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INTUITIONISTIC MODEL THEORY AND THE COHEN
INDEPENDENCE PROOFS

MELVIN FITTING

Godel proved the continuum hypothesis consistent with the other axioms
of set theory [2] by constructing a transfinite sequence of (domains of)
classical logic models {M,}, taking a limit L, over all ordinals, and showing
it was a model for set theory and the continuum hypothesis (among other
things). We will indicate how this procedure can be generalized to transfinite
sequences of Saul Kripke’s intuitionistic logic models [7] in such a way as
to establish the independence results of Cohen [1].

This\ sort of thing has been done by Vopénka and others (see refs. [3]-[5]
and [10]-[14]) using topological intuitionistic models. Kripke’s model
structure is closer in form to Cohen’s forcing technique, and the methods
used are more ‘logical’. Neither Vopénka’s nor this method requires count-
able models for set theory.

First I will briefly sketch Kripke’s notion of an intuitionistic logic
model, since the notation I use is different from his. -

Notation. If P is a function ranging over sets of parameters, by P(I")
we mean the collection of all first order formulas with constants from P(I").
9% is any atomic formula, ¥ and 9) are any formulas.

DErFINITION 1. By an intuitionistic model we mean an ordered quadruple
{G, R, E, P)>, where G is a non-empty set, R is a transitive, reflexive rela-
tion on G, k is a relation between elements of G and formulas, and P is a
map from G to non-empty sets of parameters, satisfying forany I', 4 G

(1). TR4 = P(I') = P(4);

(2). TEA=>AeP(I);

(3). TEA, TRA=AF¥;

4. TrE(XAY)eTEXandT'EY;

5 TE@EVY) < (EvY)eP(IandTEXor Tk Y,

(6). T'E ~ X<> ~ XeP(I')andfor every 4 € G such that 'R4, 4 ¥ X;
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220 M. FITTING C X1v

(7). TE(X> P)<> (X > P)eP(I') and for every 4e€ G such that
TRA4, if AFX, AFY;

(8). I' k (3x)X(x) <> for some ae P(I'), I k X(a);

(9). T E (Vx)Z(x) <> for every 4 € G such that I'R4, and for every ae P(4),
4k X(a).

DErFINITION 2. X is valid in the model (G, R, k, P) if for every I' € G such
that X € P(I'), T'kX.
X is valid if X is valid in every model.

THeoREM 1. (Kripke [7]). X is a theorem of intuitionistic logic if and only
if X is valid.

The above modeling may be briefly motivated as follows:

G is a collection of possible states of knowledge; any I' e G may be
considered to be a collection of physical facts. I'R4 means if now we know
T, later we might know 4. P(T') is the set of constants constructed by the
stage I', or the set of parameters introduced in reaching I'. Finally I'kX
means that from the facts I' we may deduce X.

If a model {G, R, F, P) has a countable domain, i.e. | J{P(I')II"e G}, we
may apply Cohen’s complete sequence method [1]. Call H < G an R-chain
if any two elements are R-comparable. Call H a complete R-chain if for any
formula X, only using parameters ‘available’ in H, for someI'e H, 'k Xv ~ X.
Then, as in [1], any I' € G can be included in a complete R-chain. If His a
complete R-chain, {¥| for some I' € H, I' F X} is, if we ignore the universal
quantifier, a classical truth set. Now suppose X has no universal quantifiers
and ~~¥% is not an intuitionistic theorem. The analog of the Skolem-
Lowenheim theorem holds for Kripke’s models, so for some model with
a countable domain {G, R, F, P) for some I' e G, I ¥ ~ ~X%. For some
A€ G, I'RA and 4 E~X. By the above remarks ~ X must belong to some
classical truth set, so X is not classically valid. (This can be extended to a
full proof of Kleene [6] theorem 59).

Suppose we could find some intuitionistic model {G, R, F, P) in which
for some I'e G, 'k ZF and I' ¥ ~ ~AC, where ZF is the set of Zermelo-
Fraenkel axioms, and AC is the axiom of choice, all expressed in (classi-
cally equivalent) forms not using the universal quantifier. Then by the above
we would have the classical independence of the axiom of choice. (Note
that F(X > ~~9) = ~~(X o 9).) Before showing how this may be
done, we present the G6del construction in order to bri_ng out the analogy.
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Let V¥ be a classical Zermelo-Fraenkel model. In [2] Gédel defined over
V the sequence {M,} of sets as follows:

M, =9,

M, , is the collection of all definable subsets of M,,

M; = Je<2M, for limit ordinals A.

Let L be the class { ), ¢y M,. G6del showed that L was a classical ZF model.

As an introduction to the intuitionistic generalization, we restate the Godel
construction using characteristic functions instead of sets. Now of course
‘e’ is to be considered as a formal symbol, not as set membership.

Let M be some collection and let » be a truth function on the set of for-
mulas with constants from M. We say a (characteristic) function f is defin-
able over {M, v) if domain(f) = M, range(f) = {T, F}, and for some for-
mula X(x) with one free variable and all constants from M, for all ae M

f(a) = v(¥(a)).

Let M’ be the elements of M together with all functions definable over
{M, v).

We define a truth function v’ on the set of formulas with constants from
M’ by defining it for atomic formulas. If f, g € M’ we have three cases:

(1). f,ge M. Let v'(feg) = o(feg);

(2). feM,ge M’ =M. Let v'(fe g) = g(f);

(3). fe M'—M. Let X(x) be the formula which defines f over {M, v).
If there is an he M such that o((Vx)(xeh = X(x))) =T and
v'(heg) =T let v'(fe g) = T, otherwise let v'(fe g) = F. (Case 3
reduces the situation to case 1 or 2.)

We call the pair {M’, v') the derived model of {M, v).

Now, let M, = ¢ and let v, be the obvious truth function. Thus we

have (M,, vy).

Let {(M,,, v,.,) be the derived model of {M,, v,>.

If A is a limit ordinal, let M; = | J,<,M,. Let v,(fe g) = T if for some
a < A, v0,(fe g) = T, otherwise let v,(fe g) = F. Thus we have (M, v,)>.

Let L = | J,ev M, and let v(fe g) = T if for some ae V v,(feg)=T,
otherwise let v(fe g) = F. Thus we have the ‘class’ model (L, v). All the
axioms of ZF will be valid in this model. -

Before proceeding to the intuitionistic generalization, we note that it can
be shown that for formulas without universal quantifiers it suffices to con-
sider only intuitionistic models with the P-map constant. From now on we
will assume this, and we will write the range of the map instead of the map
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itself. Thus our models now are quadruples (G, R, F, S, where S'is a collec-
tion of parameters, etc. Also, for convenience, let B be the collection of all
R-closed subsets of G.

Let {G, R, E, ) be some model. We say a function f is definable over
{G, R, E, S if domain(f) = S, range(f) < B, and for some formula X(x)
with one free variable, all constants from S and no universal quantifiers,
for anyae S

fla) = {I'l" (a)}.

Let S’ be the elements of S together with all functions definable over {G, R,
E, S).
We define a F’ relation by giving it for atomic formulas over S*. If f, g€ S’
we have three cases:
(1). f,geS. Let TF'(feg) if TE(feg).
(2). fe S, geS'—S. Let I'F'(fe g) if I € g(f).
(3). fe 8"—S. Let X(x) be the formula which defines f over {G, R, F, S>.
Let I'k'(fe g) if there is an h € S such that I'k ~ (3x)~ (xe h=%(x))
and I'k’(h e g). (This reduces the situation to case 1 or 2).
We call the model {G, R, F’, $*) the derived model of {G, R, k, S).
Now, as above, let V be a classical model for ZF. We define a sequence of
intuitionistic models as follows:
Let (G, R, E,, S, be any intuitionistic model satisfying the following five
conditions:
(1). (G, R, kg, Se>€EV; .
(2). S, is a collection of functions such that if fe€ S, domain(f) = S,
and range (f) < B;
(3). forf,ge S,, I'ko(fe g)if and onlyif I € g(f);
(4). (extensionality) for f, g, he Sy, if I'Fo~(3x)~(x€f = xeg) and
TEq ~~(feh)then T'Ey ~~(g€h);
(5). (regularity) S, is well-founded with respect to the relation x e do-
main(y).
Remark 1. If we consider the symbols v, A, ~, 2,V¥,3,(, ), & x;, x5,
X3, . . - to be suitably coded as sets, formulas are sequences of sets, and hence
sets. It is in this sense that (1) is meant.
Next, let <G, R, F,4, S,+1» be the derived model of (G, R, F,, S;>.
If Zis a limit ordinal, let S; = (J,<; S, Let I'k;(fe g) if for some a« < 1,
Tk, (fe g). Thus we have {G, R, F,, S;>.
Finally, let S = |J,cy S, and I'k(fe g) if for some ae V, I'k(f€ g).
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Thus we have the ‘class’ model {G, R, E, S).

At this point, let me remark without giving the proofs that the techniques
which are used in handling the {M,} sequence have their analogues for the
above sequences. As in the classical case we may show:

THEOREM 2. All the axioms of Zermelo—Fraenkel (stated without universal
quantifiers) are valid in any such {G, R, F, S).

Remark 2. As a special case, let S, = @ and let G have one element (then
B has two elements, G and §). If we define functions v,(X) = {I'e G|
I't X} and we identify G with T and @ with F, the resulting sequence {S,, v,»
is identical with the sequence{M,, v,> above. Thus, as a special case of the
above theorem, L is a (classical) ZF model.

At this point it is possible to produce a particular {G, R, Fq, S,) with so
much symmetry built in that in the resulting class model (G, R, k, $) ~ AC
is valid. From this, as shown above, the classical independence of the
axiom of choice follows. Since this model requires a fair amount of detail,
rather than give it here I refer you to [15] and go on to show how ordinals
may be represented in these models.

By putting one more requirement on {G, R, k,, S,> it becomes possible
to find quite satisfactory representatives of all the ordinals of ¥ in the class
models. Essentially, as in the classical case, each ‘ordinal’ will be the ‘set’ of
all smaller ‘ordinals’. Let us make this more precise.

We use a formula ordinal(x) with no universal quantifiers which classically
defines the ordinals. .

Let us define ordinal representatives as follows: Suppose for each f < «
we have already defined representatives in S. We call f € S a general represen-
tative of o if

(1) if g € S represents any ordinal <a, (g €f) is valid in {G, R, F, $).

(2) if for some ' e G, k(g €f), then for some R-successor 4 of I, some

B <« and some ke S representing B, 4k(g = h), that is, 4F ~(3x)
~(xeg=1xeh).
General representatives would be quite satisfactory to work with, if they
existed, even if they were not unique. Howeyer, it is convenient to single
out canonical representatives.

If fis a general representative of a, we call f a canonical representative
of a if

(1) for no g € domain(f) and for no I'e G does I' F (f = g);

(2) if T'F ~~(g ef), then I F (g €f) for all g € domain(f).
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For reasons to be given in a moment, canonical representatives, if they existed
would be delightful to work with. To ensure their existence, we place two
requirements on the 0-th models which say essentially that canonical re-
presentatives in S, (if any) are unique and that there are sufficiently many ca-
nonical representatives in S, that any element of S, which at some point is
an ordinal may later be a canonical one.

Formally, call {G, R, Fy, Sy) ordinalized if

(1) no ordinal has more than one canonical representative in S,;

(2) iffe S, and I k4 ordinal(f) for some I' € G, then for some R-succes-
sor 4 of I and some ke S, which is a canonical ordinal representative
of some ordinal, 4 ko(f = h).

Now it is not difficult to show the following results:

If (G, R, ky, Sy is ordinalized,

(1) every ordinal of ¥ is uniquely canonically representable by an ele-
ment of S (denote the representative of « by &);

(2) a=p iff (& = B)is valid in <G, R, F, S,
aep iff (4ep)isvalidin (G, R, k, $;

(3) ordinal(®) is valid in {G, R, F, S);

(4) if for some I'e G, T Fordinal(f), then for some R-successor 4 of I'
and some ordinal a, AkF(f = &);

(5) if the canonical representative & is in Sg,q—Sp, @& is the function
defined over the model (G, R, kg, Sp> by the formula ordinal(x).

Again we do not present proofs, but they can be found in [15]. Let me remark
that making Oth models ordinalized is a natural requirement; models which
are not are rather contrived things.

There is an analogue to the classical notion of absoluteness: Call a for-
mula X(x,, ..., x,) dominant if for any f;,..., f, in S, andany I'eG,
TEX(fi,-.f,) iff TE,X(f1,...f,). Formulas like (x€y), (x =y) and
ordinal(x) are dominant, so whether a Oth model is ordinalized or not can
be determined by considering it alone.

Let cardinal(x) be a formula with no universal quantifiers, which clas-
sically defines the cardinals. Then the following may be shown:

THEOREM 3. Suppose {G, R, FEq,, So) is ordinalized and for some I'e G
and some ordinal o, I'F cardinal(®). Then « is a cardinal in the model L of
constructable sets.

It is the opposite of this situation that is needed to show the independence
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of the continuum hypothesis. A proof in Cohen may be adapted to these
models to show the following:

I', 4 € G are called incompatible if they have no common R-successor.
G is called countably incompatible if any subset of G of mutually incompa-
tible elements is at most countable in V.

THEOREM 4. If (G, R, ko, So) is ordinalized, G is countably incompatible,
and o is a cardinal of V, then cardinal(8) is valid in (G, R, F, S).

Now a specific Oth model can be given which produces a class model in
which ~ (continuum hypothesis) and AC are valid. The model is essentially
the same as the one in Cohen and the methods he uses can be adapted.

We remark that constructible set representatives can also be defined and
the proof of the independence of the axiom of constructibility of Cohen can
be adapted to these models.

I am afraid the foregoing has been only a collection of definitions and re-
sults, without proofs. To give the proofs in detail would take pages. To give
them in outline is to say they are the analogues of classical proofs or of proofs
in Cohen. But now I am going to give even less details than before, only in-
dicating the types of theorems that exist without stating them precisely.

To the best of my knowledge there are three versions of the independence
proofs (not counting those above): Cohen’s forcing technique, Vopénka’s to-
pological method and Scott and Solovay’s Boolean-valued logic approach [9].

The connection between the above intuitionistic methods and those of
Cohen should be clear to anyone familiar with Cohen’s work.

Since there is a topological model theory for intuitionistic logic, there is of
course a topological version of the above. In fact there is a direct translation
between Kripke’s models and topological models, without going through
the respective completeness theorems. I do not know how close translations
of the above mentioned proofs would be to those of Vopénka.

There are also pseudo-Boolean algebra models for intuitionistic logic [8],
and again there is a direct translation between Kripke’s models and alge-
braic ones. There are also some connections between pseudo-Boolean and
Boolean algebras which apply in this case. Thus the above may be put into
the language of Boolean-valued logics. The result is not the Scott and Solo-
vay proof. We generalized the {M,} sequence, they generalized the {R,}
sequence (sets with rank). Thus two more methods of showing independence
become available, a Boolean-valued {M,} sequence and an intuitionistic (or
forcing) {R,} sequence. Some details of both may be found in [15].
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