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1. Introduction

’

In [6] Smullyan gave an elegant development of recursion theory based
on elementary formal systems. These dealt directly with words over

a finite alphabet, and only indirectly with numbers, via “names” for them.

particular examples.

Theorem for them.

- 2. Elementary formal systems

and we need no rule of substitution.

[89]

We generalize the notion of elementary formal system, by separating
“structural properties” from “subject matter.” The result provides a
natural “recursion theory” for any structure, words and numbers being

Qur notion of recursion theory over the natural numbers can be
turned into hyperarithmetic theory by the addition of a simple infinitary
rule (an w-rule) [1]. We formulate the rule so that it applies to all our
recursion theories, turning them into what we call w-recursion theories.
For both recursion and w-recursion theories we define a natural general-
ization of enumeration operator. We investigate the structural charac-
teristics of these operators, and prove an analog of the First Recursion

Let & be an infinite set, and let %, ..., %, be relations on «/. We cal
k41 tuple (&, By, ..., By 2 structure. We allow trivial structures (&)
We set up a simple logical calculus relative to a particular structure, so for
the rest of this section, let UA = (s, &y, ..., &> be a fixed structure.

We suppose available an unlimited supply of n-place predicate sym-
bols for each » > 0. We informally use P, ), R, ete. to represent them.
The other two symbols of our alphabet are an arrow and a comma. We will
use axiom schemas, so variables are not needed in the language itself,
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By an atomic formula w3 m2an an expression of th2 form Po,, ..., v,
where vy, ..., v, € & and P is an n-place predicate symbol. For convenience
we may write Po for Pv,, ..., v,. We also define a pseudo-atomic formula
to be anything of the form Pu,, ..., #, where each x; is in &7 or is a variable.
Pseudo-atomic formulas are expressions of the metalanguage only.

The notion of formula is definsd by the following rules:

1) an atomic formula is a formula, _

2) if X, X,, ..., X, areformulas, sois X, - X, - ... - X, . Formulas
are to be thought of as being associated to the right. Thus A - B - — D
should be read as if it were A — (B — (C — D)) and thought of as saying 4,
B and C together imply D.

The metalinguistical notion of pseudo-formula is defined analogously,
being built up from pseudo-atomic formulas. And the notion of an instance
of a pseudo-formula (over /) also has an obvious definition. Any instance
of a pseudo-formula is a formula.

By the conclusion of a (pssudo) formula wo msan the final (pseudo)
atomic part of it. Thus if 4 is (pseudo) atomic, A is the conclusion of
X — A, and also of A itself.

Let R,, ..., B, be distinet predicate symbols psrmanently assigned
to the relations #,, ..., #,, such that E; is n-place if £, is an n-ary relation.
Let Z%; consist of all atomic formulas of the form R v where Zv is true.

We say a pseudo-formula X is allowable if none of R,, ..., B, oceurs
in the conclusion of X. )

Let {4,, ..., A,} be some finite set of pseudo-formulas, each allowable.
By a derivation from {4,, ..., A,} (over A) we mean a finite sequence of
formulas, Xy, ..., X; such that each term of the sequence either

1) is a member of Z;U ... UZ; or
2) is an instance of some A; or
3) comes from two earlier terms by the rule

MP E—Xfﬂ provided X is atomic.

If there is a derivation ending with X, we say X is derivable from
{44, ..., 4.} (over A).

{44, ..., A,} determines, relative to %A, a simple deductive system,
called an elemenmry formal system (over A). Bach A, is an aziom for that
elementary formal system.

Let P be a p-place predicate symbol, and Z = «#°. We say P represents
P i the elementary formal system determined by {Ay, ..., 4,} if v €2 iff
Pov is derivable from {4,,..., 4,.}. ' R
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We say 2 is representable in the elementary formal system determined
by A4, ..., A, if there is some predicate symbol P which represents #
in that elementary formal system.

Finally, we say 2 is recursively enumerable (r.e.) (over ) if & is rep-
resentable in some elementary formal system (over ). Also 2 is recusr-
sive (over %) if both # and /2 —2 are r.e. (over ).

3. Examples

ExAMPLE 1. & = . % is the successor relation: Zx, y iff y = 2 1.
Let Ay be the structure (&, Z). It can be shown that a relation is r.e.
over A, iff it is r.e. in the usual sense.

ExAampLE 2. & is the set of signed integers. Z is the successor relation
for signed integers. Let U, be the structure (&, Z). A relation is r.e.
over U, iff under any standard Godel numbering of the signed integers,
it corresponds to an r.e. set of natural numbers.

EXAMPLE 3. & = o X w. We use two relations on . %,x,y iff
the first component of y is the successor of the first component of z. %,
is similarly the second component successor relation. Let %, be the struc-
ture {7, %, #,). A relation is r.e. over U, iff the result of applying
a recursive pairing function to its members produces a relation r.e. in the
conventional sense.

ExAmriE 4. &/ = H.F. = R,. %, is the union relation, %,(z, v, ?)
iff xUy = 2. %, Is the unordered pair relation, #Z,(z, v, 2) iff {z, y} = 2.
Let g = <, %y, #,). A relation is r.e. over Uy iff it is X over H. F.
Remark: This example is essentially unchanged if we use the single relation

2V{y} = 2.

ExAMPLE 5. & is the set of words over a fixed finite alphabet. # is
the concatenation relation on «7. Let %Ay, be the structure (<7, Z). Elemen-
tary formal systems over ;; are those called pure in [6]. Remark: This
example too is essentially unchanged if, instead of # we use one relation
for each letter a of our finite alphabet, taking, say, %, x, y iff y is word =
with a added to the end.

ExAMPLE 6. o is the set of real numbers. Take the two relations
of addition and order for reals. In the resulting structure, for example,
the set of integers is r.e. Also, the function f(xr) = [#], mapping each
real # to the greatest integer < x, is recursive (as a relation).

EXAMPLE 7. Let U be the structure <FUV;F, +p, Xp, V, 45 Xg*>
where F is a field under the operations +pand Xg, V is an n-dimensional
vector space over F, with vector addition 4, and sealar multiplication
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X g, and * is an inner product on V. Call a function partial recursive if
its graph is r.e. The Gram-Schmidt orthogonalization process can be
“captured” by an elementary formal system over this structure to shows:
there is a partial recursive function f, taking n-tuples of vectors to n-tuples
of vectors, such that if f(xy,...,%,) = <¥1,...,¥,> then {a,,..., x,}
and {y,, ..., ¥,} span the same subspace of V, and {y,, ..., ¥,} is an orthog-
onal set (some of the y; may be 0).

4. Enumeration operators

We modify elementary formal systems so that they may accept inputs
as well as produce outputs.

Some notation. Suppose U is the structure <<, #,, ..., Z,.> and #
is some relation on /. We write <2, Z) for the structure (s« y Ry eee
-ery &y, #). Suppose E is a set of axioms for an elementary formal system
over %, and A is a predicate symbol. We write EtyAx to mean there is
a derivation of Ax from F over %. Then {x| EtyAx} is the relation which 4
represents in the elementary formal system (with axioms) F over 9.

Now, let A be some structure (¥, #,, ..., #,>, fixed for the rest
of this section. Suppose 2 is some n-place relation on <. Let F be an
elementary formal system over the structure (2, #> in which, say, the
predicate symbol P has been assigned to 2. Let @ be an m-place predicate
symbol. Using the axioms E, @ represents a certain m-ary relation on <.
Now suppose we keep E fixed, but change 2 to &', still using P to rep-
resent it. Then ¢ will represent a different relation on <. In this way a
certain operator on &/ is created, which we may symbolize by [Eg). Tt
uses the axioms F, takes whatever P represents as input, and gives what-
ever ¢ represents as output. Formally

[ES)(P) = {x] Bt g, 0%}

[where the predicate symbol P is assigned to #].

We call the maps [Eg] enumeration operators over the structure .

Let Ay be the structure of arithmetic as defined in Example 1 of the
last section. It can be shown that the enumeration operators over An
coincide with enumeration operators as defined in [5].

Let [Eg] be an enumeration operator over the structure % taking
n-ary relations to m-ary relations. That is, P is n-place and @ is m-place.
We call pair (n,m) the order of [E§]. Of course, n, m > 0.

5. The w-rule

We add an infinite-premise rule of derivation to the machinery of el-
ementary formal systems as defined above.

First, we modify the alphabet by adding the additional symbol V.
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Now an atomic formula is a string Px,, ..., 2, where P is n-place and
each z; either is in &, or is ¥. (We similarly modify the notion of pseudo-
atomic formula, and formula.) Otherwise no syntactical changes are
made; instance still means instance over «/; for example.

Intuitively, Pv, V,w is to mean Pv,a,w holds for each ac«.
Now we give rules governing the formal use of 7. We make the restriction
that ¥V may not occur in the conclusion of any axiom schema. And we
add one more rule of derivation.

w-rule: If Pv, V,w is atomie, then
Py, a,w for each a e/
Po,v,w

The notion of an w-elementary formal system is formulated as expected.
Derivations are now well ordered (possibly) infinite sequences, allowing
o-rule applications. Call a relation 2 < 2% w-r.e. over U if it is represent-
able in some w-elementary formal system over 2. Also £ is w-recursive
if both # and & —2 are w-r.e.

Let %y be the structure of arithmetic (Example 1 from §3). In [1]
is a direct proof that, for %y, w-r.e. is the same as II} and w-recursive
is the same as hyperarithmetic. More generally, in any structure, w-recur-
sive coincides with hyperelementary, as defined in [4].

The definition of enumeration operator over U may be modified
in the obvious way to define the notion of w-enumeration operator over .
We skip the details.

6. Basic structural properties

The collection of enumeration operators over a structure A= {7, %, ...
«evy &> and the collection of w-enumeration operators over U have certain
common structural features, which we now develop. We note that the
w-rule plays no role in many of our proofs below, so we can treat recursion
and o-recursion theories simultaneously.

THEOREM 6.1. Suppose I and J are (w) enumeration operators over U,
I is of order {m,m)> and J is of order {m, p>. Then the composition JoIL
is also an (w) enumeration operator over U, of order {n, p).

Proof. Say I = [E4] and J = [Ef]. We may suppose without loss
of generality that E and E' contain no predicate symbols in common
other than R,, ..., By. (Call E and E’ disjoint if this is the case.) Consider
the (w) enumeration operator [F3] where ¥ consists of

the axioms of E,

the axioms of E’,

Bx — Cx.

It is easy to see that JoI = [F4].
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DEFINITION. Let I and J be (w) enumeration operators over %, both
of order {n, m). We define two maps as follows:
(INd)(2) = I(Z)NJ (#),
(IVd)(P) = I(P)VJ(P).
THEOREM 6.2. The collection of (w) enwmeration operators over U is
closed under N and U.
Proof. Say I = [E4] and J = [Ef] where F and E’ are disjoint.
Then Ind = [F%] and IUd = [FS] where F consists of
the axioms of FE,
the axioms of ',
Gx — Az,
Gz - Cx,
By - Dy -~ Hy,
By— Ky,
Dy —- Ky. :
DEFINITION. Let I be an (w) enumeration operator of order {n,m)
and let J be an (w) enumeration operator of order <n, m’> over A. By I xJ
we mean the map of order {m, m+m’> given by

I XJINP) = L(P)x J(P). ‘
THEOREM 6.3. The collection of (w) enumeration operators over U
s closed under X.
DEFINITION. P* is the projection operator of order {n,n —1) defined by
PYP) = &1y vy Bpodl QY)Y 1y ooey Byy) € P
D" is the dual projection operator of order {n,n—1) defined by

Dn(g) = {<w17 seey wn—1>l (Vy)<yy L1y seey &, —1> Eg’}"
THEOREM 6.4. 1) P" {s both an enumeration and an w-enwmeration

operator over .

2) D" 48 an w-enumeration operator over .

DEFINITION. Let S be a map from /" to &%, 8 is a sequential operator
if, for every j <k, either

1) there is an ¢ < » such that for every & € /*, the jth term of S(x)
is the ith term of @, or

2) there is some ¢ € & such that for every ® e ™ the jth term of
S(x) is e.

DEFINITION. Let §: o™ — /% be a sequential operator. By S7':
power set («/*) — power set (&™) we mean the map given by '
8 HR) = {v e S(v)e%}.

We call such a map an explicit transformation.
THEOREM 6.5. Every explicit transformation is an (w) enumeration operaior.
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THEOREM. 6.6. Each (w) enumeration operator I over U is monotone,
that is, &/ = # = I(&) < I(B).

THEOREM 6.7. Fach enumeration operator I over A is compact, that is,
v e I(?) iff for some finite F = P, v e I(F).

7. The first recursion theorem

THEOREM 7.1. Let I be an (w) enumeration operator of order {m,n).
I has a minimal fized point which is (o) r.e.
Proof. I is monotone. Set
Ir =I1(U I%).

B<a

By standard monotone operator arguments (see [4]) I® = [ JI°isthe
«

minimal fixed point of I. We show it is (w) r.e. [Remark: If I is an enumer-
ation operator, it is compact, in which case I* is simply I”.]

Say I = [E4]. (We note that, in ¥, A can not occur in the conclusion
of any axiom.) By definition,

xel(?) itf ErgyggaBe.
Now let E' = Ev{Bx — Ax} (that is, E' is E-“output = input”).
We claim B represents I® using E’'. That is,
I* = {x| E'tyBx}.
1) For each a, we show
I* c {x| E'tyBx}
by induction on a. Well, suppose
I=® < {x| E'lyBx}
[where I<® = |J If so that I* = I(I<%)].
B<a

Also suppose a € I° then @ € I(I<°), so, by definition
(*) Bt 1<0,Ba.
By induction hypothesis, for alla € I<*, E'tyBa. But then, for all € I<°,
(%) E'tydx.’

By (%) and (sx), since also ¥ < F’,

E'tyBa.

Hence I* < {x| E'tyBx}.

2) I* < {®| E'FyBx}.

This is immediate.

3) {x| E'tyBx} < I™.
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We show this by an induction on the length of derivations from E’
in 9.

Suppose: if Bx is derivable from E’ in < o steps, then x e I*”.

Suppose: Ba is derivable from E’ in a steps. We show a € I*.

Let 2, = {#] Ax occurs before the last line in some (fixed) derivation
from E’ of Baj}.

Let %5 = {#| Bx occurs before the last line in this derivation}.

Now, A occurs in the conclusion of only one axiom in E’, namely
Bx - Az. It follows that '

R4 < Rp.
Also, by induction hypothesis, Zp = I*. Hence
(%) Ryc I™.
Finally, it should be clear that

Bt iy, Ba.
This says
acl(®,).
Then by (*), since I is monotone,
acl(I®)=1.
This concludes the proof.
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