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Abstract

Predicate abstraction provides very simple formal machinery that represents some
of the ideas connecting intension and extension. It has been investigated and applied
for many years now. Here we do two things with it. First, we present some natural
examples, and show how predicate abstraction can be applied to them. Second, we
give a formal proof procedure for predicate abstraction, based on nested sequents.
Soundness and completeness proofs are sketched.

1 Introduction

One simple and natural way of enhancing propositional modal logic is via predicate ab-
straction, which goes back to [17, 18]. It disambiguates many of the perceived syntactic
and semantic problems with modal logic, and does so with a certain amount of intuitive
appeal. The basic idea behind predicate abstraction in modal logics is elementary, but
like first-order logic itself, there are many concrete versions of it. With first-order logic(s)
one can have constant symbols, or not, function symbols, or not, multiple sorts, or not.
A similar range of choices is available for predicate abstraction. Here we introduce the
minimal machinery to handle the kinds of problems we discuss.

We begin with some examples of commonly perceived modal problems, and discuss how
predicate abstraction deals with them. Though there are domains, predicate symbols, and
function symbols, there is no quantification. Domains are constant. Type complexity is
minimal. Think of this presentation as something that can be expanded on, as needed.
All the really important ideas are already present. After the examples, there is a formal
presentation of the syntax and semantics. Then we go on to formulate a nice nested sequent
calculus for predicate abstraction. Up to this point the work presented is not new, though
we hope the discussion is simple and enlightening. The nested sequent calculus is both
new and not new—a remark that will be elaborated then and not now.

1



In 2010, Kai Wehmeier gave a talk at the CUNY Graduate Center. That talk (and
presumably many others) crystalized into Subjunctivity and Cross-World Predication, [19].
His presentation, and the discussion it initiated, were the origins of the present paper. His
way of handling the problems discussed here is very different than ours. In a sense, ours
is more traditional. His approach involves the introduction of symbols that are designed
to represent relations between objects across worlds. It is very natural, especially from a
linguistic point of view, and his paper is highly recommended. The two approaches are
not in competition, but are rather complementary. It would not be surprising if there were
natural embeddings between the two versions, but an investigation must wait until another
day.

2 Examples

Suppose we are talking about the King (or Queen) of Sweden. We can think of the monarch
as represented by a non-rigid constant symbol, say m, designating different persons at
different times, or nobody at some times too. This could be elaborated into a definite
description, but such machinery isn’t really needed for what is discussed here, and would
require the introduction of quantifiers anyway. Suppose also that we wish to express the
idea that someday the monarch might be taller than now. We can give a modal operator a
temporal reading, so that ♦X asserts that X will be true at some future time. Also suppose
we have a two-place predicate symbol T whose intended reading is: both arguments are
people, and the first is taller than the second. With standard modal machinery, the best
formalization we can manage is the absurd ♦T (m,m).

It isn’t m, the monarchical role or office, that we want to measure for height, it’s the
particular monarch at a particular time. We want to compare what m designates now with
what m designates at some future time. In ♦T (m,m), the first m must be understood
as designating a person now; the second as designating at a possible future. Predicate
abstraction gives us precisely that ability. A formal definition will come later, but the idea
is that 〈λx.X〉(c) should be true at a state if X is true at that state when x is given the
value that c designates at that state. (We’ll worry about possible non-designation later
on.) Then we can express that someday the monarch will be taller than now as follows.

〈λy.♦〈λx.T (x, y)〉(m)〉(m) (1)

This says it is true of the person who is presently King or Queen (the value of y) that at
some possible future state the taller-than predicate will hold between the person who then
holds the position (the value of x) and the present person.

This seems straightforward. But now suppose we want to say about some person, Alice,
that she might have been taller than she is (say given different nourishment as a baby than
she actually had). We can shift our intended reading of ♦ so that ♦X asserts that X is true
in some other possible world, whatever we may mean by possible. And we can represent
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Alice by a constant symbol, say a, similarly to our use of m above. But the following
sentence, corresponding to (1), won’t work.

〈λy.♦〈λx.T (x, y)〉(a)〉(a) (2)

The problem is that ‘Alice’ is a name and so a is commonly understood to be a rigid
constant symbol. We are talking about the same individual a in the present world and
in alternative circumstances, and in effect we are saying a person might be taller than
themselves. More technically, if a is rigid we have the truth of the following.

〈λy.�〈λx.x = y〉(a)〉(a) (3)

And from (2) and (3) it follows that

〈λx.♦T (x, x)〉(a) (4)

and this is clearly wrong. (We will give a derivation of (4) from (2) and (3) in Section 8,
after we have introduced nested sequents for predicate abstraction.)

There is a way around the problem however, one that applies to the two cases just dis-
cussed, though it is overkill for the King of Sweden. When we say that Alice is represented
by a rigid designator, a, what does that mean? In some sense a designates the same person
in different possible worlds, of course, but in different possible worlds that person might
have different inessential properties. In particular, the height of a might be different in
different possible worlds, even though a is the same person.

Suppose we introduce a non-rigid function symbol, h, intended to map a person to that
person’s height, thought of as a number. What h assigns to a depends on the possible
world in which h(a) is evaluated. (Of course we need to assume some constancy in our
standard of measuring, but let us do so for purposes of the present discussion.) The point
is that even though a is rigid, h(a) can vary from possible world to possible world. This
happens because an inessential attribute of a can vary from world to world, and this is
reflected in the non-rigidity of h, rather than of a. If we assume h is a non-rigid function
symbol, and G is the two-place greater-than relation on numbers, our assertion that Alice
might have been taller than she is, formalizes as follows.

〈λy.♦〈λx.G(x, y)〉(h(a))〉(h(a)) (5)

For the height example above, we don’t need the whole real number system as part of
our model. In practice we can only distinguish a finite set of height measurements, and
these can certainly be built into formal finite models. But now, suppose we move from
height to happiness. We can say that someday the King of Sweden will be happier than the
King is now, rather similarly to (1). But how can we express that Alice might have been
happier than she is? If we introduce a function symbol as we did above, we would have to
think of it as designating a mapping of individuals to some kind of degrees of happiness, and
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assume that these degrees can (often) be compared. The ordering might not be linear—a
partial order seems more plausible. Perhaps psychologists really do something like this,
but for most of us it seems to expand our horizons a bit. On the other hand, since we
generally can make sense out of saying that Alice is happier than Bob, we do seem to be
implicitly making use of such machinery anyway. At any rate, there is certainly no bar to
a formalization along these lines.

3 Predicate Abstraction Syntax

We begin the precise formulation of predicate abstraction. It is, in a sense, intermediate
between propositional and first-order machinery. It makes use of relation symbols, vari-
ables, constant and function symbols, but quantifiers need not be involved. A formulation
can be given in a variety of ways that differ in some technical details, but these details
don’t matter all that much. Below we will say something about what could be modified
without changing anything essential.

The basic distinction is between objects and intensions. Very loosely, objects (or ex-
tensions) are the entities we bump into: a person, the number 4 (which we bump into in
a soft sort of way), and so on. Intensions, on the other hand, are non-rigid designators,
often specified by definite descriptions: the number of nations in the UN, my best friend,
and so on. Semantically, intensions pick out objects in possible worlds, though perhaps not
in all of them. This is actually part of Carnap’s method of intension and extension, [3].
As formulated here, equality relates objects, while synonymy relates intensions (though we
will not discuss this now). This is enough for us to get started.

There is a family of object variables, typically x, y, . . ., and intension constants, a, b, . . ..
(In [7] we allowed intension variables, but did not allow any constants—it makes no deep
difference.) We also have intension function symbols, a, b, . . ., of various arities, which take
object variables as arguments. Finally, we have relation symbols, P,Q, . . . of various arities,
also taking object variables as arguments in the usual way. (In [6] we allowed relation
symbols to have intension variables as arguments as well, and positions in relations were
typed—see also [7, 8]. A similar generalization could be extended to the arguments of
function symbols as well.) We will make use of a special two-place relation symbol, =,
intended to denote equality. For ease in reading, we will write x = y instead of = (x, y).

An intension function term is a(x1, . . . , xn) where x1, . . . , xn are object variables and
a is an n-ary intension function symbol. It is convenient for us to assume that intension
constants are 0-place intension function symbols, so they are also function terms. Note
that intension functions are not allowed to be nested—arguments are object variables—but
there is a way around this, discussed below.

An atomic formula is P (x1, . . . , xn) where x1, . . . , xn are object variables and P is an
n-ary relation symbol. Note that intension function terms don’t come into things here.
There is a way around this too, also discussed below.
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Formulas (and predicate abstracts) are defined by recursion. Similarly for free variable
occurrences.

• An atomic formula is a formula. All variable occurrences are free occurrences.

• If X and Y are formulas, so are (X∧Y ), (X∨Y ), (X ⊃ Y ). Free variable occurrences
in these formulas are the free variable occurrences of X and of Y .

• If X is a formula, so are ¬X, �X, and ♦X. Free variable occurrences in these
formulas are the free variable occurrences of X.

• IfX is a formula, x is an object variable, and t is an intension function term, 〈λx.X〉(t)
is a formula, called a predicate abstract. Free variable occurrences are those of X,
except for occurrences of x, together with any free variable occurrences in t.

We finish with some comments and examples. Both 〈λx.♦P (x)〉(a) and ♦〈λx.P (x)〉(a)
are formulas, where a is an intension constant and P (x) is atomic. Neither formula has
any free variable occurrences. Predicate abstracts impose a scope distinction, which is
something that goes all the way back to Russell in [16, 20]. For him a crucial issue was
non-designating terms, in particular definite descriptions. If X(x) is a formula with object
variable x free, and a is an intension constant, how should ¬X(a) be read? Does it say that
the object designated by a has the ¬X property, or that it fails to have the X property? If
a doesn’t designate, these come out differently, as the present King of France would know.
In predicate abstract notation the difference is syntactically represented by 〈λx.¬X(x)〉(a)
and ¬〈λx.X(x)〉(a). Loosely the first says the a object, if any, has the ¬X property, and the
second says it fails to have the X property. We will assume that nothing can be correctly
predicated of the object designated by a non-designating term, and so 〈λx.¬X(x)〉(a) is
false if a does not designate. But then 〈λx.X(x)〉(a) is also false, and hence ¬〈λx.X(x)〉(a)
is true.

We did not allow intension function symbols to appear in atomic formulas. This sim-
plifies some things, without restricting expressiveness. Suppose a is an intension constant.
Instead of P (a), which is not legal, we can write 〈λx.P (x)〉(a), which is. We will consider
the first as a convenient abbreviation for the second. But we must be careful, since this
does not extend to formulas generally, or we would run into an ambiguity with, say, ♦P (a).
The familiar broad scope/narrow scope distinction is at work here, but by itself it is not
sufficient—consider ♦♦P (a) for instance, where broad scope and narrow scope are not all
the readings there are. Generally, we will not abbreviate unless an explicit proper version
is also specified.

We also did not allow nesting of function symbols. This is not a problem because we
can understand something line P (f(g(a))) as an abbreviation for

〈λz.〈λy.〈λx.P (x)〉(f(y))〉(g(z))〉(a)
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where substitution is made explicit using λ. Note that the two formulas

♦〈λy.〈λx.P (x)〉(f(y))〉(a) (6)

〈λy.♦〈λx.P (x)〉(f(y))〉(a) (7)

are not syntactically the same, and will be seen to differ semantically as well. We might
abbreviate (6) as ♦P (f(a)), using a narrow scope reading, but (7) has no corresponding
abbreviation.

Finally, in the interest of readability we will sometimes abbreviate 〈λx.〈λy.X〉(b)〉(a)
as 〈λx, y.X〉(a, b), and similarly for larger numbers of nested abstracts.

4 Predicate Abstract Semantics

Domains, as in first-order models, must be part of the semantic machinery since we have
relation and function symbols to model. We are not considering quantifiers here, so a
distinction between constant and varying domain models really cannot be seen. We con-
fine things to constant domain models for simplicity (and other reasons as well). Think
of members of domains as the objects—extensions—that intensions pick out at possible
worlds.

A model is a structure M = 〈G,R,D, I〉 meeting the following conditions.

• 〈G,R〉 is a frame, with G the set of possible worlds and R a binary accessibility
relation on G.

• D is a non-empty set called the object domain.

• I is an interpretation function. It must cover relation and intension function symbols.

If P is an n-ary relation symbol then I(P ) is a mapping from G to subsets of Dn. It
is required that I(=) be the constant function mapping each world to the identity
relation on D. (Thus equality is interpreted rigidly, and is total.)

If a is an n-ary intension function symbol then I(a) : S → (Dn → D), for some
S ⊆ G. (The idea is that I(a) provides an n-ary function from D to itself for some,
but perhaps not all, of the possible worlds in G. Such a function is provided for
those worlds in S, but not for worlds outside S.) As a special case, a 0-ary intension
function symbol, or intension constant, is simply a partial function from G to D. If
I(a) : S → (Dn → D), we say a designates at the worlds in S.

A valuation in model M is a map assigning to each object variable a member of D.
We writeM, w v X to symbolize that formula X is true at possible world w of modelM
with respect to valuation v. The conditions for this are as follows.

Atomic M, w v P (x1, . . . , xn)⇔ 〈v(x1), . . . , v(xn)〉 ∈ I(P )(w).
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Propositional M, w v X ⊃ Y ⇔M, w 6v X or M,Γ v Y

And similarly for other propositional connectives.

Necessity M, w v �X ⇔M, w′ v X for all w′ ∈ G such that wRw′.

Possibility M, w v ♦X ⇔M, w′ v X for some w′ ∈ G such that wRw′.

Predicate Abstraction, n-ary function symbol

If intension function symbol a designates at w, M, w v 〈λy.X〉(a(x1, . . . , xn)) if
M, w v′ X where v′ is like v except that v′(y) = I(a)(w)(v(x1), . . . , v(xn)).

If a does not designate at w, M, w 6v 〈λx.X〉(a(x1, . . . , xn)).

The special case of predicate abstraction where a is 0-place, that is, an intension con-
stant, is of particular interest, so we state it explicitly.

Predicate Abstraction, intension constant

If a designates at w, M, w v 〈λy.X〉(a) if
M, w v′ X where v′ is like v except that v′(y) = I(a)(w).

If a does not designate at w, M, w 6v 〈λx.X〉(a).

A formula X is valid in a model M = 〈G,R,D, I〉 if M, w v X for every w ∈ G and
every valuation v, and is valid if it is valid in every model. We have placed no restrictions
on accessibility, so this is a version of K with predicate abstracts. Reflexivity, transitivity,
and so on, can be imposed in the familiar way.

The first predicate abstraction condition says that M, w v 〈λx.X〉(t) if the object
designated by t at w has the property specified by X at w. The second condition says that
no property can correctly be ascribed to the object designated by a term that does not
designate. Then intension symbols enter into things via what they designate, if anything.
Other things are possible as well, and were considered in [6].

5 Examples Continued

In (1) we gave a formula intended to express the idea that someday the King/Queen of
Sweden might be taller than now. We repeat the formula here for convenience.

〈λy.♦〈λx.T (x, y)〉(m)〉(m)

Now we use this formula to illustrate the way the semantics works. Here are a few historical
facts we can make use of.

The list of Swedish royalty commonly begins with Eric the Victorious, who died around
995. But to be on the safe side, the first vague reference to a Swedish King is in Tacitus,
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around the year 100. So we can plausibly assume that in the year 50 there was no such
King.

It is hard to get data about heights before modern times, but an examination of skele-
tons shows that, in the 13th century the average adult male Swede was 174.3 cm (68.6 in),
[13]. King Magnus III Barnlock (who we will represent as mb) died in 1290, and we will
assume his height was exactly average.

Finally, King Carl XVI Gustaf, king at the time of writing this, is 179 cm (70.5 in) tall.
We will use cg to represent him. It is a small difference, but he is taller than Magnus III.

Figure 1 graphically shows a model, M. For this model the set of possible worlds is
G = {w50, w1289, w2013}, intended to represent states of the world in the years 50, 1289,
and 2013. Accessibility is shown using right pointing arrows, and is intended to represent
passage to a future state. (We may assume transitivity, but it is not shown in the figure and
is not needed for the points we wish to make.) The object domain is D = {mb, cg}, intended
to represent the two Swedish kings discussed above. The interpretation function I is such
that I(T )(w50) = I(T )(w1289) = I(T )(w2013) = {(cg,mb)}. (Thus T is interpreted rigidly,
and informally says that cg is taller than mb.) We assume m designates at {w1289, w2013},
and I(m)(w1289) = mb and I(m)(w2013) = cg. That is, I(m) picks out the King of Sweden
at each time state we consider, at which a king exists.

w50 w1289 w2013- -

{mb, cg}
?

�
�

�
�

�
�
��=

I(m) I(m)

Figure 1: Model M With Swedish Kings

We check that M, w1289 v 〈λy.♦〈λx.T (x, y)〉(m)〉(m), thus showing that (1) is for-
mally true under the expected circumstances. (v is an arbitrary valuation. In fact,
the formula has no free variables, so a choice of v won’t matter.) Now, M, w1289 v

〈λy.♦〈λx.T (x, y)〉(m)〉(m) just in case M, w1289 v′ ♦〈λx.T (x, y)〉(m), where v′(y) =
I(m)(w1289) = mb. This holds just when M, w2013 v′ 〈λx.T (x, y)〉(m), and in turn
we have this just in case M, w2013 v′′ T (x, y) where v′′(y) = v′(y) = mb and v′′(x) =
I(m)(w2013) = cg. And this is the case, because (cg,mb) ∈ I(T )(w2013).

NextM, w50 6v 〈λy.♦〈λx.T (x, y)〉(m)〉(m), because m does not designate at w50. Also
M, w2013 6v 〈λy.♦〈λx.T (x, y)〉(m)〉(m) because w2013 is a possible world with no future.
The first is what we would expect. The second really reflects an inadequacy in our model—
we have not represented time correctly (we dearly hope).
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We move on to the example in which it is said, of Alice, that she might have been taller
than she is, initially formalized in (5) which we repeat here.

〈λy.♦〈λx.G(x, y)〉(h(a))〉(h(a))

The immediate difficulty is that this is not a legal formula as we have set things up—see the
discussion at the end of Section 3. What takes its place is the appalling looking formula
(8), which is actually simpler in a sense, because there is no function/constant symbol
nesting.

〈λw.〈λy.♦〈λz.〈λx.G(x, y)〉(h(z))〉(a)〉(h(w))〉(a) (8)

We want the interpretation of a to be rigid, but the function interpreting h to be non-
rigid. For simplicity, let us suppose we measure heights to the nearest centimeter, and we
only need heights from, say, 0 to 400. This keeps things finite, though nothing essential
depends on it.

-w1 w2

{al, 0, 1, . . . , 400}
R �
I(a) I(a)

Figure 2: Model N With Alice

Figure 2 shows a model, N . The set of possible worlds G consists of w1 and w2

(how things are, and how they might have been), with w1Rw2. The object domain D is
{al, 0, 1, . . . , 400}, where al is intended to be the ‘Alice object.’

Next we have the interpretation function I. We set I(G)(w1) = I(G)(w2) = {(x, y) |
x, y are integers from 0 to 400 and x > y}. Intension constant a designates at both w1

and w2, and I(a)(w1) = I(a)(w2) = al. Thus a is interpreted rigidly. h is interpreted
non-rigidly, though it designates at both possible worlds; I(h) : G → (D → D). We set
I(h)(w1)(al) = 165 and I(h)(w2)(al) = 180. (Values on other members of D are quite
irrelevant, so we won’t bother to specify them.)

It can now be verified that we have

N , w1 v 〈λw.〈λy.♦〈λz.〈λx.G(x, y)〉(h(z))〉(a)〉(h(w))〉(a)

and so (8) is satisfiable, pretty much as expected.
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Equality is a relation on objects, and not on intensions, and is independent of the
particular possible world. We have the validity of (x = y) ⊃ �(x = y) and, ¬(x =
y) ⊃ �¬(x = y). On the other hand, we do not have validity of 〈λx, y.(x = y)〉(a, b) ⊃
�〈λx, y.(x = y)〉(a, b), which says that if a and b designate the same object in the present
world, they must designate the same object in all accessible worlds. We do, however, have
the validity of 〈λx, y.(x = y)〉(a, b) ⊃ 〈λx, y.�(x = y)〉(a, b). Think about it.

Suppose a is a one-place intension function symbol and b is zero-place, that is, an
intension constant. The expression a(b) = a(b) is not a legal formula, and there is more
than one way of unabbreviating it, but all versions have similar behavior. Let us examine
the simplest.

〈λx.〈λy.y = y〉(a(x))〉(b) (9)

Suppose M = 〈G,R,D, I〉 is a model, w ∈ G, and v is a valuation. Under what circum-
stances do we have M, w v (9)?

1. Suppose b does not designate at w. Then directly, M, w 6v (9).

2. Now suppose b designates at w. Let v′ be like v except that v′(x) = I(b)(w). Then
M, w v (9) just in case M, w v′ 〈λy.y = y〉(a(x)). If a does not designate at w,
again directly M, w 6v′ 〈λy.y = y〉(a(x)), and hence M, w 6v (9).

3. Now suppose b designates, and also a designates. Let v′′ be like v′ except that v′′(y) =
I(a)(w)(v′(x)). Then M, w v′ 〈λy.y = y〉(a(x)) just in case M, w v′′ y = y, and
this is so.

Conclusion: (9) is true at a possible world exactly when both a and b designate at that
world—essentially what we would expect.

6 Propositional Nested Sequents

Nested sequent systems are proof systems that allow sequents to be nested inside of other
sequents. They were invented several times with some variation, [1, 2, 14, 15]. Usually
they are for modal logics and generalize one-sided sequents, though there are exceptions.
There is, for instance, a two-sided version for intuitionistic logic in [11], including constant
domain logic. It turns out that nested sequents bear the same relationship to prefixed
tableaus that Gentzen sequents do to ordinary tableaus, namely one is the other ‘upside
down,’ [10]. Nested sequent systems are forward reasoning, while tableaus are backward
reasoning systems.

We sketch a nested sequent system for the modal logic K with predicate abstraction
and equality. Ultimately it derives from a prefixed tableau system for the same logic, a
relationship discussed in [10], though there are significant modifications. We think of a
sequent as a set, so there are no structural rules. We do not allow the empty sequent,
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though it would not change things much if we did. The definition of nested sequent that
we use is a recursive one.

Definition 6.1 A nested sequent is a non-empty finite set of formulas and nested sequents.

A one-sided sequent can be thought of as a disjunction, while nesting corresponds to
necessitation. Formally, let Γ = {X1, . . . , Xn,∆1, . . . ,∆k} be a nested sequent, where each
Xi is a formula and each ∆j is a nested sequent. This translates to an ordinary modal
formula Γ†, which can be thought of as the ‘meaning’ of Γ.

Γ† = X1 ∨ . . . ∨Xn ∨�∆†
1 ∨ . . . ∨�∆†

k

We follow common notational conventions for nested sequents. Enclosing outer set
brackets are generally omitted. A nested sequent that is a member of another nested se-
quent has its members listed in square brackets, and is called a boxed sequent. For example,
A,B, [C, [D,E], [F,G]], is the conventional way of writing {A,B, {C, {D,E}, {F,G}}}. We
use Γ, ∆, . . . for nested sequents, boxed or top level.

Suppose that Γ(P ) is a nested sequent in which propositional letter P (technically, a
zero-place relation symbol) occurs exactly once, as a direct member of some subsequent of
Γ(P ) and not as part of a more complex formula. Then we may write Γ(X) to denote the
result of replacing P in Γ(P ) with X. Similarly for Γ(X,Y ), Γ(∆), and so on. Think of
Γ(P ) as supplying a ‘context.’ In other presentations the role of P is played by a ‘hole,’
but the idea is the same.

The rules for propositional connectives and modal operators are given in Figure 3.
These are standard, and are for the logic K. In stating them we assume that Γ(P ) is some
nested sequent with one occurrence of propositional letter P . Also we use [. . .] to stand for
a non-empty nested sequent, and [Z, . . .] is [. . .] but with Z added.

Sequent proofs start with axioms and end with the nested sequent being proved. More
precisely, they are trees with axioms at the leaves, the item being proved at the root, with
each non-leaf node labeled with a nested sequent that follows from the nested sequents
labeling its child nodes using one of the nested sequent rules. Proof of a formula is a
derivative notion: a proof of the nested sequent consisting of just the formula X is taken
to be a proof of X itself. For illustration, Figure 4 displays a proof of �(A ⊃ B) ⊃ (�A ⊃
�B). Formulas A and B are atomic. Later, atomic formulas will have internal structure,
but the details don’t matter now. The two subsequents shown at the top are axioms, and
otherwise reasons are displayed for each inference.

7 Nested Sequents and Predicate Abstraction

From this point on relation and function symbols play a significant role. They were sup-
pressed in the previous propositional section. It is common in proof systems for first-order
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Axioms Γ(A,¬A),

A an atomic formula

Double Negation Rule Γ(X)

Γ(¬¬X)

α Rule Γ(X) Γ(Y )

Γ(X ∧ Y )

Γ(¬X) Γ(¬Y )

Γ(¬(X ∨ Y ))

Γ(X) Γ(¬Y )

Γ(¬(X ⊃ Y ))

β Rule
Γ(X,Y )

Γ(X ∨ Y )

Γ(¬X,¬Y )

Γ(¬(X ∧ Y ))

Γ(¬X,Y )

Γ(X ⊃ Y )

ν Rule
Γ([X])

Γ(�X)

Γ([¬X])

Γ(¬♦X)

π Rule
Γ(♦X, [X, . . .])

Γ(♦X, [. . .])

Γ(¬�X, [¬X, . . .])
Γ(¬�X, [. . .])

Figure 3: Nested Sequent Rules for K

¬�(A ⊃ B),¬�A, [¬A,A,B] ¬�(A ⊃ B),¬�A, [¬A,¬B,B]

¬�(A ⊃ B),¬�A, [¬A,¬(A ⊃ B), B]
α Rule

¬�(A ⊃ B),¬�A, [¬(A ⊃ B), B]
π Rule

¬�(A ⊃ B),¬�A, [B]
π Rule

¬�(A ⊃ B),¬�A,�B ν Rule

¬�(A ⊃ B),�A ⊃ �B
β Rule

�(A ⊃ B) ⊃ (�A ⊃ �B)
β Rule

Figure 4: Proof of �(A ⊃ B) ⊃ (�A ⊃ �B)

logic to introduce special symbols, just for use in proofs—new free variables, special con-
stant symbols, parameters. They play the role of existential witnesses. We do a similar
thing here. Just for use in proofs, we introduce into the formal language extension func-
tion symbols. We might have allowed such things in formulas from the start, but in the
present treatment their use is confined to proofs—they will not appear in formulas being
proved. For convenience, we refer to them as parameters. We also introduce a new kind
of atomic formula, connecting these new extension function symbols with the intension
function symbols we have been using.

Definition 7.1 (Parameters and Object Terms) Parameters are a new family of sym-
bols, typically written as p, q, r, . . . , each having an arity, 0-place, 1-place, and so on.

A new kind of atomic formula is introduced, a 6→ p, where a is an intension function
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symbol and p is a parameter, both having the same arity.
An object term is an expression built up entirely from parameters (but not from free

variables). Object terms are allowed to appear in proofs directly as arguments of intension
function symbols and of atomic formulas.

Informally, a parameter represents the extensional function picked out at a particular
possible world by an intension function symbol. The new atomic formula a 6→ p is intended
to assert that, at a particular possible world, a does not designate extensional function p.
(It is more convenient to introduce 6→ directly, than to introduce → and combine it with
negation. The point is a minor one.) As to allowing object terms to appear directly as
arguments, parameters are to represent functions that are not world-dependent, so the
sort of ambiguity that can arise with nested intension function symbols cannot arise with
parameters.

Only closed formulas may appear in proofs where a closed formula has no free vari-
able occurrences, though parameters may be present. We only prove closed formulas not
containing parameters.

In Figure 5 we give rules for predicate abstracts. In them X(x) is a formula that may
contain free occurrences of variable x, and X(p(t1, . . . , tn)) is the result of replacing all
free occurrences of x with occurrences of object term p(t1, . . . , tn). For Negative Abstract
Rule 2 two restrictive conditions are imposed. The first is needed to ensure rule soundness.
The second somewhat simplifies our completeness proof. Of course we would still have
completeness without it since any proof meeting a restriction is still a proof if the restriction
is relaxed.

Positive Abstract Rule Γ(X(p(t1, . . . , tn)), a 6→ p)

Γ(〈λx.X(x)〉(a(t1, . . . , tn)), a 6→ p)

Negative Abstract Rule 1 Γ(¬X(p(t1, . . . , tn)), a 6→ p)

Γ(¬〈λx.X(x)〉(a(t1, . . . , tn)), a 6→ p)

Negative Abstract Rule 2 Γ(¬X(p(t1, . . . , tn)), a 6→ p)

Γ(¬〈λx.X(x)〉(a(t1, . . . , tn)))

p not in conclusion

a 6→ q not in conclusion for any q

In the rules above t1, . . . , tn are object terms, and n could be 0.

Figure 5: Predicate Abstract Rules

Figure 6 displays a proof of 〈λx.¬P (x)〉(a) ⊃ ¬〈λx.P (x)〉(a) where P is a one-place
relation symbol and a is an intension constant, that is, a 0-place function symbol. The
converse, ¬〈λx.P (x)〉(a) ⊃ 〈λx.¬P (x)〉(a) is not valid. One can easily construct a model

13



in which a does not designate at a world, and so 〈λx.P (x)〉(a) fails there, and hence the
antecedent is true, but of course the consequent is false. Once soundness is established, this
tells us the converse is not provable. The reader may find it instructive to see what goes
wrong with a direct attempt at constructing a proof. On the other hand, [¬〈λx.P (x)〉(a)∧
〈λx.Q(x)〉(a)] ⊃ 〈λx.¬P (x)〉(a) is provable, and constructing a proof is a good exercise.

P (p), a 6→ p,¬P (p)

¬¬P (p), a 6→ p,¬P (p)
¬¬ Rule

¬¬P (p), a 6→ p,¬〈λx.P (x)〉(a)
Neg Abs 1

¬〈λx.¬P (x)〉(a),¬〈λx.P (x)〉(a)
Neg Abs 2

〈λx.¬P (x)〉(a) ⊃ ¬〈λx.P (x)〉(a)
β Rule

Figure 6: Proof of 〈λx.¬P (x)〉(a) ⊃ ¬〈λx.P (x)〉(a)

8 Nested Sequents and Equality

In the semantics from Section 4, equality is a relation on the object domain, D, of a model.
This is reflected in nested sequent proofs, in which the symbol = may appear between
object terms as defined in the previous section. Now we give rules for =, and this can be
done in two ways—reflexivity is the key point. We could introduce a rule as follows.

Γ(¬t = t, . . .)

Γ(. . .)

This gives a complete system when combined with the rules from Figure 7. It is easier to
prove completeness than it is for the system actually adopted here. But it has the annoying
property of possibly letting a relation symbol (equality) and function terms (those in t)
disappear during a rule application. To avoid this, we adopt an axiom instead, loosely
basing our approach on Section 9.8 of [4].

Definition 8.1 A formula is simple if it is the negation of an atomic formula, or it is an
atomic formula whose relation symbol is =.

Figure 7 displays the nested sequent rules for equality. In stating the Substitution Rule
X(t) is a (closed, simple) formula and X(u) is the result of replacing some (as opposed to
every) occurrence of object term t in it with an occurrence of object term u.

In Section 2 we noted that formula (4) followed from (2) and (3). We now show this
using a nested sequent proof, in Figure 8.

Formula (10) is a related example one might practice on. Part of the antecedent is
〈λx.�〈λy.x = y〉(a)〉(a). In [12] this was called a local rigidity condition—it expresses that
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Equality Axioms Γ(t = t)

Equality Up Rule Γ([¬t = u, . . .],¬t = u)

Γ([. . .],¬t = u)

Equality Down Rule Γ([¬t = u, . . .],¬t = u)

Γ([¬t = u, . . .])

Equality Left-Right Substitution Rule Γ(¬t = u,X(u), X(t))

Γ(¬t = u,X(u))

Equality Right-Left Substitution Rule Γ(¬t = u,X(u), X(t))

Γ(¬t = u,X(t))

In the rules above, t and u are object terms,
X is a simple formula

and . . . is allowed to be empty in the Down Rule,
but not in the Up Rule.

Figure 7: Equality Rules

the intension constant a designates in the current world, and must designate the same value
in all related worlds. The second condition, �〈λx.〈λy.y = y〉(h(x))〉(b) can only be true if
h designates a function in all related worlds. Of course it also requires that b designates in
all related worlds, but the values designated play no significant role.

[〈λx.�〈λy.x = y〉(a)〉(a) ∧�〈λx.〈λy.y = y〉(h(x))〉(b)]
⊃
〈λx.�〈λy.〈λz.〈λw.z = w〉(h(y))〉(h(x))〉(a)〉(a)

(10)

9 Soundness

We begin with an obvious problem that affects our completeness argument as well. Pa-
rameters can occur in proofs, but were not mentioned in the discussion of semantics in
Section 4. They must be given a semantic meaning. Similarly for the atomic formula
a 6→ p.

Let M = 〈G,R,D, I〉 be a model. We extend the definition of interpretation so that
values are supplied for parameters too. If p is an n-argument parameter, I(p) : Dn → D.
Note that this is not world dependent, unlike with intension function symbols. This in turn
gives a natural semantic meaning to each object term, Definition 7.1. We write I(t) for
the member of D assigned to object term t. Definition is by recursion: I(p(t1, . . . , tn)) =
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[¬T (q, p),¬T (p, p), a 6→ q,¬q = p, T (p, p)], a 6→ p,¬�〈λx.x = p〉(a),♦T (p, p)

[¬T (q, p), a 6→ q,¬q = p, T (p, p)], a 6→ p,¬�〈λx.x = p〉(a),♦T (p, p)
Eq R-L Subs

[¬T (q, p), a 6→ q,¬〈λx.x = p〉(a), T (p, p)], a 6→ p,¬�〈λx.x = p〉(a),♦T (p, p)
Neg Abs 1

[¬〈λx.T (x, p)〉(a),¬〈λx.x = p〉(a), T (p, p)], a 6→ p,¬�〈λx.x = p〉(a),♦T (p, p)
Neg Abs 2

[¬〈λx.T (x, p)〉(a),¬〈λx.x = p〉(a)], a 6→ p,¬�〈λx.x = p〉(a),♦T (p, p)
π Rule

[¬〈λx.T (x, p)〉(a)], a 6→ p,¬�〈λx.x = p〉(a),♦T (p, p)
π Rule

¬♦〈λx.T (x, p)〉(a), a 6→ p,¬�〈λx.x = p〉(a),♦T (p, p)
ν Rule

¬♦〈λx.T (x, p)〉(a), a 6→ p,¬�〈λx.x = p〉(a), 〈λx.♦T (x, x)〉(a)
Pos Abs

¬♦〈λx.T (x, p)〉(a), a 6→ p,¬〈λy.�〈λx.x = y〉(a)〉(a), 〈λx.♦T (x, x)〉(a)
Neg Abs 1

¬〈λy.♦〈λx.T (x, y)〉(a)〉(a),¬〈λy.�〈λx.x = y〉(a)〉(a), 〈λx.♦T (x, x)〉(a)
Neg Abs 2

¬2,¬3, 4
Abbreviating

¬(2 ∧ 3), 4
α Rule

(2 ∧ 3) ⊃ 4
α Rule

Figure 8: Equality Proof Example

I(p)(I(t1), . . . , I(tn)), with I(p) defined directly as part of the condition for being an
interpretation now.

We have a new atomic formula allowed in proofs. 6→ is interpreted as a two-place relation
symbol, across types, so that M, w v a 6→ p if either a does not designate at w, or else
a does designate, but I(a)(w) 6= I(p). More formally, but less intelligibly, I(6→)(a, p) =
{w ∈ G | a does not designate at w} ∪ {w ∈ G | a designates at w and I(a)(w) 6= I(p)}.

Finally, the interpretation of predicate abstraction must be modified a bit, from Sec-
tion 4. We now want the following, which agrees with the earlier definition in which no
parameters are present.

Predicate Abstraction, n-ary function symbol Suppose ui is either a variable or an
object term. Let ui be v(ui) if ui is a variable, and I(ui) if ui is an object term.

If intension function symbol a designates at w, M, w v 〈λy.X〉(a(u1, . . . , un)) if
M, w v′ X where v′ is like v except that v′(y) = I(a)(w)(u1, . . . , un).

If a does not designate at w, M, w 6v 〈λx.X〉(a(x1, . . . , xn)).

Detailed arguments are lengthy, but the basic ideas are rather straightforward. We
sketch them, and leave it to the reader to work out the specifics.

In Section 6 is given the usual translation of nested sequents into formulas. If one shows
the translate of each axiom is valid, and the rules preserve validity of translations, then
soundness is an immediate consequence. There are just a few general cases. First, we have
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the following.

Let A be a closed formula, allowing object terms and 6→. If A is valid, so is Γ(A)†. (11)

Item (11) is shown by induction on the nesting level of A in Γ(A). We leave this to the
reader. Once it has been established, validity of the nested sequent axioms follows.

Next is another general result whose proof also can be shown by induction on nesting
depth.

Let A and B be closed formulas, allowing object terms and 6→.

If A ⊃ B is valid, so is Γ(A)† ⊃ Γ(B)†.
(12)

This allows easy treatment of most of the single-premise rules. Consider, for example, the
Positive Abstract Rule. First one shows validity of the following formula. We omit the
verification.

[X(p(t1, . . . , tn)) ∨ a 6→ p] ⊃ [〈λx.X(x)〉(a(t1, . . . , tn)) ∨ a 6→ p]

Then soundness of the Positive Abstract Rule follows using (12). In a similar way one
handles Double Negation, β, ν, π, Positive Abstract, Negative Abstract 1, and all the
Equality Rules.

Double premise rules can be handled once the following is shown.

Let A, B, and C be closed formulas allowing object terms and 6→.

If (A ∧B) ⊃ C is valid, so is [Γ(A)† ∧ Γ(B)†] ⊃ Γ(C)†.
(13)

Using (13) one easily gets soundness of the β rules.
We still have not verified soundness of Negative Abstract Rule 2, which is more compli-

cated. For this we need something that is related to the usual treatment of quantification.
We say a model M′ = 〈G,R,D, I ′〉 is a p-variant of model M = 〈G,R,D, I〉 just in case
I ′ agrees with I except possibly on parameter p.

Assume Γ(¬〈λx.(x)〉(a(t1, . . . , tn))) does not contain parameter
p. Let M be a model, and w be an arbitrary member of G. If
M′, w v Γ(¬X(p(y1, . . . , yn)) ∨ a 6→ p) for every p variant M′

of M, then M, w v Γ(¬〈λx.X(x)〉(a(t1, . . . , tn))).

(14)

As with earlier items in this section, the proof of (14) is by induction on nesting depth.
For the ground case where there is no nesting of sequents, what needs to be shown is: if
M′, w v A1 ∨ . . . ∨ Ak ∨ ¬X(p(t1, . . . , tn)) ∨ a 6→ p for every p variant M′ of M, then
M, w v A1∨ . . .∨Ak∨¬〈λx.X(x)〉(a(t1, . . . , tn)), where A1, . . . , Ak, X(x) do not contain
p, and k might be 0.

This is most easily argued in the contrapositive direction. Assume M, w v ¬Ai for
i = 1, . . . , k, and M, w v 〈λx.X(x)〉(a(t1, . . . , tn)). Then a must designate at w, and
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M, w v′ X(x) where v′(x) = I(a)(w)(I(t1), . . . , I(tn)), and otherwise v′ and v agree.
Now introduce a new parameter, p, and define I ′ to be like I except that I ′(p) = I(a)(w),
and let M′ = 〈G,R,D, I ′〉. Then M′, w v X(p(t1, . . . , tn)), and M′, w v ¬(a 6→ p). Of
course M′, w v ¬Ai since Ai does not contain p so M and M′ behave alike on it.

We have now finished the argument for the ground case. We leave the induction step to
the reader. With (14) available, soundness of Negative Abstract Rule 2 follows, completing
the proof of the soundness of the nested sequent system.

10 Completeness

Let Z be a closed parameter-free formula, fixed for this section. Assume Z is unprovable;
we show a counter model for Z exists..

It is likely that this could be done using maximal consistency as described in [9], but
here we follow a more traditional route. With sequent systems one often reasons backwards
from the formula to be proved, in order to discover a proof. A backward search for a proof
should be done systematically, but there is much variation possible. A search must be fair,
in that any applicable rule must eventually be brought into the proof. Beyond this we omit
specifics, and simply assume some fair search procedure can be formulated.

Apply a fair proof search procedure, attempting to prove formula Z. This constructs
a tree, with the formula being proved at the bottom, the tree branching upward, with
branching associated with α Rule applications. Maximum nesting depth of nested sequents
cannot exceed the modal depth of the formula being proved, as a look at the ν and π rules
in Figure 3 makes clear. If a proof is found during the course of a search, each branch
terminates with an Axiom, either Γ(A,¬A) or Γ(t = t). If a proof is not found there must
be a branch—call it open—without an axiom occurrence. Let us say B(Z) is a specific
such branch, arising during a fair search for a proof of Z. Like Z, this too is fixed for the
rest of this section.

Suppose, as an example, that on branch B(Z) the following step appears:

...
A, [B,C], [D,X], [E, [F ]]

A, [B,C], [D,¬¬X], [E, [F ]]
...

Most of the structure remains the same in this step, but [D,X] ‘turns into’ [D,¬¬X]. We
can think of these as the same boxed sequent, but we are seeing different stages of its history.
Then a boxed sequent, dynamically, is really a sequence of boxed sequents appearing in
B(Z), where the terms of the sequence are the stages through which the sequent passes. We
will call such a sequence a dynamic sequent. This can be made mathematically precise, but
an informal approach should suffice for our purposes: for the example above, we say that
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D,X, and ¬¬X all appear in the same dynamic sequent, though X and ¬¬X appear at
different stages. If w is a dynamic sequent, we use the special notation A ∈̇ w to indicate
that A is a member at some stage. Members of a nested sequent can be other nested
sequents, which have their own histories, but the general idea should be clear enough for
present purposes.

We are about to use B(Z) to construct a model. We need a few results first, and it is
easiest to state them if we say at this point what the possible worlds of our model will be.
Making use of the discussion about stage-of-construction above, let G be the set of dynamic
boxed sequents that appear on B(Z), together with the top level dynamic sequent.

Lemma 10.1 Suppose A and B are closed atomic or negated atomic formulas, including
those of the form a 6→ p. Also suppose w ∈ G. If A ∈̇ w and B ∈̇ w, then both A and B
are present simultaneously at some stage of the construction of w.

Proof An inspection of the nested sequent rules shows that (applied forward) none intro-
duces either an atomic formula or its negation. Then when rules are applied backwards
during a proof search, atomic formulas and their negations are not eliminated. It fol-
lows that during a proof search, if A and B are both present at different stages of the
construction of w, both must be present at whichever stage is uppermost.

Lemma 10.2 If P is atomic we cannot have both P ∈̇ w and ¬P ∈̇ w for any w ∈ G.

Proof Immediate from Lemma 10.1 and the fact that B(Z) is open.

Lemma 10.3 Suppose w ∈ G. Then for each intension function symbol a, a 6→ p ∈̇ w for
at most one parameter p.

Proof Suppose both a 6→ p ∈̇ w and a 6→ q ∈̇ w, where p 6= q. Then both must be present
at the same stage of the construction of w, by Lemma 10.1. But during the fair proof
search that constructs B(Z), working from Z upward, the only rule that can introduce an
expression a 6→ p into a nested sequent is Negative Abstract Rule 2, from Figure 5. This
rule can only be applied if a 6→ q is not already present, for any q, so it is impossible to
have both present at the same stage.

The remaining items all have to do with the behavior of equality.

Lemma 10.4 Suppose t1 and t2 are object terms, and ¬t1 = t2 ∈̇ w for some w ∈ G.
Then ¬t1 = t2 ∈̇ w for every w ∈ G.

Proof This is an easy consequence of the Equality Up Rule and the Equality Down Rule.

Lemma 10.5 Suppose w ∈ G and t1, t2, and t3 are object terms.
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1. If ¬t1 = t2 ∈̇ w then ¬t2 = t1 ∈̇ w.

2. If ¬t1 = t2 ∈̇ w and ¬t2 = t3 ∈̇ w, then ¬t1 = t3 ∈̇ w.

Proof We show 1; item 2 is similar. Suppose ¬t1 = t2 ∈̇ w. Recall, we are conducting
a backwards search for a proof. Now, ¬t1 = t2 can be inferred (in any context), from
¬t1 = t2,¬t2 = t2 using the Equality Right-Left Substitution Rule (and deleting duplicates,
since we are dealing with sets). Since our proof search procedure is a fair one, at some point
this rule must be tried. In turn, ¬t1 = t2,¬t2 = t2 can be inferred from ¬t1 = t2,¬t2 =
t2,¬t2 = t1 using the Equality Left-Right Substitution Rule, and fairness says this will be
tried. But then ¬t2 = t1 ∈̇ w.

Definition 10.6 We say object term t1 B(Z)-rewrites to object term t2 if t2 results from
the replacement of some subterm u1 of t1 with u2, where ¬u1 = u2 ∈̇ w for some (any)
w ∈ G. We also say t1 and t2 are B(Z)-equivalent if t1 can be turned into t2 via a sequence
of B(Z)-rewrites (possibly 0).

Lemma 10.7 Suppose X1 is a closed simple formula containing an occurrence of object
term t1, and X2 is like X1 but with some occurrence of t1 replaced with an occurrence of
object term t2. If X1 ∈̇ w for some w ∈ G, and t1 and t2 are B(Z)-equivalent, then X2 ∈̇ w.

Proof A direct consequence of the Equality Substitution Rules and our fair search proce-
dure.

Lemma 10.8 Suppose t1 is B(Z)-equivalent to t2. Then it is not the case that t1 = t2 ∈̇ w
for any w ∈ G.

Proof Suppose t1 = t2 ∈̇ w and t1 is B(Z)-equivalent to t2. Then using Lemma 10.7,
t2 = t2 ∈̇ w, contradicting the fact that B(Z) is not closed and so contains no axiom
occurrence.

Now we are ready to define our model. Actually we construct two models because, as in
most approaches to equality, it is first modeled by an equivalence relation, then equivalence
classes are introduced.

Construction of Model One

We have already said what our possible worlds are, but we repeat the definition for
convenience. Let G be the set of dynamic boxed sequents that appear on B(Z), together
with the top level dynamic sequent. Continuing, if w1, w2 ∈ G set w1Rw2 just in case
w2 ∈̇ w1. And let D be the Herbrand universe consisting of object terms (terms built up
from parameters, Definition 7.1). We thus have G, R, and D. The interpretation I is a bit
more complicated.
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Since parameters are involved, I must cover them. We do the thing usual with Herbrand
universes. If p is 0-place, I(p) = p, and if p is n-ary and h1, . . . , hn ∈ D, I(p)(h1, . . . , hn)
is the object term p(h1, . . . , hn). Then I(t) = t for any object term t.

Let a be an n-ary intension function symbol. We take a to designate at w ∈ G if
a 6→ p ∈̇ w for some p (p is unique by Lemma 10.3). Then we set I(a) : S → (Dn → D)
where S is the subset of G at which a designates, and if w ∈ S, then I(a)(w)(h1, . . . , hn) =
p(h1, . . . , hn), where p is the unique parameter such that a 6→ p ∈̇ w, and p(h1, . . . , hn) is
a Herbrand term.

Suppose P is an n-ary relation symbol other than =, and w ∈ G. Set I(P )(w) =
{〈h1, . . . , hn〉 | ¬P (h1, . . . , hn) ∈̇ w}. For equality a little more is needed. We set I(=)(w)
to be {(h1, h2) | ¬(h1 = h2) ∈̇ w} together with {(h1, h2) | h1 is B(Z) equivalent to h2}.
Finally we model a 6→ p as we did in the Soundness section, so that M, w v a 6→ p if a
does not designate at w, or else a designates at w, but doesn’t designate p.

This completes the definition of a model, M = 〈G,R,D, I〉. The only thing that still
needs checking is that equality is interpreted rigidly—the same at all members of D. But
this is an easy consequence of the Equality Up and Equality Down Rules.

Now we prove the following key result. It is the opposite of what one might have
expected.

Lemma 10.9 (Truth Lemma) Let w ∈ G and let A be any closed formula, allowing
parameters. If A ∈̇ w then M, w 6v A. (Choice of v is not important because A is closed.
In the proof v will be arbitrary unless otherwise specified.)

Proof By induction on the complexity of A. We show the result simultaneously for A and
¬A. Assume the result is known for formulas simpler than A. There are several cases to
consider.

Atomic A is atomic, so there are no simpler formulas.

We begin with the conventional non-equality case. Suppose ¬P (h1, . . . , hn) ∈̇ w.
Then 〈h1, . . . , hn〉 ∈ I(P )(w), so M, w v P (h1, . . . , hn), and of course M, w 6v

¬P (h1, . . . , hn).

Suppose P (h1, . . . , hn) ∈̇ w. Then we do not have ¬P (h1, . . . , hn) ∈̇ w by Lemma 10.2.
But then 〈h1, . . . , hn〉 6∈ I(P )(w), so M, w 6v P (h1, . . . , hn).

Next we consider equality. If ¬h1 = h2 ∈̇ w the argument is as in the previous case.
Now suppose h1 = h2 ∈̇ w. Since B(Z) is not closed, we do not have ¬(h1 = h2) ∈̇ w.
By Lemma 10.8, h1 is not B(Z)-equivalent to h2. But then (h1, h2) 6∈ I(=)(w) and
so M, w 6v h1 = h2.

Finally we have the rather special case of a 6→ p. Now M, w 6v a 6→ p exactly when
a designates at w, and it is p that it designates. But a look at the definitions earlier
shows that these conditions obtain exactly when a 6→ p ∈̇ w.
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Propositional We consider only A = X ∧ Y , the other propositional cases are similar.

Suppose X ∧ Y ∈̇ w. Since a fair proof search was made, at some point an α rule
application was introduced, and so either X ∈̇ w or Y ∈̇ w. Then by the induction
hypothesis, either M, w 6v X or M, w 6v Y , and hence M, w 6v X ∧ Y .

The ¬A = ¬(X ∧ Y ) argument is along the same lines, but using the β rule.

Modal Suppose A = �X, the case of ♦X is similar.

Suppose �X ∈̇ w. Since a fair proof search was made, at some point a ν Rule
application was introduced, and a new dynamic nested box, call it w′, was created
using X. Then w′ ∈ G, wRw′, and X ∈̇ w′. By the induction hypothesis, M, w′ 6v

X, and so M, w 6v �X.

The ¬A = ¬�X case is similar, but using the π Rule.

Predicate Abstract Suppose A = 〈λx.X(x)〉(a(t1, . . . , tn)).

This time we examine the negated case. Suppose ¬〈λx.X(x)〉(a(t1, . . . , tn)) ∈̇ w. At
some point in our fair proof search an application of one of the Negative Abstract
Rules 1 or 2 is introduced concluding this. Either way, we have a unique p so that
both a 6→ p ∈̇ w and ¬X(p(t1, . . . , tn)) ∈̇ w. By the induction hypothesis, M, w 6v

¬X(p(t1, . . . , tn)), and soM, w v X(p(t1, . . . , tn)). Since a 6→ p ∈̇ w, we have that a
designates at w, and I(a)(w)(I(t1), . . . , I(tn)) = I(a)(w)(t1, . . . , tn) = p(t1, . . . , tn).
Let v′ be like v except that v′(x) = p(t1, . . . , tn); then M, w v′ X(x), and so
M, w v 〈λx.X(x)〉(a(t1, . . . , tn)), and hence M, w 6v ¬〈λx.X(x)〉(a(t1, . . . , tn)).

The case where A = 〈λx.X(x)〉(a(t1, . . . , tn)) is similar.

Let t be the top level sequent of B(Z). Then Z ∈̇ t, so by the Truth Lemma,M, t 6v Z.
Thus M is a counter-model.

Construction of Model Two

The interpretation of the equality symbol in the model M, constructed above, is not
by the equality relation. However, it turns out that I(=)(w) is the same for all w in
G, is an equivalence relation on D, and is a congruence with respect to all relation and
function symbols. Once this is established, a ‘factor’ model can be constructed with an
object domain consisting of equivalence classes from D. This construction is quite standard,
and we omit all details. It is necessary, however, to establish the facts about I(=) just
mentioned.

First we show that I(=)(w) is the same for all w ∈ G. Suppose (h1, h2) ∈ I(=)(w).
The definition of interpretation for equality has two parts. It could be that ¬h1 = h2 ∈̇ w.
Then Lemma 10.4 gives us what we need. Or else it could be that h1 is B(Z)-equivalent to
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h2. But Definition 10.6 does not depend on a particular choice of possible world, relying
on Lemma 10.4.

Next we show that the interpretation of equality, which we now know is world in-
dependent, is an equivalence relation. It is reflexive because h is B(Z)-equivalent to
h since it B(Z)-rewrites to itself with 0 rewritings. Now consider symmetry. Suppose
(h1, h2) ∈ I(=)(w). There are two possibilities. First, ¬h1 = h2 ∈̇ w, and we appeal to
Lemma 10.5. Second, h1 is B(Z)-equivalent to h2, and clearly B(Z)-rewriting is bidirec-
tional, making use of Lemma 10.5 again. We leave transitivity to the reader.

We need to establish we have a congruence with respect to all relation symbols. Let us
assume P is not the equality symbol, and leave the equality case to the reader. Suppose
(h1, . . . , hn) ∈ I(P )(w) and (h1, h

′
1) ∈ I(=)(w). By the first condition, and the definition

of I, ¬P (h1, . . . , hn) ∈̇ w. As usual, there are two possibilities for the second condition.
We could have ¬h1 = h′1 ∈̇ w. In this case, by Lemma 10.1, both ¬P (h1, . . . , hn) and
¬h1 = h′1 must be present at some same stage in the construction of w, and a fair con-
struction procedure will eventually bring in ¬P (h′1, . . . , hn) using the Equality Left-Right
Substitution Rule. The other possibility is that h1 is B(Z) equivalent to h′1. In this case
we apply Lemma 10.7.

Finally we need to show congruence properties with respect to function symbols. To
keep notation simple we work with a unary function symbol. Suppose (h1, h2) ∈ I(=)(w);
we show (f(h1), f(h2)) ∈ I(=)(w). There are the usual two cases. We might have that
¬h1 = h2 ∈̇ w, or we might have that h1 is B(Z)-equivalent to h2. But either way, h1 is
B(Z)-equivalent to h2, and it follows from the definition that f(h1) is B(Z)-equivalent to
f(h2). giving us what we need.

This establishes what was needed, and ends our discussion of Model Two.

11 Conclusion

All formal work here has been for systems based on the simplest normal modal logic
K. Propositional nested sequent rules for other modal logics can be found in [1, 10] and
elsewhere. Using rules for other modal logics, together with the Predicate Abstract and
Equality Rules, gives appropriate formal systems for a family of modal logics containing
the machinery discussed here. Our completeness and soundness methods carry over.

Predicate Abstract machinery is intermediate between propositional and first-order, in
an obvious sense. Which way it leans is not always obvious. For instance, it is shown in [5]
that logics between K4 and S5, with predicate abstraction and equality are undecidable,
and for S5, equality is not needed for undecidability. For K, T, and other simpler modal
logics with predicate abstraction and equality, we have decidability if no function symbols
are present—a fair proof search procedure must terminate. What the effect of function
symbols might be is not known.

In Sections 2 and 5 we discussed a few natural examples, and saw how predicate abstrac-
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tion machinery dealt with them. This is not the only formalization possible. Quantifiers
can be made use of. Cross-world predication can be used, as in [19]. A multiplicity of
methods is not a drawback. Each approach has its own virtues and provides its own in-
sights. Relationships between approaches needs investigation, and we encourage readers
to think about this.
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