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Abstract. First-order modal logic, in the usual formulations, is not suf-
ficiently expressive, and as a consequence problems like Frege’s morning
star/evening star puzzle arise. The introduction of predicate abstraction
machinery provides a natural extension in which such difficulties can be
addressed. But this machinery can also be thought of as part of a move
to a full higher-order modal logic. In this paper we present a sketch of
just such a higher-order modal logic: its formal semantics, and a proof
procedure using tableaus. Naturally the tableau rules are not complete,
but they are with respect to a Henkinization of the “true” semantics. We
demonstrate the use of the tableau rules by proving one of the theorems
involved in Gddel’s ontological argument, one of the rare instances in the
literature where higher-order modal constructs have appeared. A fuller
treatment of the material presented here is in preparation.

1 Introduction

Standard first-order classical logic is so well behaved that concentration on it
lulls the mind. The behavior of terms provides an instructive example. For one
thing, classical terms are always defined—in every classical model all terms have
values. But it is well-known that this convention leads to difficulties when definite
descriptions are involved since, considered as terms, they don’t always denote.
As Bertrand Russell noted, “The King of France is not bald” has two quite
different, but equally plausible readings. First, it could mean that the King of
France has the non-baldness property. This is false since non-existents don’t have
properties—they don’t even have the non-existence property. Second, it could
deny the assertion that the King of France has the baldness property. This is true
because no bald King of France can be produced. The single string of English
words has two possible logical formulations, and conventional first-order syntax
cannot distinguish them.

Russell’s solution to the problem was to introduce a scoping mechanism—it
appears fully developed in Principia Mathematica. While he thought of it only in
the context of definite descriptions, it is more generally applicable. Using more
modern notation, we distinguish between a formula @ and a predicate abstract
(Az.®@) drawn from it. Thinking of B(z) as “z is bald,” and k as “King of France,”
we can symbolize the two possible readings mentioned in the previous paragraph



as (Az.—B(z))(k) and ~(\z.B(x))(k). It can be shown that, with a reasonable
semantics, these two are equivalent exactly when k denotes, so it is non-denoting
terms that force us to use such machinery classically.

Frege noted an analogous problem with intentional contexts, and introduced
the notions of “sense” and “denotation” to deal with it. Roughly, this gives terms
two kinds of values, what they denote, and what they mean. Of course this is
loose. But the introduction of a scoping mechanism also turns out to be of consid-
erable use here. This was done first in [7,9]. My colleague Richard Mendelsohn
and I developed the idea quite fully in [3], and a highly condensed version is
available in [2]. But suffice it to say that the notion of predicate abstraction sup-
plies an essential missing ingredient for formal treatments of intentional logics,
modal in particular, as well as for cases where terms can lack designations.

Thinking further on the matter, I came to realize that even with predicate
abstraction machinery added as outlined above, first-order modal logic is still not
as expressive as one would like. And an informal illustration is easy to present.

Assume the word “tall” has a definite meaning—say everybody gets together
and votes on which people are tall. The key point is that the meaning of “tall,”
even though precise, drifts with time. Someone who once was considered tall
might not be considered so today.

Now suppose I say, “Someday everybody will be tall.” There is more than one
ambiguity here. On the one hand I might mean that at some point in the future,
everybody alive will be a tall person. On the other hand I might mean that
everybody now alive will grow, and so at some point everybody now alive will
be a tall person. Let us read modal operators temporally, so that (JX informally
means that X is true and will remain true, and ¢ X means that X either is true
or will be true at some point in the future. Also, let us use T'(z) as a tallness
predicate symbol. Then the two readings of our sentence are easily expressed in
conventional notation as follows.

(V2)0T () (1)
O(Vx)T(x) (2)

Formula (1) refers to those alive now, and says at some point they will all be
tall. Formula (2) refers to those alive at some point in the future, and asserts of
them that they will be tall. All this is standard, and is not the ambiguity that
matters here. The problem is with the adjective “tall.” Do we mean that at some
point in the future everybody (read either way) will be tall as they use the word
in the future, or as we use the word now? Standard possible world semantics for
first-order modal logic is constrained to interpret formulas involving T" at a world
according to that world’s meaning of T'. In fact, there is no way of formalizing,
using standard first-order modal machinery, the assertion that, at some point in
the future, everybody will be tall as we understand the term. But this is what
is most likely meant if someone says, “Someday everybody will be tall.”



The missing piece of machinery to disambiguate the sentence “Someday ev-
erybody will be tall,” is abstraction, applied at the level of relation symbols,
rather than at the level of terms. We get the following siz versions.

(V) (AX.OX ())(T) (3)
(Vo) OAX.X (2))(T) (4)
(AX.0(V2) X (2))(T) (5)
O(Vr)AX. X (2))(T) (6)
(AX. (V) OX (2))(T) (7)
OAX.(Va) X (2))(T) (8)

We will introduce semantics for interpreting these shortly, but for the time being
we can provide informal readings. Once semantics have been introduced, it can
be shown that item (7) is equivalent to (3), and item (8) is equivalent to (6), so
we omit readings for them.

It is true of everybody currently alive that they will be tall, (3)
as we understand the word.

It is true of everybody currently alive that they will be tall, (4)
as the word is understood in the future.

At some point in the future everybody then alive will be (5)
tall, as we understand the word.

At some point in the future everybody will be tall, as the (6)
word is understood at that time.

Essentially, in first-order modal logic as it has usually been formulated, all
relation symbols are read as if they had narrow scope, and all constants as if
they had broad scope. Thus it is as if (4) and (6) were meant by (1) and (2)
respectively. There is no way of representing (3) or (5). The machinery for this
representation makes for complicated looking formulas. But we point out, in
everyday discourse all this machinery is hidden—we infer it from our knowledge
of what must have been meant.

Now, why not go the whole way? If we are going to introduce abstraction
syntax for terms and for relation symbols, why not treat relation symbols as
terms of a higher order. And then why not introduce the whole mechanism of
higher-order logic, and do things uniformally all the way up. In fact, this is what
we do. The following is a very brief sketch—a much fuller development is in
preparation.



2 Syntax

In first-order logic, relation symbols have an arity. In higher-order logic this
gets replaced by a typing mechanism. There are several ways this can be done:
logical connectives can be considered primitive, or as constants of the language;
a boolean type can be introduced, or not. We adopt a straightforward approach
similar to the usual treatments of first-order logic.

Definition 1 (Type). 0 is a type. If t1,...,t, are types, (t1,...,t,) is a type.
We systematically use t, t1, ta, t', etc. to represent types.

For each type ¢t we assume we have infinitely many constant and variable
symbols of that type. We generally use letters from the beginning of the Greek
alphabet to represent variables, with the type written as a superscript: af, 8¢, 7,
.... Likewise we generally use letters from the beginning of the Latin alphabet as
constant symbols, again with the type written as a superscript: A?, BY, C*, ....
We take equality as primitive, so for each type ¢t we assume we have a constant
symbol =®! of type (t,t). Generally types can be inferred from context, and
so superscripts will be omitted where possible, in the interests of uncluttered
notation.

Sometimes it is helpful to refer to the order of a term or formula—first-order,
second-order, and so on. Types will play the fundamental role, but order provides
a convenient way of referring to the maximum complexity of some construct.

Definition 2 (Order). The type 0 is of order 0. And if each of t1, ..., t, is
of order < k, with at least one of them being of order k itself, we say {t1,...,t,)
is of order k + 1.

When we talk about the order of a constant or variable, we mean the order
of its type. Likewise, once formulas are defined, we may refer to the order of the
formula, by which we mean the highest order of a typed part of it.

Next we define the class of formulas, and their free variables. Unlike in the
first-order version, the notion of term cannot be defined first; both term and
formula must be defined together. And to define both, we need the auxiliary
notion of predicate abstract which is, itself, part of the mutual recursion.

Definition 3 (Predicate Abstract). Suppose @ is a formula and «y, ...,
an 1S a sequence of distinct variables of types t1, ..., t, respectively. We call
(A1, ...,a,.P) a predicate abstract. Its type is (t1,...,tn), and ils free vari-
able occurrences are the free variable occurrences in the formula @, except for
occurrences of the variables aq, ..., ay,.

Definition 4 (Term). Terms of each type are characterized as follows.

1. A constant symbol or variable is a term. If it is a constant symbol, it has no
free variable occurrences. If it is a variable, it has one free variable occur-
rence, itself.



2. A predicate abstract is a term. Its free variable occurrences were defined
above.

We use 7, with and without subscripts, to stand for terms.

Definition 5 (Formula). The notion of formula is given as follows.

1. If 7 is a term of type t = (t1,...,tn), and 11, ..., T, is a Sequence of terms
of types t1, ..., t, respectively, then T(71,...,7,) is a formula. The free
variable occurrences in it are the free variable occurrences of T, Ty, ..., Tp.

2. If @ is a formula so is =®. The free variable occurrences of =@ are those of
.

3. If ® and ¥ are formulas so is (PAW). The free variable occurrences of (PAW)
are those of @ together with those of W.

4. If & is a formula and « is a variable then (NYa)® is a formula. The free
variable occurrences of (Va)® are those of @, except for occurrences of .

5. If @ is a formula so is OO®. The free variable occurrences of O® are those of
.

We use V, D, O, 3 as defined symbols, with their usual definitions. Also we
use square and curly parentheses, in addition to the official round ones, to aid
readability. In addition, since equality plays a fundamental role, we introduce a
standard abbreviation for it.

Definition 6 (Equality). Suppose 71 and 1o are variables of type t, and = is
the equality constant symbol of type (t,t). We write (11 = 72) as an abbreviation
for = (11,72).

Ezample 1. For this example we give explicit type information (in superscripts),
until the end of the example. In the future we will generally omit the superscripts,
and say in English what is needed to fill them in.

Suppose 2%, X9 and X% are variables (the first is of order 0, the second
is of order 1, and the third is of order 2). Also suppose PO and ¢° are constant
symbols (the first is of order 2 and the second is of order 0).

1. Both X (X{®) and X (2°) are atomic formulas. All variables present
have free occurrences.

2. (AX U xCN (X0 is a predicate abstract, of type (((0))). Only the oc-
currence of X (9 is free.

3. Since PUO is of type ((0)), (AX KON (00 (X (0))(PUONY is a formula. Only
X is free.

4. [(AX 8N U0 (X (0))(PUONY 5 X0 (20)] is a formula. The only free vari-
able occurrences are those of X(? and z°.

5. (VX O)[(AX WD 2 Con (x Oy POy 5 X0 (29)] is a formula. The only
free variable occurrence is that of 0.

6. (AxC. (VX O [(AX U U0 (X)) (pUOD) 5 X0 (20)]) is a predicate ab-
stract. It has no free variable occurrences, and is of type (0).



We need the type machinery to guarantee that what we write is well-formed.
Now that we have gone through the exercise above, we can display the predicate
abstract without superscripts, as

Az (vX)[(AX.X (X)) (P) > X (2)]),

leaving types to be inferred, or explained in words, as necessary.

3 Models

Just as in the classical setting there are standard higher-order modal models and
non-standard ones. Because of space limitations I'll only sketch the standard
version, and say a few words later on about the non-standard one.

A higher-order modal model is a structure M = (G, R, D,7Z), and we spend
much of the rest of the section saying what each component is.

The pair (G,R) is a frame. In it, G is a non-empty set of possible worlds,
and R is an accessibility relation on G. This much is familiar from proposi-
tional modal logic treatments, and we do not elaborate on it. As usual, different
restrictions on R give rise to different modal logics.

Domains of (ground level) objects are introduced into a modal model, just as
in a classical one. There are two different ways of doing this. Each possible world
in G can have its own domain, in which case we take D to be a domain function,
mapping worlds to non-empty sets. Or, all possible worlds can have the same
domain, in which case we take D to be just a set, the common domain for all
worlds. In [5] and [3] reasons are presented as to why either version can be taken
as basic in the first-order case—essentially each can simulate the other. In the
interests of simplicity we adopt the constant domain version in the higher-order
setting. Philosophically, this amounts to a possibilist approach to quantification,
rather than an actualist one.

Formally, we take D to be a single non-empty set, called the domain of the
model M.

Definition 7 (Relation Types). Let S be a non-empty set. For each type t
we define the collection [t,S] of relations of type ¢ over S.

1. [0,S] = S.

2. [(t1,...,tn),S] is the collection of all subsets of [t1,S] x - -+ X [tn,S].

We say O is an object of type t over S if O € [t, S].

At last we can characterize Z, the interpretation of the model. Note that it
is world-dependent.

Definition 8 (Interpretation). Z is a mapping from constant symbols and
worlds meeting the following conditions. For each world I' € G:
1. If At is a constant symbol of type t, Z(A*, ") € [t,D].
2. If =Y s an equality constant symbol, T(=Y I") is the equality relation
on [t,D].
This completes the specification for each component of M = (G, R, D, 7). If
all the conditions given above are met, we say M is a higher-order modal model.



4 Truth

Assume M = (G,R,D,Z) is a higher-order modal model. We give meaning to
M, I Ik, @, which is read: the formula @ is true at the world I" of the model
M, with respect to the valuation v which assigns meanings to free variables. To
do this we have to assign denotations to terms in general—the denotation of a
term of type t will be an object of type ¢ over D. And this can not be done
independently. The assignment of denotations to terms, and the determination
of formula truth at worlds constitutes a mutually recursive pair of definitions,
as was the case for the syntactic notions of term and formula in Section 2.

Definition 9 (Valuation). We say v is a valuation in model M = (G, R, D,
T) if v assigns to each variable o' of type t some member of [t,D], that is,
v(at) € [t,D].

Note that, unlike interpretations, valuations are not world dependent.

Definition 10 (Variant). We say a valuation w is an a-variant of a valuation
v if v and w agree on all variables except possibly o.. More generally, we say w is
an ai,...,any-variant if v and w agree on all variables except possibly a1, ...,
Q-

Definition 11 (Denotation of a Term). Let M = (G,R,D,I) be a higher-
order modal model, and let v be a valuation in it. We define a mapping (v +T),
assigning to each term and each world a denotation for that term, at that world.

1. If A is a constant symbol then (vxT)(A,I') =I(A,T).
2. If « is a variable then (v*T)(a, ') = v(a).
3. If Ay, ..., . D) is a predicate abstract of type t, then
(v« I)(Aa,...,an. @), T) is the following member of [t, D]:

{{w(aq),...,wlay)) |w is an ay,...,a, variant of v and M, I" Ik, §}

Definition 12 (Truth of a Formula). Again let M = (G, R, D,Z) be a higher-
order modal model, and let v be a valuation in it. The notion M, I+, ®, is
characterized as follows.

1. For an atomic formula, M, ' Ik, 7(T1,...,Tn) provided
(v*I)(m,I),...,(VxI)(1p, ")) € (v I)(7,I).

. M, 'k, = if it is not the case that M, " I+, P.

M, T by @AW if M, T IFy & and M, I I, W.

.M, O0 if M, AR, @ for all A € G such that T'RA.

. M, Tk, (VYa)® if M, T by @ for every a-variant v’ of v.

v Lo o

Here are a few examples on which you can test your understanding of the
definitions above. We are assuming our models are constant domain, so not
surprisingly, the Barcan formula is valid. But one must be careful. If @ is a
formula, the following is certainly valid.

O(32)® > (3x)0P.



But, the following formula is not valid, even though it has a Barcan-like quan-
tifier/modality permutation.

0(F2)(AX. X (2))(P) O (32)(AX.0X (2))(P).

The shift of variable binding for X changes things; in the antecedent it is narrow
scope, but in the consequent it is not.

As another slightly surprising example, the following formula is valid.
AX.0(32) X (2))(P) D (AX.(3x) X (x))(P) (9)

In this example the symbol P is given broad scope in both the antecedent and
the consequent of the implication. This essentially says its meaning in alterna-
tive worlds will be the same as in the present world. Under these circumstances,
existence of something falling under P in an alternate world is equivalent to
existence of something falling under P in the present world. (Don’t forget, we
are assuming constant domains.) This is just a formal variation on the old obser-
vation that, in conventional first-order Kripke models, if relation symbols could
not vary their interpretation from world to world, modal operators would have
no effect. It is also something that can’t be said without the use of abstraction
notation.

5 Non-standard Models

Just as in the classical case, there can be no proof procedure that is complete
with respect to the semantics presented in the previous two sections. And just
as in the classical case, one can introduce a modal version of Henkin models.
Essentially, at each type level of a model we take some of the relations available
in principle, but not necessarily all of them. We do not have the space here to
give details, but they are direct analogs of the classical version.

The important thing to note, for our purposes, is that the most natural
higher-order modal tableau rules do not give completeness with respect to modal
Henkin models. Instead we need a broader notion of model yet—non-extensional
Henkin models. These can be characterized, and are natural things to study,
though knowledge of them is not widespread even though Henkin himself men-
tioned them. After all, it seems reasonable to have a notion of model in which
the properties of being the morning star and being the evening star are different
even though they have the same extension.

Space does not permit a formulation of modal higher-order non-extensional
Henkin models here. But when formulated, tableau rules given below turn out
to be complete with respect to them. Then extensionality can be imposed by
adopting extensionality axioms, in the usual way. The completeness proof has
considerable complexity, but ultimately is based on constructions of [6, 8].



6 Tableaus

We present a version of prefized tableaus, which incorporate a kind of naming
mechanism for possible worlds in such a way that syntactic features of prefixes—
world names—reflect semantic features of models, or of candidates for them.
Prefixed tableau systems exist for most standard modal logics. Here we only
give a version for S5, without equality and without extensionality. We refer you
to the literature for modifications appropriate for other modal logics—the same
modifications that work at the propositional level work in our setting too.

Definition 13 (Prefix). An S5 prefix is a single positive integer.
Prefixes have two uses in tableau proofs. The first gives them their name.

Definition 14 (Prefixed Formula). A prefixed formula is an expression of
the form o ®, where o is a prefiz and @ is a formula.

Think of a prefix as a name for a possible world of some model. And think
of 0 @ as saying that formula @ is true at the world that o names.

All tableau proofs are proofs of sentences—closed formulas. A tableau proof
of @ is a tree that has 1-@ at its root, is constructed according to certain
branch extension rules to be given below, and is closed, which essentially means
it embodies an obvious syntactic contradiction. This intuitively says =& cannot
happen at an arbitrary world, and so @ is valid.

The branch extension rules for the propositional connectives are all straight-
forward. We give them here, including rules for various defined connectives, for
convenience. In these, and throughout, we use o, ¢/, o1, and the like as standing
for prefixes.

Definition 15 (Conjunctive Rules). For any prefiz o,

cXANY 0-(XVY) 0~(XDY) 0 X=Y
o X o-X cX cXDY
oY ) ) cY DX

For the conjunctive rules, if the prefixed formula above the line appears on
a branch of a tableau, the items below the line may be added to the end of the
branch. The rule for double negation is of the same nature, except that only a
single added item is involved.

Definition 16 (Double Negation Rule). For any prefiz o,
o—-—X
o X

Next we have the disjunctive rules. For these, if the prefixed formula above
the line appears on a tableau branch, the end node can have two children added,
labeled with the two items shown below the line in the rule. In this case we say
there is tableau branching.



Definition 17 (Disjunctive Rules). For any prefiz o,

cXVY oc(X ANY)
cXloY oc-X|o-Y
cXDY c(X=Y)

c-X|oY c-(X DY)[o (Y D X)

Next we give the modal rules. It is here that the structure of prefixes plays
a role. For S5, each world is accessible from each world.

Definition 18 (Possibility Rules). If the positive integer n is new to the
branch,

cO0X o-0X

nX n-X

This implicitly treats ¢ as a kind of existential quantifier. Correspondingly,
the following rules treat [J as a version of the universal quantifier.

Definition 19 (Necessity Rules). For any positive integer n,

cOX oc-0X
nX n-X

Many examples of the application of these propositional rules can be found
in [3]. We do not give any here.

Next, for quantifiers. For the existential quantifier we do the usual thing:
if an existentially quantified formula is true (at some world), we introduce a
new name into the language and say in effect, let that be the thing of which
the formula is true. For this it is convenient to enhance the collection of free
variables available. We add a second kind, called parameters.

Definition 20 (Parameters). We have assumed that for each type t we had
an infinite collection of free variables of that type. We now assume we also have
a second, disjoint, list of free variables of type t, called parameters. They may
appear in formulas in the same way as the original list of free variables but we
never quantify them. Also we never A bind them. We use letters like p, q, P,
Q, ...to represent parameters.

Technically, parameters are free variables. When interpreting a formula with
parameters in a model, a valuation must provide values for parameters as well
as for the standard free variables. But since parameters are never quantified or
used in A bindings, any occurrence of a parameter must be a free occurrence.
(Consequently they cannot appear in sentences.) We will never need to substi-
tute a term for a parameter, though we will need to substitute terms for free
occurrences of variables that are not parameters. For this, and other reasons, we
adopt the following convention.



Definition 21 (Variable Convention). Occurrences of parameters in a for-
mula are not counted as free occurrences. Further, if we refer to a variable, it
s assumed it is not a parameter. If we need to speak about a parameter, we will
explicitly say so.

To state the existential tableau rules, we use the following convention. Sup-
pose @(at) is a formula in which the variable o, of type ¢, may have free oc-
currences. And suppose p? is a parameter of type t. Then @(p') is the result of
replacing all free occurrences of o with occurrences of p'. Since our convention
is that parameters are never bound, we don’t have to worry about accidental
variable capture. Now, here are the existential quantifier rules.

Definition 22 (Existential Rules). In the following, p' is a parameter of type
t that s new to the tableau branch.

o (Fah)P(al) o-(Val)d(at)
o &(p') o ~2(p')

The rules above embody the familiar notion of existential instantiation. As
noted, the use of parameters instead of conventional variables avoids complica-
tions due to conflicts between free and bound occurrences.

We said prefixes had two roles. We have seen one: formulas are prefixed. The
other use of prefixes is to qualify terms. Loosely, think of a term 7 with o as
prefix as representing the value taken on by the term 7 at the world designated
by o. However, writing prefixes in front of terms makes formulas even more
unreadable than they already are. Instead, in an abuse of language, we have
chosen to write them as subscripts, 7, though, of course, the intention is the
same, and we still refer to them as prefixes.

Formally, we broaden the notion of term (and consequently of formula) to
allow for prefixes/subscripts. Constant symbols may have prefixes—they are
non-rigid and can have different values at different worlds, so a prefix plays a
significant role, fixing the world at which its value is determined. Similarly for
predicate abstracts. But variables and parameters are thought of as ranging over
objects directly, and are not world-dependent. Consequently they are not given
prefixes.

Definition 23 (Extended Term). An extended term is like a term except
that some subterms have prefizes attached (as subscripts). Prefizes may appear
as subscripts on constant symbols and predicate abstracts; they may not appear
on variables or parameters. It is allowed that no prefixes occur, in which case
we have a term in the conventional sense. The type of an extended term is the
same as the type of the underlying term, that is, of the expression resulting from
dropping all prefixes.

Extended terms are allowed to occur in the formulas appearing in tableaus.
Next we need an analog of the notion of closed term, as used in classical first-
order tableaus.



Definition 24 (Grounded). A parameter is a grounded term. A prefized con-
stant symbol is a grounded term. A prefixed predicate abstract containing no free
variables (parameters are allowed) is a grounded term. Also, if 7o(11,...,Tn) i
an atomic formula and 1o, 71, ..., T, are grounded terms, we refer to the formula
as grounded.

Ezample 2. Ax.(VX)[(AX.X(X))(P) D X(x)]) is a predicate abstract, hence a
term. Then, (Az.(VX)[(AX.X(X)),(P1) D X()]) is an extended term. It is not
grounded, but (Az.(VX)[(AX.X(X)),(P1) D X (x)]), is.

The presence of a prefix ¢ on a subterm is intended to indicate that we are
thinking about the object the subterm denotes at the world that o denotes. Since
not all subterms may have been intuitively evaluated at a particular stage of a
proof, there might be subterms that have not been prefixed.

Definition 25 (Universal Rules). In the following, ¢ is any grounded term
of type t.
o (Va')®(al) o—(Fat)d(at)
o d(rh) o —P(1h)

Now we give the rules for predicate abstracts and atomic formulas. And to
do this, we first define an auxiliary notion. The intuition is that 7@o plays the
role of the object the extended term 7 designates at world o. Note that 7Qo
must be grounded.

Definition 26 (Evaluation At a Prefix). Let o be a prefix. If T is an extended
term without free variables, TQo is defined as follows.

1. If 7 is a parameter, TQo = T.
2. If T is an unsubscripted constant symbol or predicate abstract, TQo = 7,.
8. If T is a subscripted constant symbol or predicate abstract, TQo = 7.

Also, if 7o(11,...,Tn) is atomic, where each T; is an extended term without free
variables, we set

[T0(T1, ..., ™)]@Q0 = [19Q0(T1Q0, . .., 7,Q0)]

The next rule says that determining the truth of an atomic formula at a
world requires we evaluate its constituents at that world.

Definition 27 (Atomic Evaluation Rules). Let X be an atomic formula.

cX X
o XQo o —-XQco

If a term is grounded, its meaning is fixed across worlds. If I say “the President
of the United States,” it means different people at different times, but if I say
“the President of the United States in 1812,” it designates the same person at
all times. This motivates the following rule.



Definition 28 (World Shift Rules). Let X be a grounded atomic formula.

cX o-X
o' X o' =X

Finally, a rule intended to capture the meaning of predicate abstracts. Note
the respective roles of o and o’. Also, we extend earlier notation so that, if
P(ay,...,ap) is a formula, aq, ..., o, are free variables, and 71, ..., 7, are
extended terms of the same respective types as aq, ..., ay, then @(r,...,7,)
is the result of simultaneously substituting each 7; for all free occurrences of «;
in @.

Definition 29 (Predicate Abstract Rules). In the following, 71,...,T, are
all grounded terms

o (Ao, anPlan, ... an)) (T1,. .., Th)
o@(T1,...,Tn)

o' ~(Aai,..., 0. P(ar,...,00)) (T1,...,7)
o—P(T1,...,Tn)

Finally what, exactly, constitutes a proof.

Definition 30 (Closure). A tableau branch is closed if it contains c¥ and
o, for some formula V.

Definition 31 (Tableau Proof). For a sentence @, a closed tableau beginning
with 1P is a proof of d.

This concludes the presentation of the basic tableau rules. We have not given
rules for equality or extensionality. In fact, extensionality is not provable without
further rules. In the next section we give a few examples of tableau proofs using
the rules above.

7 Tableau Examples

Tableaus for classical logic are well-known, and even for propositional modal
logics they are rather familiar. The abstraction rules of the previous section are
new, and we give two examples illustrating their uses, one easy, one harder.



Ezample 3. Here is a proof of (9), (\X.0(Fz)X (x))(P) D (AX.(Fx)X(z))(P),

which we earlier noted was valid.

S [(AX.0E2)X ())(P) > AX.E) X (2))(P)] 1.
AX.03Fx) X (z))(P) 2.

-(AX.(F2) X (2))(P) 3.
(AX.0(32)X (2)), (P) 4.
(AX.(32)X (2)),(P1) 5.
0(E)Py(z) 6.

-

1
1
1
1
1
1
1
2
2
1
1

In this, 2 and 3 are from 1 by a conjunctive rule; 4 is from 2 and 5 is from 3 by
atomic evaluation; 6 and 7 are from 4 and 5 respectively by predicate abstract
rules; 8 is from 6 by a possibility rule; 9 is from 8 by an existential rule (p is a
new parameter); 10 is from 7 by a universal rule; and 11 is from 9 by a world
shift rule.

Ezxample 4. Our next example is from Godel’s ontological argument for the exis-
tence of God [4]. We don’t need all the details—think of it simply as a technical
issue. Essentially, Godel modified an earlier argument due to Leibniz. Part of
what Godel did was replace a somewhat intuitive notion of perfection with the
notion of a positive property. This notion was not analyzed, but certain features
were assumed for it—axioms, in effect.

Positive Property We have a constant symbol P of type ((0)) (think of it as
“positiveness”). We assume

(VX)[=P(X) 2 P(=X)]
where, for X of type (0), =X abbreviates (Az.=X (z)).
Next, Godel takes being God to mean having all positive properties.
Being God We use G to abbreviate the type (0) term
M. (VX)[P(X) D X(x)]).

Finally as far as our example is concerned, Godel characterizes a notion of
essence. Roughly speaking, a property X is the essence of an object z if every
property of z is a necessary consequence of X.

Essence We use £ to abbreviate the type ((0),0) term

AX, z.(VY)[Y (2) 5 O(Vy)[X(y) 2 Y(»)l])



Now we show one step of Godel’s argument: (Vz)[G(z) D (G, z)]. That is,
being God is the essence of anything that is, in fact, God. We give a tableau
derivation of it from the assumption about positive properties.

g) 10.

3(7)(G1() > Q] 11
VX)[-P(X) 5 P(-X)] 12

~P(Q) > P(-Q) 13,

1-(V2)[G(z) D £(G,2)] 1.

1-[G(g) D £(G,g)] 2.

1 G(g) 3.

1-E(G,g) 4.

1 Gi(g) 5.

1~(AX, z.(V )[Y() O(vy)[(X(y) > Y (W)]))(G.g) 6
1-(AX, 2.(VY)[Y(2) D O(Vy)[X(y) DY (W)])1(Gr.g9) 7
1-(VY)[Y(g9) D O(Vy)[G1(y) D Y ()] 8

T[Q( 9) > O(Wy)[Gi(y) > Q)] 9.

1

1

1

In this, 2 is from 1 by an existential rule (g is a new parameter); 3 and 4 are
from 2 by a conjunctive rule; 5 is from 3 by an atomic evaluation rule; 6 is 4
unabbreviated; 7 is from 6 by an atomic evaluation rule; 8 is from 7 by a predicate
abstract rule; 9 is from 8 by an existential rule (Q is a new parameter); 10 and
11 are from 9 by a conjunctive rule; 12 is our assumption about positiveness; 13
is from 12 by a universal rule.

At this point the tableau branches, using item 13. We first present the right
branch, then the left.

1P(~Q) 14.

1z (VX)[P(X) D X(x)])(g) 15.
1{Az.(VX)[P(X) D X(z)])1(9) 16
1(VX)[P(X) D X(g)] 17.

1P(-Q) 2 (-Q)(g) 18.

1-P(-Q) 19.1 (-Q)(g) 20.
1 (Az.—Q(x))(g) 21.
L Az =Q(x)(g)  22.
1-Q(g) 23.

Item 14 is from 13 by a disjunctive rule; 15 is 3 unabbreviated; 16 is from 15
by an atomic evaluation rule; 17 is from 16 by a predicate abstract rule; 18 is
from 17 using a universal rule; 19 and 20 are from 18 by a disjunctive rule; 21
is 20 unabbreviated; 22 is from 21 an atomic evaluation rule; 23 is from 22 by a
predicate abstract rule. Closure is by 14 and 19, and 10 and 23.

Now we display the left branch.



1--P(Q) 24

1 PQ) 25.
2=(Vy)[G1(y) D Qy)] 26
2-[G1i(q) D Q(g)] 27

2 Gi(q) 28.

2-Q(q) 29.

2 (Az.(VX)[P(X) D X(z)]),(q) 30
1 (VX)[P(X) > X(q)] 31

1 P(Q)>Q(g) 32

1-P(Q) 33.1Q(q) 34.

Item 24 is from 13 by a disjunctive rule; 25 is from 24 by double negation; 26
is from 11 by a possibility rule; 27 is from 26 by an existential rule (¢ is a new
parameter); 28 and 29 are from 27 by a conjunctive rule; 30 is 28 unabbreviated;
31 is from 30 by a predicate abstract rule; 32 is from 31 by a universal rule; 33
and 34 are from 32 by a disjunctive rule. Closure is by 25 and 33, and 29 and
34.

8 Conclusion

Higher-order modal logic is inherently complex. Just a sketch was possible here.
There was no room to present Henkin-modal models, let alone non-extensional
versions, though they are extremely natural to work with. Tableau completeness
arguments are especially elaborate. A much longer treatment is in preparation.
We hope this brief sketch is enough to raise interest in an issue that has rarely
been looked at in modal logic ([1] is a rare but noteworthy instance).
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