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1 Introduction

Herbrand’s theorem is a central fact about classical logic, [9, 10]. It provides a
constructive method for associating, with each first-order formula X, a sequence
of formulas X1, X2, X3, . . . , so that X has a first-order proof if and only if some
Xi is a tautology. Herbrand’s theorem serves as a constructive alternative to
Gödel’s completeness theorem. It provides the theoretical basis for automated
theorem proving, reducing a first-order problem to a search through an infinite
sequence of propositional problems, [12]. It provides machinery for theoretical
investigations,[2]. But it does not travel well. Unlike Gentzen’s cut elimina-
tion theorem, or Gödel’s completeness theorem, analogs of Herbrand’s result
essentially do not exist for non-classical logics.

In this paper we sketch how a Herbrand theorem can be obtained for the
modal logic K, after making a natural addition to the customary first-order
modal machinery. A similar result can be shown for several other modal logics,
though it is an interesting problem to determine the range of modal logics for
which this is possible.

Actually, in this paper we can present only a summary of the basic ideas,
and provide motivation for the approach we take. A full proof is too long to
meet space limitations here. A longer version of this paper, with full proofs, can
be found in [8].

2 Why extra machinery is needed

Presentations of the classical Herbrand theorem often begin by putting formulas
in prenex form. It is well-known that this is not possible for any standard
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modal logic. Fortunately, this is no obstacle. Herbrand expansions for classical
formulas can be defined without making use of prenex form, thus avoiding the
issue altogether.

The real problems begin with the next step: Skolemization. In order to
present the modal difficulties let us use validity functional form, in which quan-
tifiers that are essentially universal are eliminated, introducing new function
symbols in a way that preserves validity. The simplest example is (∀x)Px,
where P is a one-place relation symbol—its (classical) validity functional form
is just Ps, where s is a new constant symbol. Now, consider the modal formula
3(∀x)Px; what should its (modal) validity functional form be? A reasonable
guess is 3Ps, where again s is a new constant symbol. If 3(∀x)Px is false at
possible world p of a Kripke model M, then at each world accessible from p,
(∀x)Px must be false and so, at each world accessible from p, Px must be false
of some object that exists at that world. If q1 and q2 are two worlds accessible
from p, it could happen that while Px is false of some object at each of them,
the object is not the same at the two worlds—Px might be false only of object
a at q1, and false only of b at q2, where a 6= b. But then, if 3Ps is to be the
Skolemized version of 3(∀x)Px, and we want it to be false at p, we are forced
to have the constant symbol s designate a at q1 and b at q2.

Terms that can designate different things at different possible worlds are
called non-rigid (by philosophers), or flexible (by computer scientists). But,
allowing non-rigidity introduces a new set of problems. This time consider
2Ps, and assume it is true at world p of a Kripke model, in which worlds q1

and q2 are accessible from p. What, exactly, should this mean? One possible
meaning to give to 2Ps being true at p is: in every world accessible from p, the
formula Ps is true, taking this to mean that the P property holds in q1 of the
object that s designates at q1, and the P property holds in q2 of the object that
s designates at q2. But, another possible meaning to give to 2Ps being true
at p is: the object that s designates at p has the 2P property, and thus that
object has the P property in both q1 and q2. These two readings of 2Ps can
be very different, since what s designates at p need not be the same as what it
designates at q1 or q2. In short, if non-rigidity is allowed, the act of designation
and the act of passing to an alternative world need not commute.

If non-rigidity is allowed, syntax like 2Ps becomes ambiguous. This is
sometimes sorted out by attaching metalanguage qualifiers: s has narrow scope
or broad scope. For our purposes, both are needed. Validity functional form
Skolemization of 2(∀x)Px should yield 2Ps where s has narrow scope, but
Skolemization of (∀x)2Px should yield 2Ps where s has broad scope. We may
also need both at once, as in Skolemizing (∀x)2(∀y)Rxy. And 2(∀x)2Px shows
that a broad/narrow scope distinction is not sufficient to cover all the cases we
are interested in.

Continuing with problems, in the classical Herbrand theorem, after Skolem-
izing, the remaining essentially existential quantifiers are replaced with disjunc-
tions of instances. But, these instances introduce broad/narrow scope problems
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of their own, and the difficulties outlined above simply compound.

3 Disambiguating scope

In [13, 14] a formal scoping of terms was introduced into modal syntax and
semantics by Stalnaker and Thomason. This device was further applied and
elaborated by the present author, [3, 4, 5, 6, 7]. We present it here under
the name predicate abstraction—it provides the solution to the problems of the
previous section.

The “usual” syntax of first-order modal logic is taken to be that of classi-
cal first-order logic, with terms built up from variables, constant and function
symbols, but allowing 2 and 3 to appear in formulas. We modify this usual
syntax in two ways. First, an atomic formula is now an expression of the form
Px1 . . . xn, where the xi are variables. More complex terms are not allowed
to appear at the atomic level. Second, and most important, we add one more
formation rule to the usual list.

• If ϕ is a formula, x is a variable, and t is a term, 〈λx.ϕ〉(t) is a formula,
and its free variable occurrences are those of ϕ, except for x, together with
all variable occurrences in t.

Essentially, think of ϕ as a formula, and from it a predicate can be abstracted,
a predicate denoted 〈λx.ϕ〉. It is such predicate abstracts that are applied to
terms.

A predicate abstraction mechanism does not turn up in classical logic because
all the classical connectives and quantifiers are transparent to it. On the other
hand, 〈λx.2φ〉(t) and 2〈λx.φ〉(t) can have very different meanings semantically.
Also, though it does not play a role here, the effects of predicate abstraction
can show up even at the classical level if non-designating terms are allowed—
something Russell observed in his well-known treatment of definite descriptions
([17], reprinted in [16]).

We use the following conventions and terminology. We take as primitive ¬,
⊃, ∀, and 2; all other logical operations are defined. A frame is a structure
〈G,R,D〉 where G is a non-empty set of possible worlds, R is a binary relation
of accessibility on G, and D is a domain function from members of G to non-
empty sets, meeting the monotonicity condition, pRq =⇒ D(p) ⊆ D(q). An
interpretation in a frame is a mapping I that assigns:

1. to each constant symbol c and each p ∈ G some member I(p, c) of D(p);

2. to each n-ary function symbol f and each p ∈ G some n-ary function
I(p, f) on D(p);

3. to each n-ary relation symbol R and each p ∈ G some n-ary relation I(p,R)
on D(p).
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Note that constant and function symbols are explicitly allowed to vary their
designation from world to world. A structure M = 〈G,R,D, I〉 is a model if
〈G,R,D〉 is a frame and I is an interpretation in it.

If M = 〈G,R,D, I〉 is a model, its domain is ∪{D(p) | p ∈ G}. An assign-
ment in a model is a mapping from variables to the domain of the model.

We writeM, p ° ϕ [s] to indicate that formula ϕ is true at world p of model
M under assignment s. In order to define this formally we first introduce two
pieces of notation. First, for an assignment s, by s [xa] we mean the assignment
that is like s on all variables except x, and that assigns a to x. Second, for an
assignment s and an interpretation I, we define a mapping (s ? I) on worlds
and terms, as follows:

1. If x is a free variable, (s ? I)(p, x) = s(x).

2. If c is a constant symbol, (s ? I)(p, c) = I(p, c).

3. If f is an n-place function symbol,

(s ? I)(p, ft1, . . . , tn) = I(p, f)((s ? I)(p, t1), . . . , (s ? I)(p, tn))

Now, here is the definition of truth at a world, most of which is standard.

1. For an n-ary relation symbol R, M, p ° Rx1, . . . , xn [s] iff
〈s(x1), . . . , s(xn)〉 ∈ I(p,R).

2. M, p ° ¬ϕ [s] iff M, p 6° ϕ [s].

3. M, p ° ϕ ⊃ ψ [s] iff M, p ° ϕ [s] implies M, p ° ψ [s].

4. M, p ° 2ϕ [s] iff M, q ° ϕ [s] for all q ∈ G such that pRq.

5. M, p ° (∀x)ϕ [s] iff M, p ° ϕ [s [xa]] for all a ∈ D(p).

6. M, p ° 〈λx.ϕ〉(t) [s] iff M, p ° ϕ [s [xa]] where a = (s ? I)(p, t).

Of course, the last item is the key new one. Loosely, for 〈λx.ϕ〉(t) to be
true at a world, ϕ should be true there provided we take the value of x to be
whatever the term t designates at p.

4 Skolemization

The problems presented in section 2 now go away. A straightforward model-
theoretic argument can be used to show the following, [6].

Proposition 4.1 Suppose ϕ is a closed formula, (∀x)ψ is a positively occurring
subformula of ϕ, (∀y1), . . . , (∀yk) are all the quantifiers in ϕ within whose scope
(∀x)ψ occurs, and each of (∀yi) occurs negatively in ϕ. Let ϕ∗ be the result of
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replacing (∀x)ψ in ϕ with 〈λx.ψ〉(fy1, . . . , yk), where f is a function symbol not
occuring in ϕ. Then ϕ is valid (true at all worlds of all models) if and only if
ϕ∗ is valid.

By repeated applications of this Proposition, all essentially universal quanti-
fiers can be eliminated from a modal formula ϕ, producing an equi-valid formula.
We call the result of doing so the validity functional form of ϕ. Thus Skolem-
ization carries over to the modal setting in a simple way, provided predicate
abstraction is used.

5 Herbrand expansions

Classically, after Skolemization, the next step is to replace the remaining nega-
tively occurring universal quantifiers with conjunctions of instances. Thus, for
example, if a and b are closed terms, the formula ¬(∀x)Px can be converted
into ¬(Pa∧Pb). In the present modal setting, predicate abstraction complicates
this. Consider the formula ¬2(∀x)P (x), and again assume a and b are closed
terms. Replacing the quantifier by a conjunction, using predicate abstraction,
can lead to any of the following:

¬2〈λx.〈λy.Px ∧ Py〉(b)〉(a)
¬〈λx.2〈λy.Px ∧ Py〉(b)〉(a)
¬〈λx.〈λy.2(Px ∧ Py)〉(b)〉(a)

or even things like
¬〈λx.〈λy.2〈λz.Px ∧ Pz〉(y)〉(b)〉(a)

The specification of what is a conjunction of instances becomes non-trivial.
We use a simple sequent calculus for this purpose.

Definition 5.1 X ′ is a modal Herbrand transform of the formula X if X → X ′

is derivable in the following calculus.

Literal For A atomic, A→ A and ¬A→ ¬A.

Propositional
X → X ′

¬¬X → ¬¬X ′ Neg

¬X → ¬X ′ Y → Y ′

X ⊃ Y → X ′ ⊃ Y ′ +Imp X → X ′ ¬Y → ¬Y ′
¬(X ⊃ Y )→ ¬(X ′ ⊃ Y ′) −Imp
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Modal
X → X ′

2X → 2X ′
+Nec ¬X → ¬X ′

¬2X → ¬2X ′
−Nec

Abstraction
X → X ′

〈λx.X〉(t)→ 〈λx.X ′〉(t) +Lambda

¬X → ¬X ′
¬〈λx.X〉(t)→ ¬〈λx.X ′〉(t) −Lambda

Quantification For new variables x1, . . . , xn,

¬ϕ(x)→ ¬ϕ1(x) . . . ¬ϕ(x)→ ¬ϕn(x)
¬(∀x)ϕ(x)→ ¬[ϕ1(x1) ∧ . . . ∧ ϕn(xn)]

−Quant

Binding For x not free in X,

X → X ′

X → 〈λx.X ′〉(t) +Bind ¬X → ¬X ′
¬X → ¬〈λx.X ′〉(t) −Bind

Definition 5.2 We say Y is a modal Herbrand expansion of X provided there
is a formula X∗ that is a validity functional form of X, Y is a modal Herbrand
transform of X∗, and Y is closed.

Example 5.3 Consider modal formula 2(∀x)¬(∀y)Rxy ⊃ (∀x)2¬(∀y)Rxy.
For it, 2(∀x)¬〈λy.Rxy〉(fx) ⊃ 〈λx.2¬(∀y)Rxy〉(c) is a validity functional form,
and a closed modal Herbrand transform of it is:

〈λz.2〈λx.¬〈λy.Rxy〉(fx)〉(z)〉(c) ⊃ 〈λx.2¬〈λy.Rxy〉(fx)〉(c).

Consequently, this is a modal Herbrand expansion of

2(∀x)¬(∀y)Rxy ⊃ (∀x)2¬(∀y)Rxy.

6 Results

First, a result that is the direct analog of the classical Herbrand theorem.

Theorem 6.1 A closed modal formula ϕ is valid (in all modal models) if and
only if some modal Herbrand expansion of ϕ is valid.

Consider Example 5.3 again. As a matter of fact, we began with a valid for-
mula, 2(∀x)¬(∀y)Rxy ⊃ (∀x)2¬(∀y)Rxy, and the modal Herbrand expansion
we produced for it is likewise valid.

The classical Herbrand theorem reduces a first-order validity problem to a
sequence of propositional problems, and the theorem above does not quite do
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this. It is true that a modal Herbrand expansion is quantifier-free, but valid-
ity for such a formula is not entirely a propositional issue. The difficulty is
that modal Herbrand expansions still involve predicate abstractions, and their
semantics still requires the first-order machinery of non-empty domains to char-
acterize. Nonetheless, part of the point of a Herbrand reduction to a sequence of
propositional problems is that we then have a sequence of decidable problems.
This aspect carries over to the modal setting.

Theorem 6.2 Validity for quantier free closed modal formulas—in particular,
for modal Herbrand expansions—is decidable.

Proofs of both of these theorems makes essential use of tableau methods. We
have a modal tableau system that is sound and complete, even when predicate
abstraction and non-rigid designators are present. A valid modal Herbrand
expansion for a formula ϕ can be extracted from a tableau proof of ϕ. There is
not space enough here to present this work—we refer to [8] for details.

7 Conclusions

Versions of Herbrand’s theorem for modal logic have appeared before [11, 1],
though the particular approaches were quite different. Predicate abstraction
is, we believe, not only the key to a natural treatment, but is, in a sense, the
missing piece of machinery that first-order modal logic needs. It was used in [4]
to give a Herbrand-like theorem, but details of the expansion were very different.

Predicate abstraction is basic to first-order modal logic. By using it, a
satisfactory treatment of equality in a modal setting can be given, definite de-
scriptions can be dealt with properly, and traditional problems like the morning
star/evening star puzzle become straightforward issues. That it makes Skolem-
ization and a Herbrand theorem possible is more evidence for its essential nature.
We hope that, as time goes on, it will become a familiar part of the toolkit of a
modal logician.
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