
Kleene’s Three Valued Logics
and Their Children

Melvin Fitting
Dept. Mathematics and Computer Science

Lehman College (CUNY), Bronx, NY 10468
Depts. Computer Science, Philosophy, Mathematics

Graduate Center (CUNY),
33 West 42nd Street, NYC, NY 10036

mlflc@cunyvm.cuny.edu ∗

Abstract. Kleene’s strong three-valued logic extends naturally to a
four-valued logic proposed by Belnap. We introduce a guard connective
into Belnap’s logic and consider a few of its properties. Then we show
that by using it four-valued analogs of Kleene’s weak three-valued logic,
and the asymmetric logic of Lisp are also available. We propose an
extension of these ideas to the family of distributive bilattices. Finally
we show that for bilinear bilattices the extensions do not produce any
new equivalences.

1 Introduction

Multiple-valued logics have been introduced for many reasons: purely mathematical,
as with Post, or philosophical, as with ÃLukasiewicz. Few have been as useful or as
natural as the three-valued logics of Kleene [12], introduced for computer science
purposes — or at least they would have been if computer science had existed at the
time. Kleene thought of the third truth value as undefined or undetermined, rather
than as contingent or of probability 1/2. This reading suggests a natural condition:
the behavior of the third truth value should be compatible with any increase in
information. That is, if the value of some propositional letter, P say, is changed from
undefined to either true or false, the value of any formula with P as a component
should never change from true to false or from false to true, though a change from
undefined to one of false or true is allowed. Kleene referred to this as regularity; today
we phrase it in terms of monotonicity in an ordering that places undefined below both
false and true. Among three-valued logics satisfying this regularity condition, Kleene
observed, there is a weakest and a strongest, and there are several intermediate ones.

∗Research partly supported by NSF Grant CCR-9104015.



Kleene’s strong three-valued logic has been generalized in several ways, only some
of which concern us here. We are not going to consider algebraic notions like Kleene
algebras. Instead we want to consider particular structures motivated by computer
science concerns. In [1] Kleene’s logic was extended to a four-valued version, with
intended database applications; then in [11] this logic was further generalized to a
whole family of multiple-valued logics called bilattices, many of which contain natural
analogs of Kleene’s strong three-valued logic. Bilattices were created with AI appli-
cations in mind, but in [7, 9] bilattices were shown to have direct application to the
semantics of logic programming. In [8] Kleene’s logic was generalized directly, and it
was shown that the resulting logics could be extended to bilattices, much as Kleene’s
logic had been extended to the four-valued version. It is to the family of bilattices
that we will look for our generalizations. But all that we have said so far concerns
Kleene’s strong three-valued logic. What about other regular logics? In this paper
we consider his weak version, and an intermediate one of natural interest, propose a
reasonable extension of them to four-valued logic, and then to the family of distribu-
tive bilattices. We sketch a tableau system, but we do not give axiom systems. We
believe these logics are natural objects to study, and the primary point of this paper
is to encourage interest.

This paper began as a talk at the Bulgarian Kleene Conference in 1990. Subse-
quently a written paper circulated informally. The present paper is a revised and
enlarged version of that.

2 Background

Most programming languages provide some version of the Boolean connectives, but
since truth values of the constituents of a Boolean expression can be the results of
procedure calls which might not terminate, the underlying logic is best thought of
as three-valued. One way different programming languages can differ is in which
three-valued logic is involved, but in general, regularity is a requirement.

In what follows we will use ∧, ∨ and ¬, or some reasonable variant, to symbolize
conjunction, disjunction and negation, and their extensions to many-valued logics as
well. Likewise we will use ⊥ for undefined (rather than u as Kleene did).

Most implementations of Pascal require that (classical) truth values of all com-
ponents of a Boolean expression be available before the value of the expression itself
is calculated. In particular, P ∧ Q must be given the value ⊥ if either P or Q has
the value ⊥ (that is, the procedure calculating P or the procedure calculating Q does
not terminate). Otherwise P ∧Q behaves classically. Similarly for ∨ and ¬. This is
the weak Kleene logic. In general we will write P ∧w Q for a conjunction in this logic
(and its generalizations), and P ∨w Q for a disjunction.

On the other hand, one can imagine a language allowing a degree of parallelism,
in which the calculation of a value for P ∧ Q proceeds as follows. Values for P and
Q are calculated in parallel; if either P or Q turns out false, work on the other is
halted and P ∧ Q is assigned the value false on the grounds that the value of the
other won’t matter. If one of P or Q turns out true (say P ), work must continue



on the other component (Q) because its value now is critical; the value of P ∧ Q is
whatever the value of Q turns out to be. In such a system P ∧ Q is true if both
components are true; P ∧Q is false if one component is false; P ∧Q is ⊥ otherwise.
This means P ∧Q is ⊥ if one of P or Q is true but the other is ⊥, or if both are ⊥.
Again similar considerations apply to ∨ and ¬. This is the strong Kleene logic. Every
regular three-valued logic is intermediate between the weak and the strong one.

There could also be a sequential evaluation of P ∧Q, say from left to right, so that
P is evaluated first. If P evaluates to false, work stops and P ∧ Q is assigned false.
If P evaluates to true then Q is evaluated, and its value becomes the value assigned
to P ∧Q. This is an asymmetric logic. For instance, if P is false but Q is ⊥, P ∧Q
evaluates to false, but Q ∧ P evaluates to ⊥. This logic is also regular in Kleene’s
sense, and its connectives correspond to the AND, OR and NOT of Lisp. It is also
the logic of Prolog as actually implemented, with its left-right, top-down evaluation.
We will generally refer to it as Lisp logic, and we will write P ~∧ Q for a conjunction
in this logic (and its generalizations), and P ~∨ Q for a disjunction.

It is well-known that Kleene’s strong three-valued logic finds a natural extension
in Belnap’s four-valued logic [1]. We will show that by adding a natural connective,
which we call a guard connective, to Belnap’s logic, Kleene’s weak logic, and Lisp logic
can also be extracted from Belnap’s system. Then we will propose what we believe
is a natural generalization of the guard connective, and consequently of Kleene’s
weak logic, and Lisp logic, to the family of distributive bilattices, introduced by Matt
Ginsberg [11]. Along the way we give simple tableau rules and prove some related
results.

3 The Belnap four-valued logic

A shift in emphasis from programming languages to data bases makes it natural to
move from a three to a four-valued logic. A program might not come up with an
answer to a yes/no question. A data base may do this as well, but in addition the
data base could be inconsistent and so come up with both answers. We should allow
>, or overdefined, as well as ⊥. Dunn introduced just such a four-valued logic in
conjunction with his work on relevance logic [2, 3, 4]. Belnap pointed out the utility
of this logic for computer science, and made the important observation that two
partial orderings, not one, were involved [1]. Ginsberg understood and generalized the
relationships between these orderings [11], producing bilattices. We will discuss the
four-valued Belnap logic taking advantage of Ginsberg’s insights. By now bilattices
are known to a moderately wide group of people, but they are still not common items,
so we discuss their basic properties, beginning with the special case of Belnap’s logic.

Consider the double Hasse diagram of Figure 1, for a logic we will call FOUR.
There are two partial orderings displayed here. If a is to the left of b (or the same as
b) symbolize this as a ≤t b. Likewise if a is below b (or the same as b) write a ≤k b.
The ≤t ordering is, intuitively, one on degree of truth. Thus false ≤t > since >, which
we can think of as both true and false, is ‘truer’ than false. Likewise > ≤t true since
true is of a lower degree of falseness than >, which is false as well as true. The ≤k



≤t

≤k
truefalse

>

⊥
-

6 @
@
@
@@

�
�
�
��@

@
@
@@

�
�

�
��

Figure 1: Belnap’s Four-Valued Logic, FOUR

ordering is on degree of information. Thus ⊥, or no information, is at the bottom,
and >, or too much information, is at the top.

Both orderings yield complete lattices. We will use ∧ and ∨ for meet and join
under ≤t, and ⊗ and ⊕ for meet and join under ≤k. In fact ∧ and ∨, confined
to {false, true}, are the classical connectives, and on {false, true,⊥} they are the
connectives of the strong Kleene logic. The connectives ⊗ and ⊕ have no classical
counterparts, but they are equally natural nonetheless. Think of ⊗ as a consensus
operator: P ⊗ Q is the most information that P and Q agree on. Likewise ⊕ is an
accept-anything, or gullability operator.

The two orderings are not independent of each other; rather they are strongly
connected. They satisfy the interlacing conditions: the truth connectives, ∧ and ∨,
are monotonic with respect to the ≤k ordering, and the information connectives, ⊗
and ⊕, are monotonic with respect to the ≤k ordering. Monotonicity with respect
to ≤k is what corresponds to Kleene’s regularity condition, in Belnap’s setting, so
the interlacing conditions imply the regularity of ∧ and ∨. Incidentally, ∧ and ∨
are monotonic with respect to ≤t as well — this follows from the fact that ≤t yields
the structure of a lattice. Similarly for ⊗, ⊕, and ≤k, of course. In fact, something
stronger than interlacing holds. Each of ∧, ∨, ⊗, and ⊕ is distributive over the
rest — 12 distributive laws in all. It is easy to check that interlacing follows from
distributivity.

Apart from the lattice operations, there are two natural symmetries: left-right,
and top-bottom. Let ¬ be the left-right symmetry: ¬true = false; ¬false = true;
¬> = >; and ¬⊥ = ⊥. On {false, true,⊥} this is the negation of the Kleene strong
(or weak) logic. Negation is monotonic with respect to ≤k (it is regular), but not
with respect to ≤t. Finally, let − be the top-bottom symmetry: −> = ⊥; −⊥ = >;
−false = false; and −true = true. We call this operator conflation [6]. It will find its
motivation in Section 7.



The following observations are trivial, but will take on greater significance soon.
In the first place, {false, true} = {x | x = −x}, and this is the sublogic known as
classical. Second, {false, true,⊥} = {x | x ≤k −x}, and these are the values of the
strong Kleene logic.

4 Tableau Rules

In [3] Dunn introduced a tableau system, essentially for Belnap’s logic, using a notion
of coupled trees. Here we present a variant of that system.

Two versions of tableaus for classical logic were presented in [14], one using signed
formulas, one not. We use the signed version here. A signed formula is of the form
TX or FX, where X is a formula. Classically TX is read as “X is true”, and FX
as “X is false.” A tableau is a tree with signed formulas as node labels. It is said to
be for the signed formula at its root. It is constructed using certain branch extension
rules, to be given in a moment. A tableau is a refutation argument; to prove X,
one begins with FX and derives a contradiction. Intuitively this says X can not be
false, and hence must always be true. The form a contradiction takes is syntactically
simple. Call a branch closed if it contains TA and FA for some A, and call a tableau
closed if every branch is; a closed tableau for FX constitutes a proof of X.

Probably most readers are familiar with the Smullyan branch extension rules. We
give two as representative examples. If TX ∧ Y occurs on a branch, both TX and
TY may be added to the end (since classically X ∧ Y is true if and only if both X
and Y are true). Likewise if FX ∧ Y occurs on a branch, the end of the branch may
be split, with FX added to one fork and FY to the other (since X ∧ Y is false if and
only if either X is false or Y is false).

In order to move from two-valued classical logic to the four-valued Belnap logic,
the most obvious thing we could do is introduce four signs, corresponding to the four
truth values of FOUR. For a variety of reasons we do not do this. For one thing,
we have been thinking of ⊥ as representing the lack of a (classical) value. It would
be disquieting to introduce into our proof procedure a symbol which, in effect, would
represent a value of no value. Analogous remarks apply to >. Still, classical two-
valued logic is, in a sense, behind FOUR: the values of FOUR can be thought of as
representing an answer of true only, or false only, or neither, or both. We want our
tableau proof procedure to reflect this.

Suppose we are told by a generally reliable person that a proposition is true. We
do not know, on the basis of this information alone, that the appropriate Belnap
truth value to use is true since later another equally trustworthy person may tell us
the proposition is false, and so the ‘real’ truth value is >. In short, the best we can
expect from a single piece of information is a lower bound on the possibilities: at
least true (true or >), rather than exactly true; at least false (false or >) rather than
exactly false.

In using classical tableaus one shows X is always true by assuming it could be
false, that is by beginning with FX, and deriving a contradiction. Using FOUR we
can show X is at least true by supposing it isn’t, that it is either false or ⊥, and



deriving a contradiction. This leads directly to a reading for the signs T and F . We
will think of FX as saying X is either false or ⊥. Then if we arrive at a contradiction
by starting with FX, it follows that X must be either true or >, that is, at least true.
Similarly we will read TX as saying X is either true or ⊥, so a contradiction deriving
from TX will mean X is at least false. If contradictions follow from both TX and
FX, it tells us X is >, and if contradictions follow from neither, X is ⊥. We should
mention that Dunn in [3] followed a somewhat different convention, thinking of FX
as saying X is at least false, that is, either false or >, and similarly for TX. Thus
some of our rules will look different than in Dunn’s system, though the differences
do not show up for the analogs of the classical connectives, only for ⊗ and ⊕. The
systems are, in a natural sense, duals of each other.

It is simple to check that, in FOUR, X ∧Y is either true or ⊥ if and only if both
X and Y are either true or ⊥. Likewise X ∧Y is either false or ⊥ if and only if one of
X or Y is either false or ⊥. In other words, if we use the four-valued interpretation of
the signs in place of the two-valued reading, we still wind up with the same tableau
rules for conjunction. In fact, every one of Smullyan’s propositional branch extension
rules continues to hold under the four-valued reading. We can also devise rules to
cover ⊕ and ⊗ as well. It is easy to verify that X ⊕Y is true or ⊥ if and only if both
X and Y are true or ⊥. Similarly X ⊕ Y is false or ⊥ if and only if both X and Y
are false or ⊥. That is, both TX ⊕ Y and FX ⊕ Y will have non-branching rules.
Similarly both TX ⊗ Y and FX ⊗ Y will have branching rules.

In order to present his system elegantly Smullyan introduced uniform notation,
which condensed several similar rules into one. Two categories of propositional signed
formulas were defined, α signed formulas, which behave conjunctively, and β signed
formulas, which behave disjunctively. For each α two components, α1 and α2 were
defined: the idea is that an α signed formula is, in an obvious sense, equivalent to
the conjunction of the corresponding α1 and α2. Similarly each β is equivalent to the
disjunction of its components, β1 and β2. Smullyan’s notation is easily extended to
cover the operations ⊕ and ⊗. We present the result in Figure 2.

α α1 α2

TX ∧ Y TX TY
FX ∨ Y FX FY
TX ⊕ Y TX TY
FX ⊕ Y FX FY

β β1 β2

FX ∧ Y FX FY
TX ∨ Y TX TY
TX ⊗ Y TX TY
FX ⊗ Y FX FY

Figure 2: FOUR Conjunctive and Disjunctive Cases

Now the branch extension rules are easily given, in Figure 3 — in fact they have
the same appearance as in Smullyan. If an α occurs on a branch, α1 and α2 can be
added to the end. If a β occurs on a branch, the branch splits and β1 is added to one
side and β2 to the other. The negation rules are straightforward.

We are not done, however: classical branch closure rules simply do not carry over.
After all, TA and FA is no contradiction — if A has the value ⊥, both TA and FA are



α

α1

α2

β

β1 | β2

T ¬Z
F Z

F ¬Z
T Z

Figure 3: Branch Extension Rules

realized. The problem is essentially unsolvable: Belnap’s logic, and Kleene’s logics as
well, simply have no tautologies! But this does not make the tableau system useless.
On the one hand we could enlarge the language by adding propositional constants,
true and false, along with the closure rules: a branch containing T false or F true is
closed. This solves the problem by avoiding it.

It is also possible to use tableaus in a different way, allowing us to test formulas
for equivalence. For instance, X ∧Y and Y ∧X always have the same truth value, no
matter how the four values of Belnap’s logic are assigned to X and Y . This notion of
equivalence is not a definable connective in Belnap’s system, but it is available ‘from
the outside,’ so to speak. We symbolize it with the equality sign, and read X = Y as
‘X and Y are equivalent.’

Definition 4.1 A valuation is a mapping from propositional variables to FOUR. It
is extended inductively to all formulas in the obvious way.

Definition 4.2 We say X restricts Y if under any valuation in FOUR, if X is at
most true (⊥ or true) so is Y . We say X requires Y if under any valuation in FOUR,
if X is at least true (true or >) so is Y .

These are not independent notions. It is easy to see that X restricts Y if and only
if ¬Y requires ¬X, for instance. Dunn showed that X requires Y if and only if X
entails Y in relevance logic, though this plays no role here. Our interest in it is more
elementary: if X and Y each restrict and require the other, they must have the same
value in FOUR under any valuation; that is, they must be equivalent. A tableau
test for this is simple.

Definition 4.3 Call a tableau complete if every non-atomic formula occurrence has
had the appropriate rule applied to it, on each branch on which its node lies.

Let θ1 and θ2 be tableau branches. We say θ1 subsumes θ2 if every signed atomic
formula on θ2 also occurs on θ1.

Let T1 and T2 be complete tableaus. We say T1 covers T2 if each branch of T1

subsumes some branch of T2.

The following relates the tableau notion of covering with the semantical notions of
restriction and requirement.

Proposition 4.4 Let X and Y be arbitrary formulas.



1. X restricts Y if and only if a complete tableau for TX covers a complete tableau
for TY .

2. X requires Y if and only if a complete tableau for FY covers a complete tableau
for FX.

3. X and Y are equivalent if and only if each restricts and requires the other.

Proof We only sketch the underlying ideas. Suppose a complete tableau T1 for TX
covers a complete tableau T2 for TY . (This is, in effect, the soundness direction.)
Let us say a signed formula, TA, is true under a valuation if the valuation maps A
to either true or ⊥; likewise FA is true under a valuation if the valuation maps A to
either false or ⊥. It is easy to check that if a valuation makes all the signed formulas
on some tableau branch true, and any branch extension rule is applied, the valuation
will make all the signed formulas on some branch of the resulting tableau true as well.
Now, suppose v is a valuation mapping X to either true or ⊥. Since v makes TX
true, in the tableau T1 all formulas on some branch are made true by v. Since T1

covers T2, there is a branch of T2 such that all signed atomic formulas on it are made
true by v. Now an induction on complexity shows that all signed formulas on the
branch are made true by v, in particular the top formula, TY . Thus X restricts Y .

In the other direction, suppose a complete tableau T1 for TX does not cover a
complete tableau T2 for TY . Say branch θ of T1 does not subsume any branch of T2.
Use θ to define a valuation v as follows. For an atom A: if both TA and FA occur
on θ, set v(A) = ⊥; if TA but not FA is on θ, set v(A) = true; if FA but not TA is
on θ, set v(A) = false; finally if neither TA nor FA is on θ, set v(A) = >. It can be
checked that v will make every signed formula on θ true, in particular, TX. But also
v does not make the set of signed atomic formulas on any branch of T2 true, and it
follows by an induction on complexity that it does not make TY true. Consequently
X does not restrict Y .

An example of a tableau construction will be found in the next Section, after addi-
tional four-valued connectives have been introduced.

5 The Guard Connective

When considering a logic programming language based on FOUR [6] the usefulness
of a particular connective, which we call a guard gradually emerged. We write P : Q,
and read it as “P guards Q.” Loosely the idea is, if the guard is passed, then we
evaluate Q to get the result; if the guard can’t be passed, we get no information.
More formally, if P has the value true or the value > (i.e. if P is at least true) then
P : Q has the value of Q; otherwise P : Q has the value ⊥. (We do not give a truth
table for this, since it is quite elementary.) The guard connective, though not lattice
theoretic, has several interesting properties. It is monotonic with respect to ≤k, in
both inputs, so it is regular. With respect to ≤t it is monotonic only in the second
input, though we also have the following curious property:

P1 ≤t P2 ⇒ (P1 : Q) ≤k (P2 : Q).



In addition the identities in Figure 4 hold. These identities are strong enough to
imply the monotonicity results cited above. For instance, suppose P1 ≤t P2. Then
P1 = P1 ∧ P2 so: P1 : Q = (P1 ∧ P2) : Q = (P1 : Q)⊗ (P2 : Q) ≤k P2 : Q.

(P ⊗Q) : R = (P ∧Q) : R
= (P : R)⊗ (Q : R)
= (P : Q) : R
= P : (Q : R)

(P ⊕Q) : R = (P ∨Q) : R
= (P : R)⊕ (Q : R)

P : ¬Q = ¬(P : Q)
P : (Q ∧R) = (P : Q) ∧ (P : R)
P : (Q ∨R) = (P : Q) ∨ (P : R)
P : (Q⊗R) = (P : Q)⊗ (P : R)
P : (Q⊕R) = (P : Q)⊕ (P : R)
P ⊕ (Q : P ) = P
P ⊗ (Q : P ) = (Q : P )

Figure 4: Guard Connective Properties

Tableau rules for the guard connective are fairly simple. It turns out that both T
and the F signed formulas act disjunctively, so we only need to add two more lines
to the β table. This is done in Figure 5.

β β1 β2

FX : Y FX FY
TX : Y FX TY

Figure 5: The Guard Connective Cases

As noted earlier, the Belnap logic contains the strong Kleene logic as a sublogic.
Using the guard connective the asymmetric Lisp logic connectives have a simple
characterization: P ~∧ Q = P ∧ (P : Q) and P ~∨ Q = P ∨ (¬P : Q). These
identities are correct when values are restricted to {false, true,⊥}; the restriction is
necessary since the Lisp connectives are only defined for these values. The meaning
is reasonably intuitive: consider conjunction as an example — we do not consider the
second component unless we pass the guard of the first component. In addition the
following equations characterize the weak Kleene connectives: P ∧w Q = (P ~∧ Q)⊗
(Q ~∧ P ) and P ∨wQ = (P ~∨ Q)⊗(Q ~∨ P ). Thus the weak connectives can be seen as
a consensus of sequential evaluations, left-right and right-left, accepting only what the
two directions agree on. It is interesting to note that the conjunction and disjunction
of the strong Kleene logic can be recovered from the asymmetric version as well, using
the gullability operator: P ∧Q = (P ~∧ Q)⊕(Q ~∧ P ) and P ∨Q = (P ~∨ Q)⊕(Q ~∨ P ).
The equations characterizing ~∧ and ~∨ in terms of ∧ and ∨, given above, are correct



only for consistent truth values, true, false, and ⊥. This is trivially so, since these
are all that ~∧ and ~∨ are defined for. We propose reversing things, and using
the equations to define natural extensions of the three-valued connectives to all of
FOUR.

Definition 5.1 The following defines connectives in FOUR.

P ~∧ Q = P ∧ (P : Q)
P ~∨ Q = P ∨ (¬P : Q)
P ∧w Q = (P ~∧ Q)⊗ (Q ~∧ P )
P ∨w Q = (P ~∨ Q)⊗ (Q ~∨ P )

For convenience we summarize the behavior of ~∧ and ~∨ in the truth tables of
in Figure 6. Incidentally, the equations recovering the strong Kleene connectives
from the asymmetric ones continue to work, using the extension to Belnap’s four
truth values. Certain properties are lost in making the extension, however. The
distributivity law, P ~∧ (Q ~∨ R) = (P ~∧ Q) ~∨ (P ~∧ R), is an identity when three
truth values are used, but it does not extend to four: taking P = R = > and Q = ⊥
falsifies it.

~∧ > true false ⊥
> > > false false

true > true false ⊥
false false false false false
⊥ ⊥ ⊥ ⊥ ⊥

~∨ > true false ⊥
> > true > true

true true true true true
false > true false ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Figure 6: Four-valued Tables for ~∧ and ~∨

Since there are tableau rules for the guard connective, these yield tableau rules
for the Lisp connectives and the weak connectives. These do not fall into the α, β
scheme — we give the derived Lisp connective rules in Figure 7.

F P ~∧ Q
F P | F Q

T P ~∨ Q
T P | T Q

T P ~∧ Q
T P

F P | T Q

F P ~∨ Q
F P

T P | F Q

Figure 7: Lisp Connectives Rules

We noted earlier that, although P ~∧ (Q ~∨ R) and (P ~∧ Q) ~∨ (P ~∧ R) are
equivalent when restricted to Kleene’s three values, they are not when > is allowed.
Figure 8 gives complete tableaus for F P ~∧ (Q ~∨ R) and F (P ~∧ Q) ~∨ (P ~∧ R).
In this Figure, the second tableau covers the first, but the first does not cover the
second. The middle branch of the first tableau does not subsume any branch of the



second. Following the proof of Proposition 4.4 a valuation mapping P and R to >
and Q to ⊥ shows that (P ~∧ Q) ~∨ (P ~∧ R) does not require P ~∧ (Q ~∨ R). In
fact this is the valuation we used above to show the distributive law does not hold
in FOUR. Incidentally, tableau rules for the ‘Kleene part’ of FOUR can be based
on the fact that the tableau completeness proof essentially tells how to construct all
counterexamples. If the only counterexamples involve >, the equivalence in question
is valid in Kleene’s logic.

F P

F RT Q

@
@
@

�
�
�

F Q
F Q ~∨ R

@
@
@@

�
�
��

F P ~∧ (Q ~∨ R)

F P

@
@@

�
��

F P T Q
�
�

@
@
F Q

�
�

@
@

F P F Q

T P

F QF P

@
@

�
�

F QF P

@
@

�
�

F RF P

@
@@

�
��

F P ~∧ RT P ~∧ Q

HHHHHH

������

F (P ~∧ Q)
F (P ~∧ Q) ~∨ (P ~∧ R)

Figure 8: Tableaus T1 and T2

6 Bilattices

The logic FOUR has found a natural generalization in Ginsberg’s notion of bilattice
[11]. Actually, there are several kinds of bilattices — this is not the appropriate place
to go into details of the whole family. Instead we will concentrate on the kind that
most directly generalizes Belnap’s logic: distributive bilattices.

Definition 6.1 A pre-bilattice is a structure 〈B,≤t,≤k〉 where each of ≤t and ≤k is
a partial ordering on B that gives it the structure of a lattice with a top and bottom.



If 〈B,≤t,≤k〉 is a pre-bilattice then meets and joins exist for both orderings. We
will use ∧ and ∨ for meet and join under ≤t, and ⊗ and ⊕ for meet and join under
≤k. Also least and greatest elements must exist under each ordering. We will use
false and true for the least and greatest element under ≤t, and ⊥ and > for the least
and greatest element under ≤k. Also we will assume all pre-bilattices are non-trivial:
true, false, ⊥, and > are all distinct.

Definition 6.2 Let 〈B,≤t,≤k〉 be a pre-bilattice. It has a negation if there is a
mapping ¬ from B to itself such that:

1. x ≤t y =⇒ ¬y ≤t ¬x;

2. x ≤k y =⇒ ¬x ≤k ¬y;

3. ¬¬x = x.

The pre-bilattice has a conflation if there is a mapping − from B to itself such that:

1. x ≤k y =⇒ −y ≤k −x;

2. x ≤t y =⇒ −x ≤t −y;

3. −− x = x.

Ginsberg’s definition of bilattice is essentially: a pre-bilattice with negation. (Ac-
tually, he also requires each lattice to be complete, something we omit.) Notice that
if there is a negation, the de Morgan laws will hold with respect to ¬ and ∧ and ∨,
while ⊗ and ⊕ will be their own duals under ¬. If there is a conflation, the situation
is exactly reversed: ⊗ and ⊕ are interchanged by − while ∧ and ∨ are left alone. If
there is a negation it reverses true and false, and leaves > and ⊥ alone. Likewise if
there is a conflation, it reverses > and ⊥, while not affecting true and false.

Definition 6.3 A pre-bilattice 〈B,≤t,≤k〉 is a distributive bilattice if each of ∧, ∨,
⊗ and ⊕ distributes over the other three operations.

Then FOUR is a distributive bilattice with a negation and a conflation that commute
with each other. It is one among many, in fact. We will give other examples in the
next Section, but first some general remarks.

A bilattice is interlaced if each of the four operations, ∧, ∨, ⊗ and ⊕ is monotonic
in both orderings, ≤t and ≤k. Interlacing played a fundamental role in [5] and [7].
Every distributive bilattice is interlaced. As we remarked earlier, interlacing is the
direct generalization of Kleene’s notion of regularity. In a distributive bilattice, or
even in an interlaced one, each extremal element is a simple combination of other
extremal elements. We always have true⊕ false = >, true⊗ false = ⊥, >∧⊥ = false
and > ∨ ⊥ = true. In the Belnap logic all elements are extremal. Other more
complicated examples are given in the next section. Finally, it is easy to check that
if B is a bilattice and S is a set, the function space BS, with the induced pointwise
orderings, is a bilattice again. And it will have a negation if B has one; similarly for
conflation.



7 Bilattice constructions

There are two simple ways of producing distributive bilattices. One directly gener-
alizes the Kleene strong three-valued logic, then completes the result to a bilattice;
details can be found in [8]. The other generalizes Belnap’s logic directly; it is due to
Ginsberg, though its origins can be traced back to Dunn. It is this version we sketch
now.

Definition 7.1 Let 〈L1,≤1〉 and 〈L2,≤2〉 be lattices, each with a bottom and top.
By L1 ¯ L2 we mean 〈L1 × L2,≤t,≤k〉 where:

1. 〈x1, x2〉 ≤t 〈y1, y2〉 if x1 ≤1 y1 and y2 ≤2 x2;

2. 〈x1, x2〉 ≤k 〈y1, y2〉 if x1 ≤1 y1 and x2 ≤2 y2

It is quite straightforward to check that L1¯L2 will always be an interlaced bilattice,
and if L1 and L2 are each distributive, L1 ¯ L2 will be a distributive bilattice. Thus
there are many bilattice examples indeed. It follows from Definition 7.1 that the
bilattice connectives have easy characterizations — we give them in Figure 9.

〈x1, x2〉 ∧ 〈y1, y2〉 = 〈x1 ∧ y1, x2 ∨ y2〉
〈x1, x2〉 ∨ 〈y1, y2〉 = 〈x1 ∨ y1, x2 ∧ y2〉
〈x1, x2〉 ⊗ 〈y1, y2〉 = 〈x1 ∧ y1, x2 ∧ y2〉
〈x1, x2〉 ⊕ 〈y1, y2〉 = 〈x1 ∨ y1, x2 ∨ y2〉

Figure 9: Operations in L1 ¯ L2

The rather technical construction above turns out to have a natural motivation.
Suppose we are collecting evidence about propositions. Perhaps this evidence is
statistical in nature, or perhaps it involves derivations from information in a database.
At any rate we can, and often do, come up with reasons for something that are quite
independent of our reasons against it. Now, suppose the lattice L1 is used to record
our belief in, evidence for, proofs of some proposition, while L2 is used to record our
disbelief in, evidence against, disproofs of that proposition. Then a pair, 〈x, y〉, with
x ∈ L1 and y ∈ L2, serves as a summary of a situation. Notice that L1 and L2 need
not be the same. We might ask Expert One whether P should be accepted, and
that expert might reply with a probability, and we might ask Expert Two whether
P should be rejected, and this reply might be either a ‘yes’ or silence. Whether the
lattices are the same or different, the role of the two bilattice orderings of L1 ¯ L2

should now be plausible: there is an increase in the ‘truth’ ordering if evidence for
goes up, but evidence against goes down. There is an increase in the ‘information’
direction if all evidence goes up, both for and against. Notice that true amounts to
maximum possible evidence for, but none against, while >, or overdefined, amounts
to maximum possible evidence both for and against. Of course, depending on the
lattices L1 and L2, various degrees of overdefinedness are possible.

There are several specific examples of considerable interest. If L1 = L2 is the
two element lattice {0, 1}, where 0 < 1, then L1 ¯ L2 is an isomorphic copy of



FOUR. Taking L1 and L2 to be the unit interval [0, 1] yields a natural probability
bilattice. Taking L1 to be the unit interval, and L2 to be the two element lattice
gives us a bilattice appropriate to an example earlier, where the ‘for’ expert spoke
in probabilities, while the ‘against’ expert would say nothing more complicated than
“yes.”

If L1 = L2 then a natural notion of negation is available in L1¯L2: switch around
the roles of belief and doubt. That is, set

¬〈x, y〉 = 〈y, x〉.

It is easy to check that this meets the conditions of Definition 6.2.
Even if L1 = L2 there may not be a conflation operation. But suppose that, in

addition, the underlying lattice is a de Morgan lattice: a distributive lattice with a
de Morgan complement — a map from the lattice to itself that reverses the order rela-
tion and is an involution. Under these circumstances a natural conflation is available.
Let us write x− for the de Morgan complement of x. Then set

−〈x, y〉 = 〈y−, x−〉.

It is straightforward to check that the conditions of Definition 6.2 are met.
The intuition behind the conflation construction is quite direct. Suppose, for

instance, that L1 = L2 is the unit interval. We can think of a member of the bilattice
L1¯L2 as an encoding of a degree of belief and a degree of doubt in some proposition.
The map that sends x to 1−x is a de Morgan complement on the unit interval. Then
the bilattice map that sends 〈x, y〉 to 〈1 − y, 1 − x〉 is a conflation operation. It
amounts to moving from a situation to a conflated version of the same situation in
which we believe to the extent that we did not doubt before, and we doubt to the
extent that we did not believe before. As another example, suppose S is a set, which
we can think of as consisting of potential items of evidence. Consider the lattice
P(S) whose members are subsets of S, ordered by ⊆. Then a member of the bilattice
P(S) ¯ P(S) summarizes evidence for, and evidence against some proposition. The
map that sends a set X to its complement relative to S is a de Morgan complement.
Then the map that sends 〈X, Y 〉 to 〈S − Y, S − X〉 is a bilattice conflation. In the
conflated version of 〈X, Y 〉 we are counting as evidence in favor anything that did not
count against before, and as evidence against anything that did not count in favor.

One final remark about the constructions above. If L has a de Morgan comple-
ment, L¯L will have both a conflation and a negation operation. It is easy to check
that these will commute with each other.

8 Representation Theorems

In the preceding section we saw that if L1 and L2 are distributive lattices, L1¯L2 is
a distributive bilattice. In fact, the converse of this is true as well.

Theorem 8.1 If B is a distributive bilattice then there are distributive lattices L1

and L2 such that B is isomorphic to L1 ¯ L2.



This result is due to Ginsberg, [11]. There is a more direct proof of it in [7] as
well. The basic idea of the proof is as follows. Take for L1 the set {x ∨ ⊥ | x ∈ B}
with an ordering ≤1 where x ≤1 y ⇔ x ≤t y. Take L2 = {x ∧ ⊥ | x ∈ B}, and set
x ≤2 y ⇔ y ≤t x. Then the mapping θ : B → L1 ¯ L2 given by xθ = 〈x ∨ ⊥, x ∧ ⊥〉
is a bilattice isomorphism. Incidentally, θ−1 is given by θ−1(〈a, b〉) = a⊕ b. We omit
details, which can be found in the papers cited above.

The Representation Theorem 8.1 can be strengthened to include negation and
conflation. The negation result appears in [11] (as a consequence of Theorem 9.21).
We give a proof that continues along the lines of the previous theorem.

Theorem 8.2 Suppose B is a distributive bilattice with negation. Then there is a
distributive lattice L such that B is isomorphic to L¯ L under an isomorphism that
preserves negation.

Proof It is technically more convenient to show B is isomorphic to L1 ¯ L2 where,
in turn, L1 and L2 are isomorphic lattices.

Let L1 and L2 be as in the proof sketch for Theorem 8.1 above. Note that if
a ∈ L1, a = x ∨ ⊥, so ¬a = ¬(x ∨ ⊥) = ¬x ∧ ⊥ ∈ L2. Then the map η : L1 → L2,
given by aη = ¬a, is well-defined. We claim it is an isomorphism.

First, (aη)η = a, so the map is 1 − 1. And if b ∈ L2, b = x ∧ ⊥ for some x, so
¬b = ¬(x ∧⊥) = ¬x ∨⊥ ∈ L1. Now (¬b)η = ¬¬b = b, so η is onto. Finally, suppose
a, b ∈ L1. Then a ≤1 b⇔ a ≤t b⇔ ¬b ≤t ¬a⇔ bη ≤t aη ⇔ aη ≤2 bη. Thus η is an
isomorphism.

Using η, L1 ¯ L2 has a negation, ¬〈a, b〉 = 〈bη, aη〉. Now, using the bilattice
isomorphism θ from the proof of Theorem 8.1, ¬(xθ) = ¬〈x ∨ ⊥, x ∧ ⊥〉 = 〈(x ∧
⊥)η, (x ∨ ⊥)η〉 = 〈¬x ∨ ⊥,¬x ∧ ⊥〉 = (¬x)θ. Thus θ preserves negation.

Finally we extend the representation results to include conflation.

Theorem 8.3 Suppose B is a distributive bilattice with negation and conflation op-
erations that commute with each other. Then there is a distributive lattice L with a
de Morgan complement, such that B is isomorphic to L ¯ L under an isomorphism
that preserves negation and conflation.

Proof We continue the proof of Theorem 8.2, using the same notation. In particular,
instead of working with L¯L we work with L1¯L2, where L1 and L2 are isomorphic
via the mapping η. Note that if a ∈ L1, then a = x ∨⊥ and so a ∨⊥ = x ∨⊥∨⊥ =
x∨⊥ = a. Now let i : L1 → L1 be given by ai = −¬a∨⊥. We claim i is a de Morgan
complement.

First, for a ∈ L1, (ai)i = −¬(−¬a∨⊥)∨⊥ = (a∧>)∨⊥ = (a∨⊥)∧ (>∨⊥) =
(a ∨ ⊥) ∧ true = a ∨ ⊥ = a. Thus i is an involution.

Next, suppose a, b ∈ L1. Then a ≤1 b ⇔ a ≤t b ⇔ ¬b ≤t ¬a ⇒ −¬b ∨ ⊥ ≤t
−¬a∨⊥ ⇔ bi ≤t ai⇔ bi ≤1 ai. (The converse implication follows from the fact that
i is an involution.) Thus i is order reversing.

Finally, L1 ¯ L2 has a convolution: −〈a, b〉 = 〈(bη)i, (ai)η〉. We leave it to you to
verify that −(xθ) = (−x)θ.



Thus the methods introduced in the previous section for constructing distributive
bilattices are entirely general.

9 Kleene’s logics, generalized

So far we have talked about distributive bilattices, which directly generalize the Bel-
nap four-valued logic. But we began with Kleene’s three-valued logics — to what
extent are there natural generalizations of them? Such generalizations have been
proposed before, of course. We are particularly interested in those related to bilat-
tices. One possibility can be found in [8], where Kleene’s strong three-valued logic
is shown to be one of a family of logics, and each member of this family is part of a
bilattice. But we also want to generalize the Kleene weak three-valued logic, and Lisp
logic as well. We begin with the strong three-valued logic and the guard connective,
since the other connectives can be characterized using this machinery.

In FOUR both the classical and Kleene truth values can be specified in terms of
conflation. The classical truth values are those left unchanged by conflation and the
Kleene values are those that contain no more information than their conflations. Here
is something on which to base a generalization. The following is taken from [5, 7].

Definition 9.1 Suppose B is a bilattice with conflation. A member x of B is exact
if x = −x, and is consistent if x ≤k −x.

Incidentally, this notion of consistent is different from one of the same name in [11].
Now the following is straightforward to establish.

Theorem 9.2 In any distributive (or just interlaced) bilattice with conflation the
exact truth values contain true and false and are closed under ∧ and ∨. If there is a
negation that commutes with conflation, they are closed under negation as well. The
exact truth values do not contain > or ⊥ and are not closed under ⊗ or ⊕.

Thus the exact values of B are a candidate for a generalization of classical two-valued
logic. Of more interest for this paper is the following.

Theorem 9.3 In any distributive (or again, just interlaced) bilattice with conflation
the consistent truth values include the exact ones, ⊥, and are closed under ∧ and ∨.
If there is a negation that commutes with conflation, they are closed under negation
as well. Further, the collection of consistent members is closed under ⊗; and under
⊕ when applied to members having a common upper bound.

Most of this is straightforward. If the bilattice is complete (that is, if each of ≤k and
≤t is a complete lattice ordering), the results extend to infinitary operations as well,
with closure of consistent members under the infinitary version of ⊕ for directed sets.
The only tricky part is the last, closure under directed sups. A proof of this, due to
Visser, [15], can be found in the bilattice setting in [5, 7].



The closure results are curiously important. Kripke showed that a treatment of
truth in languages allowing self-reference could be based on Kleene’s strong three-
valued logic [13]. It was a fixpoint approach, using a ‘truth revision’ operator. The
existence of a smallest fixpoint depended on the closure of the Kleene logic under
arbitrary infs (and by extension, the similar closure of the family of interpretations
in this logic). Further, a special kind of fixpoint called intrinsic played an important
role. Although there is no largest fixpoint, there is a largest intrinsic fixpoint. To
establish its existence, closure of the Kleene logic (and of the family of interpreta-
tions) under directed sups is needed. It was showed in [5] that the Kripke approach
extended to arbitrary interlaced bilattices, and the features of the Kleene logic that
were significant in Kripke’s approach carried over generally to collections of consis-
tent truth values in bilattices, with similar results obtainable. Thus, at least from
the point of view of Kripke’s theory, the consistent truth values in a bilattice yield a
reasonable generalization of the Kleene strong three-valued logic. In addition, in [10]
the notion of intrinsic was given a role in the area of stable model semantics for logic
programming as well, and again the consistent part of a bilattice plays a significant
role.

In what follows, let B be a distributive bilattice with a negation and a conflation
that commute. Our immediate task is to propose a generalization of the guard con-
nective to B, since B is a direct generalization of FOUR and consequently contains
a generalization of Kleene’s strong logic. Of course in principle a generalization pro-
posal can be rather arbitrary — we will argue that our proposal is a natural one since
it carries over to the whole family what seem like the essential features of FOUR.
Since every distributive bilattice can be obtained as the ¯-product of distributive
lattices, it is enough to give a definition for such bilattices.

Definition 9.4 Let L¯ L be (isomorphic to) the bilattice B. Set 〈a, b〉 : 〈c, d〉 to be
〈a ∧ c, a ∧ d〉, where these meets are calculated in L.

Thus in 〈a, b〉 : 〈c, d〉 belief and doubt of 〈c, d〉 is modified by the degree to which
the guard is believed, an intuitively plausible notion to consider. Using the Represen-
tation Theorems of Section 8, FOUR is isomorphic to T WO¯T WO, where T WO
is the lattice {false, true}, with false < true. Applying Definition 9.4 to an example
from FOUR we have the following.

false : P = 〈false, true〉 : 〈p1, p2〉
= 〈false ∧ p1, false ∧ p2〉
= 〈false, false〉
= ⊥

In fact, Definition 9.4 yields the same results generally in FOUR as our earlier
characterization. In addition, all of the identities of Figure 4 continue to hold for
the generalized version of the guard connective as well. Just as it did with FOUR,
it follows from some of these identities that the guard connective is monotonic with
respect to ≤k, and is monotonic with respect to ≤t in its second input.



There are many other ways of characterizing the generalized guard connective.
The one given above is, we feel, the most intuitive and useful. The following charac-
terization is easily verified to be equivalent:

P : Q = [(P ⊗ true)⊕ ¬(P ⊗ true)]⊗Q
Suppose Q is a consistent member of B, that is, Q ≤k −Q. Using the characteri-

zation above, we have the following.

P : Q = [(P ⊗ true)⊕ ¬(P ⊗ true)]⊗Q
≤k Q
≤k −Q
≤k −[(P ⊗ true)⊕ ¬(P ⊗ true)]⊕−Q
= −(P : Q)

Thus if Q is consistent in B, so is P : Q. Now the earlier characterizations, from
Belnap’s logic, can be proposed as candidates for generalization from FOUR to B.

P ~∧ Q = P ∧ (P : Q)
P ~∨ Q = P ∨ (¬P : Q)
P ∧w Q = (P ~∧ Q)⊗ (Q ~∧ P )
P ∨w Q = (P ~∨ Q)⊗ (Q ~∨ P )

The family of consistent members must be closed under these connectives. It follows
from the monotonicity properties of the guard connective and the interlacing condi-
tions that ~∧ , ~∨ , ∧w, and ∨w are all monotonic with respect to ≤k. As we remarked
earlier, in FOUR this monotonicity was what made Kripke’s truth revision opera-
tor monotonic, and lay at the heart of his semantic treatment of truth in languages
allowing self-reference.

10 Bilinear bilattices

Among the family of distributive bilattices there is a subcollection of independent
interest that behaves just like FOUR with respect to the connectives we have con-
sidered.

Definition 10.1 A bilattice is bilinear if any pair of members is comparable, under
at least one of the bilattice orderings.

Proposition 10.2 Let B be a distributive bilattice, and hence isomorphic to L1¯L2

for some distributive lattices L1 and L2. B is bilinear if and only if each of L1 and
L2 is linear.

The proof of this is straightforward, and is omitted.
We claim that, if B is a bilinear distributive bilattice with negation then an equiv-

alence, X = Y , is valid in B if and only if it is valid in FOUR. (Validity means
both X and Y have the same values in B under every valuation, where the notion of
valuation is the obvious one.) The chief tool we need is the following Definition and
Lemma, in which we identify FOUR with T WO ¯ T WO.



Definition 10.3 Let L be a lattice. We first define an operation from L to {false, true}
as follows:

x→ y =

{
true if x ≤ y
false otherwise

Next, let a ∈ L. We define a mapping θa : L¯ L→ FOUR as follows:

θa(〈x1, x2〉) = 〈a→ x1, a→ x2〉

Lemma 10.4 Let L be a lattice that is linearly ordered, and let a be an arbitrary
member of L. Then θa is a homomorphism in the following sense. For any p, q ∈
L¯ L:

1. θa(¬p) = ¬θa(p);

2. if ◦ is any of ∧, ∨, ⊗, ⊕, :, ~∧ , ~∨ , ∧w, or ∨w, θa(p ◦ q) = θa(p) ◦ θa(q).

Proof Since L is a lattice, in it a ≤ x ∧ y if and only if a ≤ x and a ≤ y, and
consequently a→ (x∧ y) = (a→ x)∧ (a→ y), where the ∧ on the right is the usual
Boolean operation of {false, true}. Also a ≤ x or a ≤ y implies a ≤ x ∨ y. But also,
since L is linear it follows easily that a ≤ x∨ y implies a ≤ x or a ≤ y. Consequently
a→ (x ∨ y) = (a→ x) ∨ (a→ y). Now:

θa(〈p1, p2〉 ∧ 〈q1, q2〉) = θa(〈p1 ∧ q1, p2 ∨ q2〉)
= 〈a→ (p1 ∧ q1), a→ (p2 ∨ q2)〉
= 〈(a→ p1) ∧ (a→ q1), (a→ p2) ∨ (a→ q2)〉
= 〈a→ p1, a→ p2〉 ∧ 〈a→ q1, a→ q2〉
= θa(〈p1, p2〉) ∧ θa(〈q1, q2〉)

The other cases are similar, and we leave them to the reader.

Now we have the main result of the section.

Theorem 10.5 Let B be a distributive bilattice with negation that is bilinear. Let X
and Y be formulas built up from propositional letters using ∧, ∨, ¬, ⊗, ⊕, :, ~∧ , ~∨ ,
∧w, and ∨w. Then the equivalence X = Y is valid in B if and only if X = Y is valid
in FOUR.

Proof One half is quite trivial. Suppose X = Y is not valid in FOUR. Let v be
a valuation under which X and Y map to different members of FOUR. Now think
of v as a valuation in B instead of FOUR. Since >, ⊥, false, true behave the same
in B as in FOUR under the operations we are considering, v will map X and Y to
different members of B as well, so X = Y is not valid in B either.

Next, suppose X = Y is not valid in B; where the valuation v establishes this.
Using the Representation Theorems from Section 8, and Proposition 10.2, we can
assume B is of the form L ¯ L, where L is linear. Say v(X) = 〈x1, x2〉 and v(Y ) =
〈y1, y2〉. Since v(X) 6= v(Y ), x1 6= y1 or x2 6= y2, say the first. Also since L is linear,
x1 < y1 or y1 < x1. Again say the first; the other possibilities are treated similarly.



Now define a valuation v′ in FOUR by: v′(P ) = θy1(v(P )), for P a propositional
letter. Using Lemma 10.4, for any formula Z, v′(Z) = θy1(v(Z)). In particular,
v′(X) = θy1(v(X)) = θy1(〈x1, x2〉) = 〈y1 → x1, y1 → x2〉 = 〈false, y1 → x2〉. But
v′(Y ) = θy1(v(Y )) = θy1(〈y1, y2〉) = 〈y1 → y1, y1 → y2〉 = 〈true, y1 → y2〉. Since X
and Y differ under v′, X = Y is not valid in FOUR.

11 Conclusion

Bilinear bilattices include some of obvious interest, such as [0, 1]¯ [0, 1]. On the other
hand, Theorem 10.5 says that as logics bilinear bilattices are not very interesting at
all. We encourage others to investigate the family of distributive bilattices that are
not bilinear. We feel all these bilattice structures are of intrinsic interest and have
potential applicability. Encouraging further work is the main point of this paper.

References

[1] Belnap, Jr., N. D. A useful four-valued logic. In Modern Uses of Multiple-
Valued Logic, J. M. Dunn and G. Epstein, Eds. D. Reidel, 1977.

[2] Dunn, J. M. Natural language versus formal language. presented at the Joint
APA-ASL symposium, New York, dec 1969.

[3] Dunn, J. M. Intuitive semantics for first-degree entailments and coupled trees.
Philosophical Studies 29 (1976), 149–168.

[4] Dunn, J. M. Relevance logic and entailment. In Handbook of Philosophical
Logic, Volume III, D. Gabbay and F. Guenthner, Eds. D. Reidel, 1986, ch. 3,
pp. 117–224.

[5] Fitting, M. C. Bilattices and the theory of truth. Journal of Philosophical
Logic 18 (1989), 225–256.

[6] Fitting, M. C. Negation as refutation. In Proceedings of the Fourth Annual
Symposium on Logic in Computer Science (1989), R. Parikh, Ed., IEEE, pp. 63–
70.

[7] Fitting, M. C. Bilattices and the semantics of logic programming. Journal of
Logic Programming 11 (1991), 91–116.

[8] Fitting, M. C. Kleene’s logic, generalized. Journal of Logic and Computation
1 (1992), 797–810.

[9] Fitting, M. C. The family of stable models. Journal of Logic Programming
17 (1993), 197–225.

[10] Fitting, M. C. On prudent bravery and other abstractions. In preparation,
1993.



[11] Ginsberg, M. L. Multivalued logics: a uniform approach to reasoning in
artificial intelligence. Computational Intelligence 4 (1988), 265–316.

[12] Kleene, S. C. Introduction to Metamathematics. D. Van Nostrand, Princeton,
NJ, 1950.

[13] Kripke, S. Outline of a theory of truth. The Journal of Philosophy 72 (1975),
690–716. Reprinted in New Essays on Truth and the Liar Paradox, R. L. Martin,
ed., Oxford (1983).

[14] Smullyan, R. M. First-Order Logic. Springer-Verlag, 1968.

[15] Visser, A. Four valued semantics and the liar. Journal of Philosophical Logic
13 (1984), 181–212.


