MELVIN FITTING How True It Is =
Who Says It’s True

Abstract. This is a largely expository paper in which the following simple idea is
pursued. Take the truth value of a formula to be the set of agents that accept the formula
as true. This means we work with an arbitrary (finite) Boolean algebra as the truth value
space. When this is properly formalized, complete modal tableau systems exist, and there
are natural versions of bisimulations that behave well from an algebraic point of view.
There remain significant problems concerning the proper formalization, in this context, of
natural language statements, particularly those involving negative knowledge and common
knowledge. A case study is presented which brings these problems to the fore. None of
the basic material presented here is new to this paper—all has appeared in several papers
over many years, by the present author and by others. Much of the development in the
literature is more general than here—we have confined things to the Boolean case for
simplicity and clarity. Most proofs are omitted, but several of the examples are new.
The main virtue of the present paper is its coherent presentation of a systematic point
of view—identify the truth value of a formula with the set of those who say the formula
is true.

Keywords: modal logic, many-valued logic, logic of knowledge, boolean algebra, bisimula-
tion, tableau.

1. Introduction

A wide range of many valued logics are in the literature, but one family is
notably missing: those whose truth value space is a Boolean algebra other
than {false, true}. There is a good reason for this, embodied in the following
classic theorem due to Stone. If B is a Boolean algebra and b is a member
other than the top element, there is a homomorphism from B to the two-
element Boolean algebra {false, true}, mapping b to false. (Proposition 2.19
in Volume 1 of [19] is a particularly simple version of this.) An easy conse-
quence is that if we have a formula, constructed using A, V, -, say, where the
semantics for these connectives is given by the analogous operations in some
Boolean algebra B, and the formula is not true in some B valued model, it is
falsified in some standard two valued model. This is the basis for the com-
pleteness proof for classical propositional logic using‘Lindenbaum algebras.
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It is also the supporting idea behind Boolean valued forcing in set theory. It
would seem that allowing arbitrary Boolean algebras as truth-value spaces
does not provide anything new. It is the job of this paper to show that this
is a narrow and misleading point of view.

The present paper is really a partial summation of work by the author
and others over several years. It makes a case for the utility of finite Boolean
algebras, which we can think of as representing situations involving multiple
agents. Areas in need of further research will be described. In particular a
case study, organized around the well-known ‘muddy children’ puzzle, will
reveal many of the open problems of natural language interpretation in the
Boolean valued context. It will be seen that the title of this paper is not
just metaphor, but is a correct summary of the content of the paper.

2. Propositional Logic

Suppose we have a finite set 4 = {a1,...,an} of agents. The power set
P(A) of this set is a finite Boolean algebra, using intersection, union, and
complementation as the operations and subset as the ordering. (Every finite
Boolean algebra is isomorphic to such a set algebra, so there is no loss of
generality if we always work with sets of agents.) We can take P(A) as a
space of truth values. There is a natural intuition behind this. For a given
propositional letter P, some agents may take P to be true, some to be false.
It is reasonable to think of the set of agents who accept P as being the
truth value of P, at least under some circumstances. Here are some simple
examples to show how this can facilitate the natural expression of things.

Suppose we have three agents, say 1, 2, and 3, and we want to express
that some of them are tall and some are not. Conventionally we might
introduce three propositional letters, say T1, T2, and T3 with the intention
that T} expresses that i is tall. Then if we want to say that agents 1 and 2
are tall but 3 is not, we can do this by saying T1 A Tp A =13 has the truth
value true in the standard two-element Boolean algebra. Instead, in our
setting we could have a single propositional letter, T', which we think of as
representing “is tall”. Further we give it, and other formulas, truth values
in the space P({1,2,3}). Then we assert that 1 and 2 are tall but 3 is not
by saying the truth value of T" is {1,2}. This is a first pass at the theme of
the paper, and will be elaborated as we continue.

The muddy children puzzle is widely familiar—we describe it briefly for
those who have not encountered it. Several children sit in a circle. All are
perfect reasoners. Each can see the forehead of the other children, but not
their own. A parent puts mud on some of the foreheads of the children (at
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least one), so that each child does not know the status of their own forehead.
The parent announces, “at least one of you has a muddy forehead.” Then the
parent asks, “does anyone know that their forehead is muddy?” Presumably
nobody answers. This is asked again, and again. Eventually those with
muddy foreheads answer yes. If k children have muddy foreheads, answers
come at round k of questioning. The problem is to account for, and formalize,
the reasoning behind the answers of the children.

We examine the muddy children problem in more detail in Section 7. For
the moment, let us assume there are three children, and each has a muddy
forehead. A standard formalization begins as follows. Say the three children
are a, b, and c. Let A stand for “a has a muddy forehead.” Let B stand for
“b has a muddy forehead.” And similarly let C stand for “c has a muddy
forehead.” Then the initial situation is formalized by AN BAC.

As an alternative in the style of the present paper, suppose we use the
Boolean algebra P({a, b, c}) as our space of truth values. Let M be a propo-
sitional letter whose intended meaning is “has a muddy forehead.” Then the
initial setup—recall we assume each child has a muddy forehead—amounts
to giving M the truth value {a,b, c}.

What is common to these and other examples is that we have a finite
Boolean algebra, P(A), of sets of agents, and truth values for propositional
letters come from this algebra. In the usual way we form more complex for-
mulas from propositional letters, with connectives A, V, -, D, say. A Boolean
valued propositional semantics is then straightforward. Suppose v is a map-
ping from propositional letters to P(A) (call this a P(A) valuation). We
extend v as follows.

V(X AY)=v(X)Nvl)
v(XVY)= U(X) U(Y)
v(=X) = v(X) (1)
(X DY) =v(X)=vY)
=v(X)Uv(Y)

So far we have a mild alternative to the two valued approach-not much
has been added. Indeed, the following is easily shown: for any non-empty
set of agents A, a formula X is a tautology if and only if v(X) = A for every
P(A) valuation (where A contains at least one agent).
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3. Modal Logic

Suppose we enlarge the language by adding a necessity symbol, OJ. (A pos-
sibility symbol, ¢, can be defined in the usual dual way, if needed.) We
can extend the usual notion of Kripke model to a Boolean valued one—
formulas take on values in P(A) at possible worlds. And we can also allow
the accessibility relation to be Boolean valued. Here is the construction.

DEFINITION 3.1. Let A be a finite set of agents. A P(.A) valued modal frame
is a structure F = (G, R) meeting the following conditions.

1. G is a non-empty set (of states, or possible worlds);

2. R is a Boolean valued accessibility relation, mapping pairs of states to
truth values,

R:Gx G — P(A)

A P(A) valued modal model is a structure M = (G, R,v) where (G,R)
is a P(A) valued frame and also:

3. v maps atoms, at states, to truth values,
v : G X propositional letters — P(.A)

Given a P(A) valued model M = (G, R, v), the behavior of v is extended
to all formulas as follows. For each I € G:

o([, X AY) = oI, X)No,Y)
o(0, X VY) = o, X)Un([,Y)

v(T,=X) = o(T, X) (2)
@X:ﬂ:(nm (T, Y)
= v(F,X yUu(T,Y)

o([,0X) = [ [R(T,A) = v(A, X))
N (3)
= ([RT,A)uv(A, X)]
Aeg )

We will not make use of frames until Section 8. The conditions in (2)
are the counterparts of (1), relativized to states. If there is only one agent,
a and true is identified with {a}, and false with @, then (3) becomes the
familiar way of evaluating [JX at worlds of Kripke models.
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Here is a simple example, displayed in Figure 1. Suppose we have three
agents, A = {1,2,3}. Let G = {I', A, Q}, and let accessibility be as shown.
Thus, for instance, R(I", A) = {1,2}, which we could read as “A is accessible
from I' for agents 1 and 2.” Arrows not explicitly shown have truth values
of @. Also assume A is a propositional letter—behavior of v on A is also
displayed in Figure 1.

R
//‘
Q?:\ {c._);’/ ’U(F, A) = (Z)
v(A, A) = {1,3}
A 9] v(Q, A) = {2,3}

Figure 1. Three Agent Example

Then, with respect to the P(A) valued model M = (G, R,v) we have
the following calculation.

v([,OA) = [R(I',T) Uv(T, A)] N [R(T, A) Uv(A, A)] N [R(T, Q) U v(R, A)]
= {123 00N [{3}u{1,3}]n[{2} U {2,3}]
={1,2,3} n{1,3} N {2,3}
= {3}

Here is another example of a calculation, this time for any set of agents,
and any model. In the single agent case it amounts to the usual way that
QX is evaluated in Kripke models.

(I, 0X) = ([, -0-X)
= o(I',0-X)

= [ [R{T,A)uv(A, ~X)]
Acg
= [JR(, 4) nw(A, =X)]
Aeg
= [JIRT, A)nwu(a, X))
Aeg
The models introduced in this section originate in [4, 5], in a more general

version using Heyting algebras, which include Boolean algebras as a special
case. This will be discussed further in Section 9.
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4. Agent Slices

Given a P(A) valued model, we can ask how things in the model “look” to
each of the agents in A, individually. We call this an agent slice.

DEFINITION 4.1. Let ¢ € A be an agent.

1. For a P(A) valued modal frame F = (G,R), by the ¢ slice of F we
mean the conventional frame F, = (G, R.) defined as follows. The set
of possible worlds, G, is the same as in F. For worlds I' and A, we set
I'R.A to be true if and only if ¢ € R(T', A).

2. For a P(A) valued modal model M = (G,R,v), by the c slice of M
we mean the conventional Kripke model M, = (G, R, v.) where the
frame (G,R.) is the c slice of the P(A) valued frame (G, R), and for
a propositional letter P, we set v.(P) to be true if ¢ € (T, P), and
otherwise we set it to be false.

In the usual way, (conventional) truth at a world in a slice model is
defined. We symbolize it by M., T" I X; formula X is true at world I" of
(standard) Kripke model M..

r r r
A 0 Q A Q
v1(T, A) = false vo([', A) = false v3([', A) = false
v1(A, A) = true vo(A, A) = false v3(A, A) = true
v1(Q2, A) = false v2(Q, A) = true v3(Q, A) = true

Figure 2. T'hree Agent Slices

We continue with the example begun in Figure 1. Since there are three
agents there are three slices, given schematically in Figure 2. Note that in the
three agent slices we have M1, T" If 0A and My, T IF OA, but M3, T' I- OA.
This accords with our earlier calculation that in the P(.A) valued model from
Figure 1, v(I',0A) = {3}. In fact, this behavior is quite generally the case.
A Boolean valued modal model summarizes the behavior of all its slices.
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THEOREM 4.2. Let M = (G, R,v) be a P(A) valued modal model. For each
formula X, and for each T € G,

([ X)={ce A|M.TIF X}.

We omit the proof of this theorem—it is a straightforward induction on
formula degree. But what it says, quite literally, is that in one of our Boolean
valued models, at each state, the truth value of a formula is the set of agents
who accept the formula as true.

5. Extending Expressivity

Using the machinery so far, we can name the empty set of agents, using
P A =P, and the entire set of agents, using PV =P, but nothing in between.
We now add straightforward machinery to do more. From now on assume
that for each set of agents there is some propositional constant that ‘names’
it. These propositional constants play a central role in the tableau system
presented in Section 6. We use the obvious notation. For agents a, b, c, say,
take {a,b,c} as a propositional letter of the formal language, and similarly
for B, A (the set of all agents), and so on. Of course syntactically these
have structure, so to be proper perhaps what we should do is assign some
conventional propositional letter to each agent set, and keep track of which
is assigned to what, but a certain amount of syntactic sugar makes things
more readable here.

Semantically, how to treat these new propositional constants is obvi-
ous. In the P(A) valued model M = (G,R,v), for any I' € G, we take
v(T, {a,b,c}) to be the member {a,b,c} of P(A). Likewise v(T,0) = 0,
v(I', A) = A, and so on. Of course we are using expressions in two quite
different ways, but context will keep things sorted out. The essential idea is
that we have a variety of propositional constants, one for each set of agents,
and we use the set itself (or more formally, a string of symbols that designates
it in standard notation) as a name for the set.

It is almost a triviality that in any.P(A) valued model M = (G, R,v),
for each ' € G, v(A D B) = A if and only if v(A) C v(B). This means we
can use propositional constants and implication to ‘bound’ truth values. For
any propositional constant t, asserting ¢ O X in effect says the truth value
of X must be at least ¢. Likewise asserting X D t says the truth value of X
is at most ¢.

DEFINITION 5.1. Let ¢ be a propositional constant—a member of P(A). We
call a formula of the form, ¢t D X or X Dt a bounding formula.
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6. Tableaus

Let A be a non-empty, finite set of agents, fixed for this section. We present a
proof system corresponding to the P(.A) valued modal semantics of Section 3.
It is tableau based, and is drawn from [7], which in turn derives from [5]. The
basic building block is the bounding formula, Definition 5.1. All formulas
appearing in tableaus will be of this form. We also make use of signs, T and
F, in the familiar Smullyan style, [8, 21]. If X is a formula then T X and
F X are signed formulas. (Notice that signs cannot be iterated.) The signed
formula 7' X should be thought of intuitively as asserting the truth of X
(at some particular world of some particular model), and F' X as asserting
falsehood of X. Then, combining signs with bounding formulas, T'(t O X)
can be thought of intuitively as asserting that the truth value of X is at
least t and F (¢ D X) as asserting that the truth value of X is not at
least ¢t. Similarly for T7(X D t) and F (X D t). This machinery provides
considerable expressive power.

A tableau is a tree with nodes labeled with signed bounding formulas,
constructed according to rules which are given below. A tableau is for a
particular signed bounding formula if that item appears at the root. A
branch of a tableau is called closed if it contains a syntactic contradiction,
and the specific sets of contradictions are also specified below. A tableau
itself is closed if each branch is closed. In the usual way we can think of a
tableau as the disjunction of its branches, and a branch as the conjunction of
what appears on it. Then a closed tableau represents an impossible situation.

To prove a formula X in this system there are two equivalent approaches.
First, one could construct a closed tableau for the signed bounding formula
F (A D X). Intuitively such a closed tableau tells us that it is impossible
for the truth value of X not to be above A, which tells us that X must
have the value A at every world of every P(.A) valued model. Equivalently
we could construct a family of closed tableaus, one for F {a} D X for each
agent a € A. '

Now we turn to the details, which are spread out over several subsections.
In Section 6.1 we give rules for the propositional connectives only, and we do
this in a schematic way, for an arbitrary set A of agents. In Section 6.2 we
give a concrete example, using a specific set of agents. Then in Section 6.3
we give the modal rules, again for an arbitrary set of agents, followed by
the concrete example extended to the modal case in Section 6.4. A lengthy
example of a tableau is given in Section 7.
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6.1. Propositional Rules—General Version

Recall that A is a finite set of agents. We give the closure rules for tableaus,
and the rules for the propositional connectives, assuming P(A) is the in-
tended space of truth values.

Branch Closure Conditions In this,  and y are arbitrary propositional
constants, and X is an arbitrary formula. A tableau branch is closed if it
contains:

Tx>Dywherex €y
Fr>ywherex Cy
and r #0,y# A
FO> X
FXDA

}wheremgyandm;ﬁ@

Tyo> X
Fxo X

Remark: some restrictions on the closure conditions are simply because these
cases are subsumed under other closure rules.

Notice that each of the five closure conditions above represents an in-
tuitive impossibility. For instance, suppose we have both Ty D X and
Fz D> X, where x C y. By our intuitive reading of the first item, at some
world I' of some model we have y C v(I", X). Since we have z C y we would
also have x C v(I', X), and this contradicts the intuitive reading of the sec-
ond item, F'x D X. This informal understanding of the conditions becomes
the basis of a proper soundness proof, which we begin to formalize now.

DEFINITION 6.1.
1. We say a formula X is true at world I' of P(A) valued model M =

(G,R,v) if v(', X) = A. Otherwise X is not true at I'.

2. A formula X is valid if it is true at every world of every P(A) valued
model.

3. A signed bounding formula T B is true at a world if B is true there. F' B
is true at a world if B is not true there.

4. A set S of signed bounding formulas is satisfiable if there is some P(A)
valued model M = (G, R, v) and some I' € G such that every member of
S is true at T".

5. A tableau branch is satisfiable if the set of signed formulas on it is sat-
isfiable.
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6. A tableau is satisfiable if some branch is satisfiable.

Note that for a bounding formula ¢ D X, part 1 of the definition above
tells us that it is true at " in model M = (G, R, v) exactly when t C v(I", X).
Similarly for bounding formulas X D ¢. Also part 2 easily yields that X is
valid just in case A D X is valid, just in case {a} D X is valid for every
a € A

Given this definition, and the informal discussion following the Branch
Closure Conditions, it is simple to verify the following.

LEMMA 6.2. A closed tableau is not satisfiable.

Next we give the Branch Extension rules. These say that if one has a
tableau, one can extend branches to produce a new tableau. We allow more
than binary branching. We begin with what we call Reversal Rules. These
allow us to replace bounding formulas with an F sign by others with a T’
sign, with the bound reversed, and also the other way around. For instance,
if we know that the truth value of X is not above some particular member of
P(A), we can conclude it must be below certain other members, depending
on circumstances. The practical effect of these rules is that they allow us to
cut the number of rules for connectives and modal operators in half.

The Reversal Rules, and all subsequent rules, should be read as follows.
If the signed formula above the line appears on a tableau branch, the branch
can be extended. If there is only one signed formula below the line, that is
added to the branch end. If n signed formulas are below the line, the last
node of the branch becomes a branch point with n immediate successors, and
each signed formula below the line is used as a label on one of the new nodes.

Reversal Rules In these rules, X is restricted to be any formula other than

a propositional constant. Also, z, t, ..., tn, U1, ..., U are propositional

constants.

F> Fro X
"TXDt|...|[TX Dty

Where z # 0, and ti,...,t,

are all the maximal members

of P(A) such that, for each 1,

T ,Q_ ti. X
T> Tz>X

FXDty

Where =z # 0, and t; is

any maximal member of P(A)

such that z ¢ ¢;.
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F< FX>uz
Tu13X|...[TukDX

Where z # A, and uy,...,ug
are all minimal members of
P(A) such that, for each i,

u; € x.

T< TXDzx
Fu;DX
Where z # A, and u; is any
minimal member of P(A) with

In the F' > rule above, n-way branching is indicated. Similarly there is
k-way branching in the F' < rule. The conditions that = # @ and =z # A
would not give unsound rules if dropped, but they would add cases that
cannot help in proofs.

To understand the intuition behind these rules, consider rule F > as
an example. Suppose we have F'z O X on a tableau branch. Intuitively
this tells us that at some world I' in some model we have z € o(T', X).
We can extend v(T', X) to a maximal member of P(A), call it ¢, such that
x  t. Since t extends v(I", X), intuitively we should have T'X O t. Similar
considerations apply to the other three rules as well. Formally, this amounts
to saying that if we have a satisfiable tableau, and one of the Reversal Rules
is applied, the result is another satisfiable tableau. This is the key point
behind each of the rules below as well.

Next we have the rather obvious rules for A and V. The exceptions
concerning ) and A are simply to avoid adding useless formulas.

Conjunction Rules z is any proposmonal constant other than @, and A
and B are any formulas. -

A Tz > (AA B)
TxD A
TxD>B

FA Fz>(AAB)

FxDA[FxDB

Disjunction Rules z is any propositional constant other than A, and A
and B are any formulas.
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Tv T(AVB)Dz
TADzx
TBDx

Fv F(AVB)Dz

FASz|FBox

There are no rules for negation since we can take X as an abbreviation
for X O 0. Here are the implication rules.

Implication Rules Once more x is any propositional constant other than
0, and A and B are any formulas.

F> Fz>(ADB)
TtlDA v TtnDA
FtioB Ft,>B

Where ty,...,t, are all the
non-empty members of P(A)
such that t; C x.
T>o Txz>(ADB)
Ft;DA|Tt; DB

Where t; is any non-empty
member of P(A) such that
ti g x.

A case-by-case analysis allows us to verify the following key result.

LEMMA 6.3. Any Branch Eztension Rule applied to a satisfiable tableau pro-
duces another satisfiable tableau.

Now soundness is simple to establish.

THEOREM 6.4. If there is a closed tableau for F' B where B is a bounding
formula, then B is valid. It follows that, for an arbitrary formula X, X is
valid provided there is a closed tableau for FF A D X, or equally well, provided
there are closed tableaus for F {a} D X for each a € A.

PROOF. Suppose B is not valid. Then there is some world of some model
at which B is not true, and hence at which F' B is true. Then the set {F' B}
is satisfiable. A tableau construction begins with the tableau consisting of
only a root node, labeled with F' B, and this tableau will be satisfiable. By
Lemma 6.3, applying Branch Extension Rules to a tableau beginning with
F B can only produce satisfiable tableaus. But no satisfiable tableau can be
closed, by Lemma 6.2.

The other parts of the theorem are straightforward. [ |
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6.2. Propositional Rules—A Specific Case

The general rule schemes are, perhaps, a bit much. We take a look at what
they become in the simplest non-classical example. Let us say there are two
agents, a and b, so that our Boolean algebra, P(.A), looks like this.

{a, b}

/ {v}
.

In this setting we have the following, instantiating the conditions of the
previous section.

{a}

Branch Closure Conditions A branch is closed if it contains the following.

T{a} >0 T{a}>{b} T{a,b} D {a}
T{p} >0 T{b} > {a} T{a,b} > {b}

T{a,b} D0
F{a} 5 {a} F{b} > {b}
FOdo X
FXD>A

T{a}>X and F{a}DX
T{a,b} DX and F{a} D> X
T{d}oX and F{b} DX
T{a,b} DX and F{b} DX
T{a,b} > X and F{a,b}>X

The Reversal Rules instantiate as follows.

Reversal Rules

F{a}>X F{p}DX F{a,b} > X

I TX>(] TX5{a TXo5{al|TX5 0

T> T{a}DX T{}>X T{a,b}2>2X T{a,b}DX
= FX>{b} FXD>{a} FX D {a} FX D{b}

F< FX>90 FX>{a} FXD>{b}

T{a}DX|T{b}DX T{}D>X T{a}DX
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T < TXD>0 TXDO0 TX>{a} TXD>D{b}
= F{a}JoX F{b}oX F{hoX F{a}oX

Conjunction and Disjunction Rules These are exactly as before.
And finally, the implication rules specify as follows.

Implication Rules

F>
F{a}>(AD>DB) F{b}>(ADB)
T{a} DA T{b} DA
F{a} > B F{b} OB
F{a,b} D (AD B)
T{a} DA|T{d}DA|T{a,b} DA
F{a}DB‘F{b}DB’F{a,b}DB
T>
T{a} D> (A D B) T{b} > (A D B)

F{a}D>A|T{a}>B F{b}DA|T{b}DB

T {a,b} D (AD B) T {a,b} D (AD B)
F{a}DA|T{a}>B F{d}D>A|T{b}DB

T {a,b} D (A D B)
F{a,b} D A|T{a,b} OB

Tableau examples are postponed until Section 7.

6.3. Modal Rules—General Version

There are several different kinds of modal tableaus. Here we use Boolean
valued versions of destructive tableaus, and we begin with a brief sketch of
the usual rules. After this we present the extension to many agents. We only
treat the multi-agent analog of the modal logic K, but systems do exist for
several other standard modal logics, [14, 16]. A fuller discussion of tableaus
for standard modal logics can be found in [11], among, other places.

For the moment, assume we are working with a standard tableau system
for classical propositional logic, using signed formulas. Rules for the propo-
sitional connectives are well-known, and we skip over them. For the modal
operator [ we begin with a definition, and then the rule is easy to state.
For a set S of signed formulas, let S* = {T X | TOX € S} (this assumes O
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is primitive and ¢ is defined). Now, here is the destructive modal rule for
K, followed by an explanation.

S
FOX
St
FX
This is a destructive rule because it does not lengthen a tableau branch—it
replaces it, generally loosing information in the process. Read it as follows.
If we have a tableau branch on which the set of signed formulas consists of S
together with F'0X, that entire branch may be replaced with a new branch
on which the formulas are St together with F' X. Note that in displaying a
tableau we use a double horizontal line to indicate a branch replacement. If
several branches have nodes in common and one of those branches is being
replaced, the other branches are unaffected. With pencil and paper, it is
easiest to cross out all formulas on a branch being replaced, make fresh
copies of shared formulas at the ends of unaffected branches, and append
the replacement branch at the end of the branch with crossed out formulas.
If a tableau is represented as a list of branches, with branches represented
as lists of formulas, as is common in computer implementations of tableau
theorem provers, the issue of shared formulas does not come up.

The idea behind this rule is actually quite simple. In a Kripke K model,
suppose all members of a set S of signed formulas are true at some possible
world I'. (Recall, T'Z is true at the world if Z is, and F Z is true if Z is
not.) It is easy to see that if A is any possible world accessible from T, then
all members of S* must be true at A. It follows that if S, F [0.X is satisfiable
(its members are all true at some world of some model), then S*, F X is
also satisfiable. This gives the soundness of the destructive tableau rule.
Completeness proofs for the system can be found in many places.

We now move to the multi-agent setting. To adapt this rule we recall
that the accessibility relation itself is now multi-valued. This means we
need a multi-valued sharp operation oh sets of signed bounding formulas.
We continue to use A for a (finite) set of agents, and P(A) for the Boolean
algebra of truth values, and we have propositional constants in the language
for each member of P(.A), as in Section 5.

DEFINITION 6.5. Let S be a set of signed bounding formulas, and z be a
propositional constant.

S*(@)={T(tNz)> X |Tt>0OX €S and tNx # 0}
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The motivation for the definition is very similar to that of the conven-
tional version. Suppose we have a P(A) valued model M = (G, R,v). Let
I', A € G and suppose R(I', A) = z. Then, if all members of S are true at I,
it follows that all members of S*(x) will be true at A. We leave the checking
of this to you. An easy consequence is the soundness of the rule given below.

Now, here is the only modal rule for the multi-agent system. As usual,
assume the set of agents is .A.

Modal Rule FU In the folloWing, t1, ..., t, are propositional constants
for all members of P(A) for which t N¢t; # §.

S
FtoUXx
S#(t1) e S#(tn)
F(tNnt) > X F{tnt,) DX

This is, again, a destructive rule, indicated by the double horizontal line.
Branch contents are replaced, just as in the conventional case. Soundness
of the rule was sketched informally above, and this can be converted into a
formal proof of system soundness, along the lines of Theorem 6.4, without
much difficulty. Completeness was established, in a more general setting, in
[7], based on the completeness of a related sequent calculus in [5].

6.4. Modal Rules—A Specific Case Again

We return to the specific two agent example of Section 6.2, extending it to
encompass the modal rule. Our set of agents is A = {a,b}. We begin with
the sharp operation. Since ¢t N () = @, there is no branch below the double
line in the Modal Rule above corresponding to t; = () so S*(f) needs no
definition. This leaves us with three cases.

S'{a})={T{a} DX |T{a} DOX € S}U
{T{a} D> X |T{a,b} >0OX € S}
SH{H={T{p} > X |T{p} DOX € S} U
(T{b} > X |T{a,b} DOX € S}
St({a,b}) = {T{a} > X |T{a} DOX € S} U
{T{p}>X |T{d}>OX eS}U

{T{a,b} D X | T {a,b} DOX € S}
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This gives us three separate modal rules. The ) case contributes no rule,
or more precisely the case can be seen as a version of one of our closure rules.

Modal Rules

FO - {a} <
F{a} > 0OX
S*({a}) | 8*({a,b})
F{a}DX |F{a} DX
FO- {b}
S
F{p} o 0OX
S*({b})) | 57({a,b})
F{p}o X |F{p} DX
FO - {a,b}
S
F{a,b} D OX

S*({a}) | S*({b}) | S*({a,d})
F{a}> X |F{b} DX | F{a,b} DX

And now it is time to turn to a specific example.

7. A Tableau Example—With Problems

We gave general tableau rules in Sections 6.1 and 6.3, and concrete two agent
versions in Sections 6.2 and 6.4. Soundness was sketched in this paper;
completeness is proved in [5, 7]. It is time to consider tableau examples.
We do so, but we work in a context with open problems and unresolved
difficulties. These have largely to do with the translation of statements from
natural language into the language family presented here. On the one hand,
a proper intuition about such translations has yet to be developed. On the
other hand, it may be that the formal language is not sufficiently expressive,
and needs supplementation. A few small examples will be presented to
illustrate these points, then a case study will be developed to help make the
range of difficulties clear. It is hoped that all this will induce people to think
about the issues involved, and perhaps contribute to the subject.

The origins of the present paper are in a talk given at the Workshop
on Truth Values, held in Dresden in May of 2008, organized by Heinrich
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Wansing and Yaroslav Shramko. In part of that talk I presented an example
applying multi-agent tableaus to the muddy children puzzle. I later came to
realize there was a problem with my formulation. In trying to give a better
formulation for this paper, I further came to realize that my understanding of
the behavior of common knowledge was not sufficient. It is well-known that
common knowledge plays a central role in the muddy children puzzle. Com-
mon knowledge is not a simple concept to capture generally, but fortunately
in the puzzle common knowledge is used positively, that is, only pre-existing
common knowledge is used. Achieving common knowledge, which is more
difficult, never arises. Using common knowledge positively is not hard to
manage with tableaus, provided we use an underlying two-valued logic. The
problem here is how to use positive common knowledge in a logic with sets
of agents as truth values. This is something that needs serious work. The
hope is that others will be motivated to think about the issues involved.

The muddy children puzzle was discussed in Section 2, with three children
as a representative case. Even three is too many for present clarity, so we
consider only two children now. Let us say we have two children, a and b,
and so our underlying truth value space is P({a,b}). Also let us assume that
both children have muddy foreheads.

Since the puzzle involves the interplay of the knowledge of two children,
for this section we read the modal operator, [, epistemically. A truth value
for X, in P({a, b}), is the set of children who know X. Then the sentence
{a} D OX asserts that a knows X (and possibly b does also). The sentence
DX S {b} asserts that at most b knows X, and so a does not know X .

At the start the parent announces, “at least one of you has a muddy
forehead.” Since everybody hears this, and everybody witnesses that ev-
erybody hears it, and so on, this is common knowledge. The problem is
how to represent this, and it is here that my presentation in the workshop
began to go wrong. As we did in Section 2, we use the propositional letter
M with the intended meaning “has a muddy forehead.” Then representing
that @ has a muddy forehead simply amounts to asserting {a} D M. Like-
wise asserting {b} D M corresponds to b having a muddy forehead. In the
workshop talk I went on to represent that at least one child has a muddy
forehead by {a} > M v {b} > M, but this cannot be a correct representa-
tion. Suppose, for the moment, that nobody has a muddy forehead, so the
truth value of M is 0. It follows that the truth value of {a} D M would be
{a} >0 = {a} U0 = {b}. Likewise the truth value of {6} > M would be
{a}, and so the truth value of {a} D> M v {6} > M would be {a,b}. The
sentence intended to express that somebody has a muddy forehead turns out
to have maximum truth under the circumstance where nobody has a muddy
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forehead! This is a good example of the difficulties our intuition has where
the present language is concerned.

Fortunately there is a natural way of representing that somebody has a
muddy forehead, using tableau machinery. It is easy to see that the bounding
formula M D () asserts that nobody has a muddy forehead. That is, its truth
value is maximum, {a,b}, exactly when the truth value of M is empty. So
we need to say that M D @ is not the case, and we can do this using a
signed formula, F M D @. The problem remains, to capture that this is to
be common knowledge, true and unchanging throughout the problem.

In modal logic based on classical two valued logic, one talks about con-
sequences of premises as well as about simple validity. It turns out that,
unlike in the classical non-modal setting, modal premises can be local or
global, and these are quite different. Semantically, X is a consequence of
a local premise if X is true at those possible worlds where the premise is
true. But X is a consequence of a global premise if X is true at all possi-
ble worlds of models meeting the condition that the global premise is also
true at all possible worlds. In our context, we can think of the parent’s
announcement that somebody has a muddy forehead as a global premise. In
classical modal tableaus, local premises can be added to a branch only at
the beginning of a tableau construction, but global premises can be added at
any point. The situation with multi-agent modal logic has not been properly
investigated, but it seems likely that what works classically will carry over.
Consequently we assume the following, as our way of representing the initial
announcement: ‘

F M D 0 can be added at any point of a tableau construction.  (4)

At the start of the puzzle, everybody understands that nobody can see
the status of their own forehead. That the forehead of a is muddy is ex-
pressed by {a} D M. If a knows this fact, we would have that the truth
value of O({a} D M) is at least {a}. Then if it is not the case, that is, if
O({a} D M) is not bounded below by {a}, it must be bounded above by
{b}. So, we express that a does not know its own forehead is muddy by the
bounding formula O({a} D M) D {b}. To express that b does not know its
forehead is muddy we need a similar formula. We introduce an abbreviation,
N for ‘nobody knows’. :

N = [O({a} > M) > {b}] A [O({b} > M) > {a}] (5)

Even though (5) seems like a reasonable representation of the fact that
nobody knows the status of their own forehead, difficulties can arise with



354 M. Fitting

this sort of formulation. An anonymous referee helpfully pointed out the
following anomaly. Suppose, temporarily, that a does not have a muddy
forehead, and b does know this. That a does not have a muddy forehead
amounts to saying {a} D M is false. How should we represent this falsehood?
One natural way, following the ideas above, is to represent it by saying that
M > {b} is true—at most b has a muddy forehead. Then the assertion that
b knows a does not have a muddy forehead becomes {6} o> O(M > {b}).
As it happens, this is simply valid! (A tableau proof is a simple matter.)
So this cannot be the correct representation, although it appeared in earlier
versions of this paper. Alternately one might introduce a negation operator
in the usual way, —A stands for A D (). And then we might represent the
intended situation by {6} > O=({a} D M). This is not a validity, and so
conveys information. But it is unsatisfactory that our intuitions are not
strongly in favor of this formula. There is a third, unexplored, alternative.
The negation just introduced has an intuitionistic flavor—indeed the most
general version of the logic presented here uses Heyting algebras and not
Boolean algebras. In formulation (4) we made use of F', which is part of
the tableau machinery, but not part of the formal language itself. This is
a kind of classical negation that, perhaps, could be brought in, at least for
implications. After all, what we need to express is that {a} D M is false,
{a} 2 M. Such a connective, perhaps, could be introduced. As I remarked
earlier, this section presents difficulties—it does not make them all go away.
The intention is to encourage further work.

Despite the problem just discussed, we will use N from (5) to represent
that nobody knows the status of their forehead. Unlike in the referee’s
example above, information inside the [ operator is positive, not negative.
Formula (5) does not reduce to a simple validity—it conveys information.
At the start N is not only true, but common knowledge. This cannot be
represented as a global assumption since by the end of the puzzle everybody
does know that their forehead is muddy. The truth of N changes. Since
we cannot use the global assumption mechanism, we introduce a common
knowledge operator, C. We make the following assumptions about it. First,
if something is common knowledge for anybody, it is common knowledge for
everybody. Second, if something is common knowledge, it is true, and the
fact that it is common knowledge is known to everybody. Formally, we make
the following assumptions, formulated as tableau rules.

T{a} >CX T{b}>CX (©6)
T{a,b} DCX T{a,b} DCX
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T {a,b} > CX T {a,b} > CX -
T{a,b} DX T {a,b} DOCX

This is not intended to be a complete formalization of C in a multi-agent
logic, though it may be enough for formulas in which C only occurs positively.
These are simply intended to get the muddy children problem off the ground.
A proper investigation of C in this context is needed.

Next we have conditions that are harder to capture. Everybody sees
everybody else’s forehead, and this is always the situation. So, if the forehead
of a is muddy, b knows it, and if the forehead of a is not muddy, b knows
that. This is the case at the start, and remains the case throughout. In some
sense these are global assumptions. The difficulty comes in how to formalize
them. In particular, if a does not have a muddy forehead, b should know
that. As we saw above, to say that a does not have a muddy forehead is to
assert M D {b}. To assert that b knows a does not have a muddy forehead
apparently would be to assert {b} D O(M D {b}), but this is exactly the
problematic formula considered earlier—it conveys no information because
it is a validity. It is the wrong formulation.

In part the problem arises because D has an-easily understood behavior
only in isolation. M D {b} is true, that is, it has truth value {a, b} just in case
the truth value of M is less than or equal to {b}. Understanding M D {b}
in the context of a more complicated formula, such as {b} D O(M D {b}),
is something for which our intuitions are less well-developed. But there
is promise to the idea that some sort of global assumption is involved in
formalizing that each child can see the other’s forehead. We propose building
this into the tableau rules, much as we did with (4). But things are more
complicated now, because we have conditionals, not absolutes. Child b knows
the forehead of a is not muddy provided it is, in fact, not muddy. What we
will do is build this into the sharp operation. Here is the idea. If we are at a
possible world where a does not have a muddy forehead, then b should know
this, and so in any move to a world that is an alternative for b, it should
still be the case that a does not have a muddy forehead. More formally,
if we have T M O {b} at a world, we should continue to have it at any
b-alternative. More formally yet, if T M O {b} € S, we want T M D {b} to
be in S#({b}) and in S¥({a,b}). And similarly for a, of course. Here are the
revised versions. In these X is an arbitrary formula, while M is a specific
propositional letter informally representing muddiness.
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S'{a}) ={T{a} > X |T{a} D0OX € S} U
{T{a} > X |T{a,b} DOX € S} U
{T{} DM |T{b} D MeS}uU
{TM>{a} | TM > {a} € 8}

S'{p}) ={T{b} > X |T{p} >DOX € S} U
{T{} >X|T{a,b} DO0X S} U
{T{a} DM |T{a} DM e S}U
{TM>{b}|TM> {b} € S} (8)

S*({a,b}) ={T{a} > X | T{a} >OX € S} U
{T{}oX|T{H}>OX € S}uU
{T {a,b} > X | T {a,b} DOX € S} U
{T{}>M|T{h}>MeS}U
{TM>{a} | TM D {a} € S} U
{T{a} DM |T{a} DM e S}U
{TM>{b}|TM> {b} eS)

Now we represent the puzzle itself. Initially the parent announces that
somebody has a muddy forehead, that is, S from (4) becomes a global as-
sumption. The question is then asked whether anyone knows the status of
their forehead, and nobody does, represented by N from (5). Everybody sees
that nobody knows, so the current situation is common knowledge, that is,
CN. It is asked again if anybody knows, and this time everybody does, that
is, O({a,b} D M) is the case. So CN Is sufficient to yield O({a, b} > M)
provided (4) is assumed. Thus we need to prove CN D O({a,b} D M). To
do this we may try to give a tableau proof of {a,b} (CN > O({a,b} D
M)). Or equivalently we could give tableau proofs of both {a} D (CN D
O({a,b} > M)) and {b} > (CN > O({a,b} D M)). To keep the clutter
down (somewhat) we just work with {a} > (CN D O({a,b} > M)).

The tableau starts as follows, using an implication rule F > and common
knowledge rules (6) followed by (7). Then rule F{J — {a} applies, replac-
ing the branch with two new ones, one with S*({a}), and the other with
S'({a,b}). For this step it doesn’t matter if we use the modified version of
the sharp operation in (8) or the original one.



How True It Is ... 357

F{a} > (CN > O({a,b} > M))
T{a} DCN
F {a} > O({a,b} > M)
T {a,b} DCN
T {a,b} > OCN
T{a} DCN T {a,b} DCN
F{a} > ({a,b} D M) | F{a} D ({a,b} D M)

On the new branch displayed on the left above we can apply rule (6) adding
T {a,b} D CN which makes the right branch a subset of the left. So we
continue with the right branch only, since its closure will imply closure of
the left branch.

T {a,b} DCN
F{a} > ({a,b} D M)
e
T{a,b} o N (9)
T {a,b} D [O({a} D M) D {b}]
T {a,b} D [O({b} > M) D {a}]
F{p} >0({b} > M) [ T {b} D {a}

We begin by applying F' O to the second line. We then apply one of (7),
then a T'A rule, recalling the definition of N, (5). There are three T' D rules
that can be applied to the last formula before the branching, above. We
have used one of the rules, and leave it to the reader to try the other two.
The right branch is closed because of T'{b} D {a}. We continue with the
left branch only.

T {a,b} D CN
F{a} > ({a,b} D M)
T {a} > {a,b}
F{la}o M
T {a,b} DN
T{a,b} > [O({a} > M) D {b}] | (10)
T {a,b} > [O({b} > M) > {a}]
F{b} > O({b} > M)
T M D {b}
TM > {b} T M > {b}
F (b} > ({0} > M) | F{b} > ({v} > M)
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Above, T M D {b} comes from F {a} D M using a Reversal Rule, F' >. Now
rule FO — {b} applies, and the branch is replaced by two new ones. One of
the new branches involves $*({b}) and the other S*({a, b}), using the revised
definition of sharp, (8). The two new branches happen to be identical in this
case. We continue with the common version.

T M > {b}
F{b} > ({b} > M)
T {b} > {b}
F{b}oM
Fla}o M
FM>0
T{a}DM|T{b}D>M

There is an application of F' O and then an application of Reversal Rule
T <. These are followed by an application of (4), representing the parent’s
initial announcement. Reversal Rule F' < causes branching, and each branch
is closed.

The tableau construction above should be considered to be exploratory.
Common knowledge is always difficult to treat formally. We are not inter-
ested in how to achieve common knowledge, but in how to use it given its
existence. As we observed above, with conventional logics of knowledge this
is rather straightforward, but with the kind of multi-agent systems consid-
ered here, things are not well understood. The approach based on modifying
the sharp operation was shown to work, but it was not really justified. A
properly formulated soundness and completeness theorem is needed. This is
an open problem.

8. Bisimulations

Bisimulations are basic and important tools in modal logic, and discussions
of their properties and uses can be found extensively in the literature—[2]
will serve as a representative. We do not go into the applications of bisimu-
lations here, but we do consider how they may be generalized to the Boolean
valued setting. We only discuss frame bisimulations, though the ideas ex-
tend naturally to bisimulations of models as well. A fuller presentation of
our approach can be found in [9].

We begin with a brief summary of the classic bisimulation notion. Sup-
pose we have two Kripke frames, in the standard sense. Say one is F; =
(G1,R1) and the other is o = (G2, R3). Let B be a relation between G,
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and Go, that is, a subset of Gy X Go. B is a frame bisimulation provided the
following two conditions are met. First, suppose I'1, A1 € G; with ['1R14,,
and also suppose I'1BI'y, where I's € G. Then there is some Ay € Gy such
that [9R9A9 and also A;BA,y. The second condition is like the first, with
the roles of the two frames switched around. Suppose I's, As € Go with
I'yReA,, and suppose Iy € G; with [''Bl's. Then there is some A; € Gy
such that T1R1A; and also A;BA,. This is sometimes loosely described by
saying, for each move in either frame there is some corresponding move in
the other.

Two Kripke models that are based on bisimilar frames are bisimilar mod-
els if possible worlds that correspond under the bisimilarity have the same
propositional letters true at them. The key result is that under any model
bisimulation, two bisimilar models will evaluate the same formulas to be
true at worlds that are related under the bisimulation. This implies that no
modal formula can distinguish between bisimilar models, and so bisimilarity
provides a tool for examining the expressivity of modal languages.

Now we extend the notion of bisimulation to the multi-agent setting. As
usual, we take A to be a finite set of agents, and use P(A) as a space of
truth values.

DEFINITION 8.1. We say B is a P(A) valued relation between sets Sy and Sz
provided B : Sy x So — P(A). For such a relation, and for each ¢ € A, by
the ¢ slice of B we mean the classical relation B, C S1 x Sz such that s1B8cs2
just in case ¢ € B(s1, s2).

We also make use of the notion of ¢ slice of a frame, from Definition 4.1,
where the definition of the accessibility relation is really a special case of
that above.

DEFINITION 8.2. Let B be a P(A) valued relation between sets G’ and G”.

1. Let 7/ = (G',R") and F" = (G",R!) be two P(A) valued frames. We
say B is a P(A) valued frame bisimulation between F’ and F” provided,
for each agent c € A, the ¢ slice of B is a conventional frame bisimulation
between the c slice of F’ and the c slice of F.

2. Let M' = (¢',R',v') and M" = (G",R",v") be two P(A) valued modal
models. We say B is a P(A) valued model bisimulation between M’ and
M" provided, for each agent ¢ € A, the c slice of B is a conventional
model bisimulation between the c slice of M’ and the c slice of M".

We don’t actually make use of part 2 of the definition above, but we give
it for completeness sake. We give an example of a frame bisimulation, in
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Figure 3. In it, A = {1,2,3}. On the left of the figure is shown the P(A)
valued frame F’, and on the right a second, F”. The bisimulation relation
is shown using dotted lines with labels. Dotted lines whose label would be
() are omitted.

{1) £
e TSRS o
"""""""""""""""""""""" {1}
......... {1} 7
Ql i Ay —— Ag
{1,3} {1} {1,3}
12} {2} {2) {3}
~I'y . As Aj
{2’3} .....................
................ {1,2,3}
]:' f”

Figure 3. Frame Bisimulation Example

In order to verify that what is shown in Figure 3 is a P(A) valued frame
bisimulation, we must check that we have conventional frame bisimulations
for each of the three slices. We give a diagram corresponding to the slice for
agent 3, in Figure 4, and leave it to you to verify that it depicts a conventional
bisimulation. We omit the other two cases.

Basic results concerning bisimulations extend to the multi-agent case, but
this is not what concerns us here. The question we address is: is there any
simple, mechanical test for determining whether or not we have a bisimula-
tion, in the generalized sense we are considering? The answer is affirmative,
but it requires consideration of Boolean valued matrices, more general than
the two-valued Boolean matrices that one usually sees.

In a two valued setting, an accessibility relation can be represented nat-
urally by a transition matric—a standard Kripke frame is a graph, after
all. An obvious generalization of transition matrix makes sense in the multi-
agent setting, too. Consider the frame F’, from Figure 3. We can represent
its multi-agent accessibility relation using a Boolean valued transition ma-
trix, which we call [F']. The matrix [F] is 2 x 2 because F' = (¢',R)
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Figure 4. Agent 3 Slice Bisimulation

and G’ = {I'1,T2} has two possible worlds. In [F'], set the entry in row i,
column j to be R'(T';,T';). This gives us the following.

== 6]

This matrix can easily be made to act as a possibility operator, but we do
not follow up on this point now.

As we did with the first frame, F” can also be represented by a P(A)
valued transition matrix.

0 {1} {1}y 0
0 {1} -0 {1,3}
0 0 {2y 0
o 0 {2} {3}

Suppose we represent the relation B using the following matrix, which is
not really a transition matrix in the sense that [F'] and [F"] are.

{1} 0
{1.,3 0
o {12}
0 {1,2,3}

) =

8] =
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This matrix is 4 x 2, where 4 is the size of F” and 2 is the size of F. The
entry in [B] in row 4, column j is B(T';, A;).

With matrices involved, matrix operations can be introduced. We un-
derstand matrix multiplication to be computed in the long-familiar way, but
with the role of number addition replaced by the join operation (Uin P(A)),
and multiplication by the meet operation (N in P(A)). With this operation
we easily calculate the following, for instance.

{1 {1} {13 {1}

0 {2,3) 0 (2,3}

For two P(A) valued matrices M and N with the same number of rows
and the same number of columns, we write M < N to mean that each entry
of M is a subset of the corresponding entry of N. In the example we have
been considering, we have that [B][F'] < [F"](B].

We write M7 for the transpose of matrix M , in the usual way. We leave
it to you to check that [B]T[F"] < [F']|[B]T as well. It is the combination of
these two inequalities that guarantees we have a frame bisimulation.

'THEOREM 8.3. Let A be a finite set of agents. Let F' and F" be P(A) valued
frames, and let B be a P(A) valued relation between F' and F". Then the
following two items are equivalent.

1. B is a P(A) valued frame bisimulation between F' and F" (Defini-
tion 8.2);

2. [BIIF] < [F"](B] and [B]"[F"] < [F)(B]T.

There are some unstated assumptions in the theorem above. Strictly
speaking, we have matrix representations for frame accessibility relations
and a bisimulation relation, only if the frames involved are finite. And even
then, how the possible worlds are numbered (I'1,Ty,...) affects the details
of the matrices. But an enumeration of possible worlds can be arbitrarily
chosen, and the theorem will hold. Further, the set of possible worlds can also
be denumerable—an obvious extension of matrix operations to encompass
matrices with countably many rows, or columns, or both, can be made, and
the theorem still holds. The result can be further extended from frames
to models. Details can be found in [9], but this is far enough to develop
things here.
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9. What More?

We have argued for the usefulness of allowing more general Boolean algebras
than just the usual {false, true} as truth value spaces. Doing so allows one
to treat the knowledge of multiple agents uniformly, combining multiple
knowledge operators into one. This makes one suspect that an approach to
knowledge puzzles that is uniform across varying numbers of agents may be
possible. We also saw that allowing more general Boolean algebras leads to
an interesting computational approach to bisimulation. In fact, the material
discussed here is presented more generally elsewhere. We say something
about that, and close with suggestions for further research.

The material in Sections 2 through 5 is drawn from [4, 5], and that in Sec-
tions 6 and 7 from [7]. In this paper we considered agents that were indepen-
dent, but in the earlier papers there could be dependencies between agents.
For example, agent 2 might accept the truth (at each possible world) of any-
thing agent 1 accepted (the match might not be exact—agent 2 might accept
more truths than agent 1).If such dependencies are allowed then Boolean
algebras are no longer the appropriate truth value spaces, instead Heyting
algebras are. The resulting logic has an intuitionistic + modal flavor. The
tableau rules given here are actually presented for Heyting algebras in [7].

In this paper we took [ as primitive and ¢ as defined. If Heyting al-
gebras are brought into the picture this is no longer appropriate. 0 is still
understood semantically more-or-less as it is here.

o([,0X) = [ [R(T,A) = v(A, X)]
Aeg

This looks like the definition given in (3), but now = is the implication of
a Heyting algebra, which is not definable from complement and join. Then
the evaluation of {.X, given at the end of Section 3, no longer goes through.
Instead it is made into an independent definition.

v(0X) = | J[RT,A)Nv(A, X))
Acg

With dependent agents, using Heyting algebras, O and ¢ are not dual op-
erators, as they are classically.

The matrix approach to bisimulations, from Section 8, originates in [9].
Not just frame, but also model bisimulations are investigated, as part of
a general operator approach to the subject. If one considers dependent
agents, bringing Heyting algebras into the picture, propositional connectives
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have an intuitionistic flavor, and O and ¢ are no longer dual operators,
as noted above, so it would seem that the notion of a bisimulation must
become more complex than in Section 8. This is investigated in (3], where
two different notions of bisimulation are introduced, strong bisimulation and
weak t bisimulation. Although it was developed independently of [9], the
work in (3] seems to show that weak ¢ bisimulation is the Heyting algebra
counterpart of the Boolean version considered here, though this has not been
fully checked yet.

Boolean/Heyting algebra methodology even extends to treat multi-agent
versions of non monotonic modal logics. Investigation on this began in [6]
and was extensively continued in [15, 17, 18].

What remains to be done? Quite a bit, actually. We briefly sketch some
issues, with the hope of encouraging others to work on them.

We saw in Section 7 that it is sometimes unclear how to represent knowl-
edge using the multi-agent approach. In particular, this affects knowledge
of negative facts, and common knowledge. To address the issue of negative
knowledge, it was suggested that an appropriate % operator might be intro-
duced. This needs investigation. As to common knowledge, we noted that
for the muddy children puzzle only positive common knowledge is needed.
That is, one makes use of common knowledge but one is never asked to con-
clude that it has been achieved. This implies that any common knowledge
operators arising in tableau arguments will appear in positive locations, and
this simplifies things in the classical two-valued setting. But in the present
approach further work is clearly needed. There are other puzzles that have
been considered in the literature, including variations on muddy children.
Most of these (perhaps all of them) have the same positive-only aspect where
common knowledge is concerned. Thus what is needed is a uniform way of
incorporating positive common knowledge into the multi-agent logics pre-
sented here. This must involve an appropriate semantics, tableau rules, and
soundness and completeness results. .

In section 8 we saw that there was a nice computational test for whether
something was a bisimulation, involving matrices. We noted above that the
Boolean algebra approach generalizes naturally to a Heyting algebra version,
with an intuition involving dependent agents. We also noted that there has
been work on bisimulations in the Heyting algebra setting, [3]. It is not clear
that matrix methods carry over to Heyting algebras, particularly in the light
of the independence of (J and ¢. Nonetheless, it is possible that some simple
computational test can be devised. This needs further exploration.
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Bilattices are natural generalizations of the well-known four-valued logic
of Belnap, [1]. A philosophically oriented presentation can be found in [10],
though bilattices have also been applied in the area of logic programming
semantics, and in modeling certain aspects of natural language. Bilattices
have two partial orderings, one on degree of truth and one on degree of
information. The truth ordering of bilattices can be used analogously to the
way we used Boolean algebras above, to provide interpretations of modal
formulas in bilattice valued Kripke models. There is some work on this
subject, beginning with [12, 13|, up to the present, [20], but fundamental
work remains to be done. In particular, what relationships connect the
information ordering with bisimulations seems quite an open issue.

Finally, we have taken sets of finitely many agents as truth values. This
gives us finite Boolean algebras. One might also consider infinite Boolean
algebras, something that is done in one approach to forcing arguments in set
theory. Complete tableau systems become problematic then, though some
of the bisimulation work extends reasonably well. It is not clear what the
purpose of such a generalization would be if applications to human knowledge
and reasoning are intended, but the mathematics that results might be of
interest for its own sake, and is worth exploring for that reason.

We hope enough has been said to show the utility and interest to be
found in working with sets of agents as truth values. And we hope some
readers will be motivated to continue with the development of the area.
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