponding derived operator. We call fixed points of ψ̂e

B
stable

e fixed points.
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Monotonicity of derived operators in the ≤k ordering tells us that stable fixed
points exist. Assuming reasonable conditions, stable fixed points are a subclass of
the class of fixed points we have been looking at throughout.

Definition 9.16 (Connected Condition) We say pseudo-valuation extension e and
valuation extension e are connected if, for each T valuation v and each sentence X
(in negation normal form, remember), (v4ev)(X) = ve(X).

Both strong Kleene and weak Kleene have connected valuation and pseudo-
valuation extensions. This is easy, and we leave it to the reader.

Proposition 9.17 Assume the monotonicity/anti-monotonicity conditions hold, and
pseudo-valuation extension e and valuation extension e are connected. Then every
fixed point of ψ̂e

B
is also a fixed point of ϕe

B
(Definition 6.3). That is, every stable

fixed point is a fixed point in the sense of Kripke.

Proof It follows easily from the definition of being connected that, for each T
valuation v, ϕe

B
(v) = ψe

B
(v, v). Also for each valuation v, ψ̂e

B
(v) is a fixed point of

λx.ψe
B
(x, v) so ψe

B
(ψ̂e
B
(v), v) = ψ̂e

B
(v). Now suppose s is any fixed point of ψ̂e

B
. Then

ϕe
B
(s) = ψe

B
(s, s) = ψe

B
(ψ̂e
B
(s), s) = ψ̂e

B
(s) = s. �

Stable fixed points are thus among the family of Kripke style fixed points, but
they are a proper subset. With strong Kleene, and using a Kripke style operator, fixed
points can give the truth teller any value from the bilattice. This is not the case with
stable fixed points. The definition uses the smallest fixed point in the truth ordering
when evaluating the derived operator, so an explicit bias towards falsehood has been
introduced, and in a stable strong Kleene fixed point the truth teller can only be f.

Fig. 6: Stable Fixed points

We know from Proposition 9.14 that the derived operator ψ̂e
B
is monotone under

≤k and anti-monotone under ≤t . Because of monotonicity it has least and greatest
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fixed points under ≤k , call them pk and Pk . Then, of course, all stable fixed points are
between pk and Pk in the information ordering, with the extremes included. Further,
because of anti-monotonicity under ≤t the operator ψ̂e

B
has an extremal alternating

fixpoint pair by Proposition 5.6, call the members of the pair pt and Pt . While these
constitute an alternating fixpoint pair, they are not themselves fixed points. But each
fixed point can be thought of as an alternating fixpoint pair, with both members of
the pair being the same, and so all stable fixed points are strictly between pt and
Pt in the truth ordering. The space of stable fixed points is shown schematically in
Figure 6. Further, the four extremal values are tightly connected; by Proposition 5.9:
Pt ⊗ pt = pk , Pt ⊕ pt = Pk , Pk ∧ pk = pt , Pk ∨ pk = Pt .

In Fitting (1997) the notion of intrinsic (Section 9.2) was relativized to stable
fixed points. A stable fixed point v is stable intrinsic if v ⊕ w is consistent for every
consistent stable fixed point valuation w. There are stable intrinsic fixed points, but
essentially no investigation of their properties has been made.

10 Conclusion

Several versions of theories of truth have been examined, in very general settings.
Still, there could be more. For example, Kripke (1975, p. 706) made some interesting
suggestions.

The construction could be generalized so as to allow more notation in L than just first-order
logic. For example, we could have a quantifier meaning “for uncountably many x,” a “most”
quantifier, a language with infinite conjunctions, etc. There is a fairly canonical way, in the
Kleene style, to extend the semantics of such quantifiers and connectives so as to allow
truth-value gaps, but we will not give details.

As far as I know, this has not been followed up in the original three valued setting.
It certainly has not been using bilattice generalizations. It seems to be an open
invitation still today. Kripke also mentioned including a modal operator. In the
present treatment this is simply working with a bilattice of a special form, as in
Example 4.9. One might carry this further and allow multiple knowledge modalities.
Perhaps even communication between agents could be modeled. Then, of course,
we could model the quirks of self referential truth that arise in the discussions of a
group of philosophers. (This is not an entirely frivolous suggestion.) We hope the
present paper enables possibilities, and does not represent the end of the discussion.

It has been suggested that some detailed comments on the philosophical implica-
tions of the work presented here might be given, but I have chosen not to do this. I
feel I have presented a rich set of tools. It is hoped that philosophical investigators
will find some of the tools useful. But I am a theorist, and applications are not really
my job.
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