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The variety of semantical approaches that have been invented for logic
programs is quite broad, drawing on classical and many-valued logic, lat-
tice theory, game theory, and topology. One source of this richness is
the inherent non-monotonicity of its negation, something that does not
have close parallels with the machinery of other programming paradigms.
Nonetheless, much of the work on logic programming semantics seems to
exist side by side with similar work done for imperative and functional
programming, with relatively minimal contact between communities.
In this paper we summarize one variety of approaches to the semantics
of logic programs: that based on fixpoint theory. We do not attempt to
cover much beyond this single area, which is already remarkably fruit-
ful. We hope readers will see parallels with, and the divergences from
the better known fixpoint treatments developed for other programming
methodologies.

1 Introduction

A logic program consists of formulas of logic, generally written using some
special, restricted syntax. One ‘runs’ a logic program by asking it questions—
queries—and it is determined, by executing a proof engine, whether or not
these queries follow from the program. Queries may contain free variables, in
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which case the intention is to determine for what values of the variables the
queries follow from the program.

The preceding is a very general description, with much room for maneuver.
A particular choice of syntax can place serious restrictions on programs that
can be written or queries that can be asked. The choice of logic was left open
above. Classical first-order logic is an obvious candidate, but incompleteness
results tell us that, while we may be able to determine a query does follow,
we can not in general tell that it does not, and this affects the treatment of
negation. Consequently, subsystems of classical logic are of interest. In the
other direction, richer systems that permit numeric constraints or allow addi-
tional operators, such as temporal ones, are also of much interest. And finally,
what about a proof engine? Completeness, in the classical sense, may be less
important than efficiency on ‘probable’ queries. Thus a rich variety of systems
fit into the general paradigm of logic programming. Prolog is the most familiar
logic programming system today, though others have been implemented and
experimented with.

The general description of logic programming above makes it clear that it is
related to database query languages. The machinery provided is richer than
is customary in that community, however. One piece of machinery that is
commonly available is negation. In a simple database language, negation is
not a problem (except possibly for efficiency considerations). Either an item
is in a database, or it is not, and these facts can be reported no matter what.
But if a system is built on classical first-order logic, negation can be a serious
issue. Prolog without negation can, in a precise sense, compute exactly the
recursively enumerable relations. If negation is added we would expect to have
complements of recursively enumerable relations as well, and we know this is
impossible. Instead a weaker version of negation is used—negation as failure.
One concludes not X if X is not a consequence.

Negation as failure is inherently non-monotonic. If X is not a consequence
of a particular program, so that not X is a conclusion, then if X is added
to the program, the conclusion not X must be withdrawn. Moreover, it is
not decidable in general that something is not a consequence. As a result of
these considerations, more than one version of negation has been investigated.
Non-monotonic logic is now seen as a close relative of logic programming, and
developments in either area tend to affect both.

Since logic programming involves both logic and programming, it should not
be surprising that several varieties of semantics have been developed for it.
Some follow the model-theoretic approach of formal logic, and some are more
like the fixpoint approach originally developed for imperative and functional
programming. There are also game-theoretic approaches. The overall range of
proposed semantics is vast, and somewhat bewildering.
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In this survey paper we will almost entirely confine the discussion of logic
programming semantics to the fixpoint approach. We will try to emphasize
similarities with semantics developed for other programming paradigms. We
do not mean to be encyclopedic—by now it really would require an encyclo-
pedia. We will confine things to developments that have been of particular
interest to the author. Others will have their own story to tell.

2 Syntax

The simplest of logic programming syntaxes is that of Horn clauses. Prolog
essentially uses these, plus negation, which we will consider later on.

An atom, which logicians call an atomic formula, is an expression of the form
R(t1, . . . , tn), where R is a relation symbol and t1, . . . , tn are terms that are
built up from constant symbols and variables, using function symbols. It is
also convenient to allow false and true as atoms. A literal is an atom, or the
negation of an atom. These are also called positive and negative literals. A
literal is ground if it is what logicians call closed, containing no variables.

A Horn clause is a disjunction of literals with at most one of them positive.
Suggestive notation for the Horn clause A∨¬B1∨. . .∨¬Bn is A← B1, . . . , Bn,
and it is what we use from now on. In this, A is the head of the Horn clause,
and B1, . . . , Bn is the body. If the head is of the form R(t1, . . . , tn), the Horn
clause is said to be about the relation symbol R. The Horn clause← B1, . . . , Bn

is identified with false← B1, . . . , Bn, and A← is identified with A← true. A
program clause is a Horn clause whose head is non-empty—it is allowed that
the body be empty.

Free variables in a Horn clause are thought of as universally quantified. In
particular, any variables in a clause body that do not occur in the clause head
can be thought of as existentially quantified in the body, because (∀x)[A ←
B1, . . . , Bn] and A← (∃x)[B1, . . . , Bn] are equivalent if x does not occur in A.

A logic program is a finite set of program clauses. Think of its members as
joined conjunctively.

In practice, unification plays an essential role in the logic engine of a logic
programming system. But as a first approximation in trying to understand
logic programs semantically it is common to suppress this, using the following
device.

Definition 1 If P is a logic program, an associated set P∗ is constructed as
follows: first, put in P∗ all ground instances of members of P; second, if a
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clause A ← with empty body occurs in P∗, replace it with A ← true; finally,
if the ground atom A is not the head of any member of P∗, add A← false.

P∗ will generally be infinite. It is a convenient fiction that P∗ will do as a
substitute for P and issues of unification can be ignored. It is a practice we
follow throughout this paper.

3 Classical Semantics

The intention is that a logic program, when executed, should answer ‘yes’ to
certain queries—think of a logic program as determining which queries are
true. If a query is not true with respect to a logic program, we will take it as
false, though program execution may not, in fact, be able to tell us that since
logic programs can be used to represent the r.e. relations, which are not closed
under complementation. For now, ‘yes’ is positive information and anything
else is not. We will take up possible approaches to ‘no’ later on.

Definition 2 A valuation is a mapping v from the set of ground atoms to the
set of classical truth values {false, true}, meeting the conditions that v(true) =
true and v(false) = false. We will often refer to a valuation as a two-valued,
or classical valuation, to distinguish it from other kinds introduced later on.

Note 1 It is common in the logic programming literature for a valuation to be
a set of ground atoms, rather than a function. The connection is: identify the
set S of ground atoms with the valuation v that is true on exactly the members
of S. In this paper we consistently take valuations to be functions rather than
sets.

The standard approach in logic programming is to take false as the default—
for a query to be true a reason for it to be so should be implicit in the program.
This manifests itself in two ways. On the one hand, a ground atom A that
is never mentioned in a program should be assigned the value false, and we
have incorporated this by explicitly adding A ← false to P∗. On the other
hand, if a ground atom does appear in a program, and either truth value can
consistently be assigned to it, we should prefer false to true. To ensure this,
we minimize with respect to the following ordering.

Definition 3 The space {false, true} is given the truth ordering false <t true,
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with x <t y not holding in any other case. We use ≤t as usual for <t or =.

≤t
false

true

This ordering is extended to valuations pointwise: v1 ≤t v2 if and only if
v1(A) ≤t v2(A) for all ground atoms A.

Of course this gives the space of truth values, and hence the space of valuations,
the structure of a complete lattice.

Note 2 If S1 and S2 are the sets of ground atoms associated with the valu-
ations v1 and v2 respectively, as described above, then v1 ≤t v2 if and only if
S1 ⊆ S2. Set inclusion is often used in the literature in place of ≤t.

The standard model-theoretic semantics is now easy to describe. It comes
from [41], though in fact it goes back to [37,38]—recommended references are
[28,1,8]. Think of a program clause A← B1, . . . , Bn as another way of writing
the logic formula (B1 ∧ . . . ∧Bn) ⊃ A, and recall, any free variables are to be
thought of as universally quantified.

Definition 4 A model for a logic program P is a classical first-order model
in which each member of P is true. A Herbrand model for P is a model for
P whose domain is the set of closed terms, with an interpretation that makes
each term of the language designate itself in the model.

Recall the definition of P∗, Definition 1. Any model for P is also a model
for P∗. For Herbrand models, the converse is true as well: a Herbrand model
for P∗ is a Herbrand model for P . Herbrand models are particularly simple
to work with, since the domain is fixed and we only need to specify atomic
truth conditions. In effect we can identify Herbrand models for P∗ with val-
uations, which simplifies things considerably. This is what we do from now
on—Herbrand models are valuations.

It can be shown that, among all Herbrand models for a given program there is
a smallest with respect to the ≤t ordering of valuations. This supplies the stan-
dard semantics for the program, and it agrees well with the general intuition
about logic programs and with the behavior of (idealized) Prolog. Moreover,
several other approaches to logic program semantics have turned out to be
equivalent to this one. It is quite firmly established.
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Among all Herbrand models, supported models are singled out for special at-
tention. Essentially the idea is, if a ground atom is true in such a model it must
not be “by accident,” but rather some clause in the program should justify
its truth. Here is one way of characterizing the notion rigorously, coming from
[7], though it does take a detour through logic with infinitely long expressions.

Definition 5 Let P be a logic program and let P∗ be as usual. In P∗, replace
each ground clause A← B1, . . . , Bn with A← (B1∧. . .∧Bn). Next, if there are
several clauses in the resulting set having the same head, A ← C1, A ← C2,
. . . replace them with A← (C1∨C2∨ . . .). Since there could be infinitely many
members with the same head we may wind up with a countable disjunction,
but the semantic behavior of such an item is unproblematic. Call the set that
results P∗∗. In P∗∗ a ground atom A turns up as the head of exactly one
member.

Herbrand models for P are Herbrand models for P∗ are Herbrand models for
P∗∗, and conversely. Now, in P∗∗, replace each occurrence of ← by ≡, logical
equivalence. A supported model for P is a Herbrand model in which all these
equivalences are true.

It is not hard to show that the smallest Herbrand model for a logic program
P is, in fact, a supported model, and hence the smallest supported model.

4 Apt-van Emden-Kowalski semantics

We turn to the central topic of this paper—fixed point approaches. We want to
think of a logic program as a kind of ‘revision operator.’ If a program contains
a clause Q ← P and we believe P to be the case, this clause should force us
to revise our beliefs so that Q is added to them (if it was not already there).
The following single-step operator, from [2], is intended to capture one pass
of such a revision.

Definition 6 Let P be a logic program. An associated mapping TP , from val-
uations to valuations, is defined as follows.

TP(v) = w

where w is the unique valuation determined by the following: for a ground
atom A,

(i) w(A) = true if there is a ground clause A← B1, . . . , Bn in P∗ with head
A such that v(B1) = true, and . . . , and v(Bn) = true.

(ii) w(A) = false otherwise.
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Less formally, this says the following. TP(v) makes a ground atom A true just
in case A is the head of a ground instance of some clause in P , and v makes
the body of that ground instance true.

What we want is a valuation that the program cannot revise away—a fixed
point for the single-step operator. And traditional lattice-theoretic arguments
supply us such. The following has a straightforward proof.

Proposition 7 For any program P the associated operator, TP , is monotone,
that is, v1 ≤t v2 implies TP(v1) ≤t TP(v2).

Now the familiar Knaster-Tarski Theorem, [39], says single-step operators have
smallest (and largest) fixed points. The smallest fixed point of TP coincides
with the smallest Herbrand model of the previous section, and thus supplies
the standard semantics for P . We will call this the Apt-van Emden-Kowalski
semantics, [2,41].

More generally, the valuations v such that TP(v) = v are the supported models
for the program P , while Herbrand models that are not necessarily supported
are those v such that TP(v) ≤t v, the pre-fixed points of TP .

Example 8 Here is a typical example. We will return to it or to variants
of it from time to time. It is intended to recognize the even numbers, and
incidentally, the odd numbers. Numbers are represented as numerals, using
the constant symbol 0 and a successor function symbol s—thus sn(0), where
we have n occurrences of s, represents the integer n.

even(0)←
even(s(x))← odd(x)

odd(s(x))← even(x)

If P is this program, TP has a unique fixed point v, and v(even(sn(0))) = true
if and only if n is even. Analogously for the odd numbers.

If we, somewhat artificially, add

even(x)← even(x)

to the program above, the resulting single-step operator has the same smallest
fixed point, but now the largest fixed point w is different: w(even(sn(0))) = true
for all n, and w(odd(sn(0))) = true for all n except 0.

One way of proving the Knaster-Tarski Theorem is by approximation to the
smallest and biggest fixed points. In the logic programming literature certain
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notation has become standard here. In presenting this we use false and true
for the identically false and identically true valuations, respectively. Also, α is
an arbitrary ordinal, and λ is an arbitrary limit ordinal.

TP↑0 = false

TP↑α+1 =TP(TP↑α)

TP↑λ =
∨
{TP↑α| α < λ}

TP↓0 = true

TP↓α+1 =TP(TP↓α)

TP↓λ =
∧
{TP↓α| α < λ}

One shows the sequence TP↑α converges to the smallest fixed point of TP , and
TP↓α converges to the biggest fixed point.

It is straightforward to show that TP↑α must reach the smallest fixed point
by α = ω—thus the smallest fixed point can have computational significance.
It is also at the heart of proofs that the least fixed point semantics agrees
with many other semantical approaches that have been proposed for logic
programs. On the other hand, the sequence TP↓α can be much more poorly
behaved.

Example 9 Consider the following program.

p(s(x))← p(x)

q(0)← p(x)

The smallest fixed point valuation is, in fact, TP ↑0, and maps every ground
atom to false. This is also the biggest fixed point, but the downward approxi-
mation sequence does not settle on this valuation until stage ω + 1.

Much worse behavior is possible and in general the downward approximation
sequence may not attain a constant value before Church-Kleene ω1. Unfortu-
nately, this bad behavior of the downward approximation sequence becomes an
important problem once an enrichment of the logic programming machinery
is attempted.

5 Negation

Perhaps the most desirable, and most controversial, addition to the basic logic
programming machinery is negation. We have already remarked that, since
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logic programs give us exactly the r.e. relations, a real classical negation cannot
be added. Prolog adds what is called negation as failure—conclude not X if
an attempt to establish X fails. Computationally, this too has its problems,
since there may be infinitely many possible derivations of X to be explored.
Negation as finite failure has been proposed as a more reasonable substitute—
loosely, conclude not X if there are a finite number of possible ways to establish
X, and all fail. One must understand, Prolog includes a version of negation
that is operationally well-defined. The problem is to make semantic sense of it.
And one must accept that when stated in this generality, the problem may not
be solvable. It may be that Prolog’s negation has a simple, intuitive meaning
only for certain programs. At any rate, we will continue with our convenient
habit of introducing simplifying assumptions, in order to get somewhere at
all.

As a first approach, consider allowing negative (ground) queries, but don’t
allow negation to appear in programs themselves. In effect, keep the same
notion of logic program that we used above, but require meaningful ‘yes’ and
‘no’ answers to queries.

It is here that the downward approximation sequence comes into play. It has
been shown that, for a computationally meaningful notion of finite failure, the
semantic counterpart is TP↓ω [7,2]. That is, a no answer should be given to
a query Q if TP↓ω (Q) = false. Unfortunately, TP↓ω is not generally a fixed
point of TP . Better behaved, semantically, is the largest fixed point of TP ,
which is TP↓α for some ordinal α that can be strictly bigger than ω. This too
corresponds to an interesting notion of negation, but one that is generally not
computable—the set of ground atoms falsified in the biggest fixed point of TP
can be Π1

1 complete [5]. We thus have a choice between unnatural semantics,
or uncomputable semantics. We choose to work with the largest fixed point of
TP , rather than TP↓ω, and hope that we can confine our attention to programs
for which non-computability issues do not arise.

Allowing negative queries, but keeping unchanged the notion of logic program,
does not go far enough. It is desirable to allow negation to enter into programs
themselves.

Definition 10 A general program clause is an expression of the form

A← L1, . . . , Ln

where L1, . . . , Ln are literals and not just atoms, and A is an atom. The body
of a general program clause can be empty. A general logic program is a finite
set of general program clauses.

Note that every logic program is also a general logic program. We continue
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our practice of working with with the family of ground instances of the mem-
bers of general logic programs, instead of explicitly invoking unification. The
definition of P∗ extends to general logic programs directly, Definition 1. We
recognize that this avoids some fundamental issues.

If P is a general logic program, the definition of the single-step TP operator
can be extended to cover it in a straightforward way—essentially we require
that v(not X) have the truth value ¬v(X), and then keep the wording of
Definition 6 intact. Unfortunately, this does not yield an adequate treatment.
For one thing, the existence of smallest and biggest fixed points is no longer
guaranteed since the presence of negations destroys monotonicity. What is
worse, it is easy to see that for so simple a program as P ← not P , no
fixed point exists at all. The approach that worked so well for logic programs
without negation clearly needs some modification.

A guide to modification is, in fact, in front of us. For a logic program (without
negations), two fixed points, not one, play a role—the smallest and the biggest
of the fixed points of the associated single-step operator. This suggests the
introduction of a partial valuation: if the two extreme fixed points agree on a
classical truth value for the ground atom A, take that to be the value of A, and
otherwise the value of A is undefined, or ⊥. (See [6] for the logic background.)
Consider the following extremely simple logic program P : P ← P . If v is
the smallest fixed point of TP and V is the biggest, we have v(P ) = false but
V (P ) = true. Then, in the partial valuation semantics just proposed, we should
take P to have ⊥ as its value, with respect to program P . Of course, this is
different than the value assigned by the Apt-van Emden-Kowalski semantics,
under which P is false. If we are to move towards such a partial semantics,
then, we need compensating advantages to offset such shifts in what has come
to be standard.

Definition 11 A partial valuation is a mapping v from the set of ground
atoms to the set {⊥, false, true}, meeting the conditions v(false) = false and
v(true) = true. We often refer to partial valuations as three-valued.

This time we want ⊥ to be the default, not false.

Definition 12 The space {⊥, false, true} is given a knowledge ordering ⊥ <k

false, ⊥ <k true, with x <k y not holding in any other case. Then ≤k is defined
as usual.

≤k
@
@@

�
��

⊥

false true
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The ordering is again extended to partial valuations pointwise: v1 ≤k v2 if and
only if v1(A) ≤k v2(A) for all ground atoms A.

This time the truth values don’t give us a complete lattice, but we do have
a cpo (in fact, a complete semi-lattice) that is quite familiar. The space of
partial valuations inherits these algebraic features.

Note 3 Once again it is common in the literature to work with sets rather
than mappings. A partial valuation is often represented by a disjoint pair of
sets: 〈T, F 〉, T ∩F = ∅. This corresponds to the partial valuation v that maps
members of T to true, members of F to false, and members of neither to ⊥.
If this representation is used, one sets 〈T1, F1〉 ≤k 〈T2, F2〉 if T1 ⊆ T2 and
F1 ⊆ F2. We find taking valuations as mappings to be much more convenient,
and do so here.

A new single-step operator is associated with a general logic program P , usu-
ally denoted ΦP . In Definition 6 for TP , it was specified when an output
valuation assigned true, and if it did not, false was the default. Now we ex-
plicitly specify when both true and false are assigned, and if neither is, ⊥ is
the default.

Definition 13 Let P be a general program. An associated mapping ΦP , from
partial valuations to partial valuations, is defined as follows.

ΦP(v) = w

where w is the unique partial valuation determined by the following: for a
ground atom A,

(i) w(A) = true if there is a general ground clause A ← B1, . . . , Bn in P∗
with head A, such that v(B1) = true, and . . . , and v(Bn) = true.

(ii) w(A) = false if, for every general ground clause A ← B1, . . . , Bn in P∗
with head A, v(B1) = false, or . . . , or v(Bn) = false.

(iii) w(A) = ⊥ otherwise.

Here is a suggestive alternate characterization of both TP and ΦP . Recall
Definition 5 of P∗∗ for logic programs—it extends directly to general logic
programs, and we assume this in what follows. In P∗∗ each ground atom
occurs as the head of exactly one member.

If v is a classical, two-valued valuation, it extends to conjunctions, disjunc-
tions, and negations in the usual truth-functional way. Likewise, if v is a partial
or three-valued valuation, we can still extend v to disjunctions, conjunctions,
and negations, but we must pick which three-valued logic we will be using.
We choose Kleene’s strong three-valued logic, [22]. This is briefly described as
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follows. Negation switches false and true, and leaves ⊥ unchanged. A conjunc-
tion is true if all its conjuncts are true; false if some conjunct is false, and ⊥
otherwise. Disjunction is dual.

Now, here are the alternate characterizations we promised.

Two-valued TP(v) = w, where w is the unique valuation determined by the
following: if A← B is in P∗∗, w(A) = v(B) (where we use classical logic to
evaluate v(B)).

Three-valued ΦP(v) = w, where w is the unique valuation determined by
the following: if A ← B is in P∗∗, w(A) = v(B) (where we use Kleene’s
strong three-valued logic to evaluate v(B)).

Of course when stated in this alternate form, generalizations are more easily
suggested, as we will see later. What is crucial is that appropriate monotonicity
conditions hold, and for partial valuations and the ΦP operator, this is the
case.

Proposition 14 For a general program P, the operator ΦP is monotone with
respect to ≤k: v1 ≤k v2 implies ΦP(v1) ≤k ΦP(v2).

Since we do not have a complete lattice this time, the Knaster-Tarski the-
orem does not hold. Nonetheless, the algebraic structure is rich enough to
ensure that monotone maps have smallest fixed points (though not biggest).
The smallest fixed point of ΦP supplies what is sometimes called the Kripke-
Kleene semantics for a general logic program P (and occasionally the Fitting
semantics), [10], and also see [14,11]. The use of the name Kleene is obvious—
Kleene’s strong three-valued logic is involved. Kripke’s name is less obvious,
but in fact there are close similarities between this semantics and a treatment
of truth for sentences allowing self reference due to Kripke [23]. Indeed, the
underlying mathematics is identical.

The earlier ‘uparrow’ and ‘downarrow’ notation that was used for the TP
operator is partly carried over to the present setting. Let us use ⊥ for the
partial valuation that is identically ⊥ on all ground atoms.

ΦP↑0 =⊥
ΦP↑α+1 = ΦP(ΦP↑α)

ΦP↑λ =
∨
{ΦP↑α| α < λ}

Here, as before, λ is an arbitrary limit ordinal, but now the least upper bound
operation is with respect to the ≤k ordering rather than the ≤t ordering. There
is no corresponding ‘downarrow’ version, since there is no lattice top at which
to start. Still, the sequence ΦP↑α converges to the least fixed point of ΦP , as
expected.
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If P is a logic program, not a general logic program, i.e., if it does not involve
negation, then both the Apt-van Emden-Kowalski semantics and the Kripke-
Kleene semantics apply, and they are not in general the same. The simple
program P ← P is a good example. In the Apt-van Emden-Kowalski seman-
tics for this program, P receives the value false, but in the Kripke-Kleene
semantics, P receives the value ⊥. Which is the ‘right’ choice? A good case
can be made for either. A value of false is reasonable because it does not follow
from the information in the program that P should be true, so it should be
taken to be false by default. On the other hand, the program actually gives us
no usable information about P whatsoever so we could say that, as far as this
program is concerned, P should be ⊥—no information. It does not seem pos-
sible to choose between these on any ‘intrinsic’ grounds. Intended applications
probably should decide.

Even though the two semantics differ on programs without negations, they
are not unrelated. As we noted earlier, both the smallest and the biggest fixed
points of TP play a natural role. In fact, the role of these two is folded into
the smallest fixed point of ΦP rather neatly.

Proposition 15 Let P be a logic program (without negations). Also, let vk be
the smallest fixed point of ΦP (with respect to ≤k), and let vt and Vt be the
smallest and the biggest fixed points of TP (with respect to ≤t). Then, for a
ground atom A,

(i) If vt(A) = Vt(A), then vk(A) has this common value.
(ii) If vt(A) 6= Vt(A), then vk(A) = ⊥.

There are some unfortunate side effects of this otherwise nice-looking proposi-
tion. Since TP↓α may need Church-Kleene ω1 steps to converge to the largest
fixed point of TP it follows (with a little argument) that ΦP↑α may need as
many steps to converge to the smallest fixed point of ΦP . Likewise, there are
programs for which the least fixed point of ΦP is Π1

1 complete. Logic program-
ming is one of the rare programming paradigms where such non-continuity
issues arise naturally. Perhaps rather than devising a more complex seman-
tics, we should impose syntactic restrictions that tell us, “don’t write that
program.”

Howard Blair takes a somewhat different, and quite interesting, position. In a
personal communication he writes, “that is just the sort of program you want
to write when you want to write something that deliberately exhibits the com-
plexity of nondeterministic computational processes that emphasize fairness
or infinitely branching nondeterminism. Both have associated Π1

1 complete
decision problems. For example, in the case of infinitely branching nonde-
terminism, there is a strong halting problem (does the process halt on all
computation paths?) which is Π1

1 complete, and this latter decision problem
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is the source of the Π1
1 completeness of the Herbrand rule’s failure set.”

On the other hand, when it comes to logic programs with negations, the
Kripke-Kleene semantics wins by default. Since such programs do not give us
monotonic TP operators, the Apt-van Emden-Kowalski approach simply does
not apply. As a simple example, consider the program consisting of P ← not P .
With only the classical two truth values available, a single-step operator would
never settle on a value for P—we would have a period two oscillation. But the
Kripke-Kleene semantics simply assigns P the value ⊥, as one would expect.
Here is another, more complex example, modifying Example 8.

Example 16 Once again, numbers are represented as numerals, using a con-
stant symbol 0 and a successor function symbol s. Let P be the following pro-
gram.

even(0)←
even(s(x))← not even(x)

(This program even behaves properly in Prolog.) The least fixed point of ΦP
assigns even(t) the value true if t is a numeral naming an even number, and
assigns it false if t names an odd number. The value ⊥ is never assigned—we
actually have a two-valued map here. In fact, for this program, ΦP↑α reaches
its smallest fixed point in ω steps. All this good behavior will be of significance
later on.

In order to deal with some of the problems of the Kripke-Kleene semantics
mentioned above, Kunen introduced a modification [25,24,26,27]. Suppose we
cut off the approximation sequence at ω—but this must be done carefully, it
does not mean working with ΦP↑ω. Here is what Kunen showed.

Proposition 17 There is a model M such that, for a ground sentence A, A is
true in M if and only if A is true in ΦP↑n for some integer n < ω. Moreover,
truth in M is recursively enumerable.

This provides us with quite a plausible semantics for P , even though it is
not quite a fixed point semantics. But it is important to understand what is
not being said here. If P (x) is atomic, it could happen that, for each ground
instance P (t), there could be some integer n such that P (t) is true in ΦP↑n.
But n may depend on t, so for no integer n would every instance be true
in ΦP ↑n, and hence the universal quantification of P (x) would not be true
in any ΦP ↑n either, and thus not in M , although we would expect it to be
true in ΦP ↑ω. To bring this about, M must be non-Herbrand—its domain
must consist of more than just closed terms of the language. This gives it a
flavor that makes it difficult to use in practice, though it has proved useful for
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theoretical investigations.

6 Belnap’s Logic

The ordering ≤k on Kleene’s three truth values does not give us a complete
lattice. This may or may not be seen as a disadvantage, but it does suggest
investigating what happens when a top is added. Belnap [4] introduced a four-
valued logic that extends that of Kleene, with the explicit intention of pro-
viding a logic in which inconsistencies can be represented without everything
becoming a consequence. It turns out that Belnap’s logic allows inconsisten-
cies to appear in logic programs in a useful way as well. And it has other
consequences of considerable interest, as we discuss below.

Belnap observed that his four truth values have two natural orderings. Both
are shown in the following diagram.

≤t
-

6
>
@
@@

�
��

truefalse

⊥

�
��

@
@@

≤k

The vertical knowledge ordering ≤k extends the one we were using with the
three truth values of Kleene. Belnap’s four truth values can be thought of as
sets of ordinary truth values, so that ⊥ = ∅, false = {false}, true = {true}, and
> = {false, true}. If we do this, ≤k becomes simply ⊆. The horizontal truth
ordering ≤t is, perhaps, less familiar. It can be thought of as a more-true-or-
less-false ordering. Again taking Belnap’s values as sets of classical values, ⊥
is less false than false because it does not contain false, while false (as a set)
does. Likewise > is more true than false, because it contains true while the
set false does not. In each case, a move to the right corresponds to dropping
false as a member, or adding true.

Both orderings, ≤t and ≤k, give us a complete lattice. Let us use ∧ and ∨ for
meet and join with respect to ≤t, and ⊗ and ⊕ for meet and join with respect
to ≤k. The notation ∧ and ∨ is deliberately suggestive. When restricted to the
two truth values false and true, they are the usual classical connectives, while
when restricted to false, true, and ⊥ they are the strong Kleene connectives.
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The ⊗ and ⊕ operations are less familiar. ⊗ is often read as consensus and
⊕ as gullability. They play a role when conflicting classical truth values are
involved.

There is a natural notion of negation—a left-right inversion. Set ¬false = true,
¬true = false, ¬> = >, and ¬⊥ = ⊥. Again, when restricted to the classical
or the Kleene values, we get the corresponding negations of those logics.

Finally, though two orderings have been introduced, they are most decidedly
not independent. We have four binary operations: ∧, ∨, ⊗, and ⊕, and thus
12 possible distributive laws. All of them hold [19].

Now we can define four-valued valuations in the obvious way, as maps from
ground atoms to the space of Belnap truth values, again requiring v(false) =
false and v(true) = true. Both orderings, ≤t and ≤k, can be extended to valu-
ations in the usual pointwise fashion. Also the action of four-valued valuations
can be extended to all ground formulas: set v(X ∧ Y ) to be v(X)∧ v(Y ), and
so on. Notice that this even allows us to have ⊗ and ⊕ in formulas, if desired.
Next, a single-step operator can be defined, and it is easiest to base this on
the alternate characterizations of TP and ΦP given earlier. We continue to use
Φ to denote the operator.

Definition 18 Let P be a general logic program, and let P∗∗ be as in Defi-
nition 5, extended to allow negated atoms in clause bodies. Now, ΦP(v) = w
where w is the unique valuation determined by the following: if A ← B is in
P∗∗, w(A) = v(B) (where we use Belnap’s logic to evaluate v(B)).

It is simple to check that ΦP is monotone with respect to the ≤k ordering. Now
the usual Knaster-Tarski theorem gives us smallest and biggest fixed points.
In fact, the smallest fixed point is the same as the smallest fixed point we got
when using the Kripke-Kleene semantics. The biggest one is something new
of course [12,13].

There are two orderings available now, not one. If P has no negations, ΦP will
also be monotone with respect to the ≤t ordering and so, by Knaster-Tarski
again, there will be smallest and biggest fixed points relative to ≤t. It is not
hard to check that, for P without negations, the smallest fixed point of ΦP
with respect to ≤t is classical (that is, the only truth values assigned to any
ground atom are false and true, and in fact, is the same as the smallest fixed
point of TP assigned by the Apt-van Emden-Kowalski semantics. Similarly for
the biggest fixed point with respect to ≤t.

Earlier we noted an important fact connecting the Apt-van Emden-Kowalski
and the Kripke-Kleene semantics: for P without negations, if the smallest and
biggest fixed points of TP agree on a value for a ground atom A, the smallest

16



fixed point of the three-valued operator ΦP also assigns that value; and if the
smallest and biggest fixed points of TP do not agree, A is assigned ⊥ by the
smallest fixed point of ΦP . Now, if we move to the four-valued setting this fact
becomes dramatically nicer to state.

Proposition 19 Let vt and Vt be the smallest and biggest fixed points of the
four-valued operator ΦP with respect to the ≤t ordering, where P is a logic
program without negations. (Recall that these fixed points coincide with the
smallest and biggest fixed points of the operator TP .) Likewise let vk and Vk
be the smallest and biggest fixed points of ΦP with respect to the ≤k ordering.
The result mentioned in the previous paragraph becomes the following simple
formula:

vk = vt ⊗ Vt

But further, we also have the following items
Vk = vt ⊕ Vt
vt = vk ∧ Vk
Vt = vk ∨ Vk

Thus under circumstances where all four fixed points exist, that is, when nega-
tions are not involved, all four are closely intertwined. Relationships between
the two and the three-valued semantics are really of a general algebraic nature.

Finally, the addition of a fourth truth value does more than simplify the al-
gebra. We can now create a more general notion of logic program, allowing
inconsistencies. If an inconsistency arises, that is, if > is assigned as a truth
value, the program can still behave well on parts not involving the incon-
sistency. By explicitly allowing ⊕ and ⊗ in program bodies, as well as the
eliminable ∨ and ∧, we give the programmer considerable freedom to specify
what action should be taken in the presence of an inconsistency [12].

7 Stable Model Semantics

When logic programs without negation are considered, the Apt-van Emden-
Kowalski semantics takes false as the default, minimal, truth value. Extending
semantics to allow negation shifts this to ⊥ as the default. Is it possible to
treat negation, and still take false as the default? This is a small part of
the motivation behind stable model semantics. Stable models arose in the
investigation of non-monotonic logic, and were transferred from there to logic
programming, where they found a natural home [18,9]. In this section we
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sketch the original Gelfond-Lifschitz approach, then in the next we show how
this transfers to the four-valued setting.

Let us return to the setting of general logic programs, made up of general
program clauses of the form A← L1, . . . , Ln, where A is atomic and L1, . . . ,
Ln are literals. Conjunction and disjunction do not explicitly appear. Now,
the idea is to start with a general program P , and a candidate for a classical
Herbrand model M , and use M to transform the program into a new one
without negations, PM . Since the transformed program has no negations, it
has an Apt-van Emden-Kowalski semantics. If that agrees with the model M
with which we began, then M is a stable model. We have not yet given the
program transformation details, but even without them the following is clear.
There is no guarantee that stable models exist, or are unique, and the definition
suggests no way of approximating to them. Still, God is in the details, so let
us proceed with them.

Definition 20 Let v be a classical, two-valued, valuation, let P be a general
logic program, and let P∗ be as usual. The following is the Gelfond-Lifschitz
transformation. Modify P∗ as follows:

(i) If v(A) = true, remove from P∗ any general clause that has not A in its
body.

(ii) Next, delete all negative literals from the remaining clause bodies. (If this
deletes the entire body of a clause, replace it with true.)

Call the resulting set of ground clauses Pv.

The idea behind 1 is obvious: if v is our candidate for a model, and it says
we have A, then any clause which requires not A for its application is useless
and can be removed. After this is done, if not B occurs in a clause body, it
must be that v(B) = false, so if v is our candidate for a model, we can take
not B for granted, so we may as well delete it and concentrate on the rest of
the clause body.

Definition 21 For a general logic program P, Pv is a set of (ground) positive
clauses, so TPv is monotone, and has a least fixed point. If that least fixed point
is v, then v is a stable model.

Example 22 Here is the most typical example of stable model semantics. Let
P be the following program:

A← not B

B ← not A

Take v to be the valuation such that v(A) = true and v(B) = false. Since
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v(A) = true, step 1 of the Gelfond-Lifschitz transformation process causes
us to delete the second clause above. Then step 2 removes not B from the
body of the first clause. We are left with Pv, consisting of the single clause
A ← true. In the Apt-van Emden-Kowalski semantics for this, A is true and
B is false—we get v again. Thus v is a stable model.

In a similar way, w is also a stable model, where w(A) = false and w(B) =
true. These are the only two stable models, and they are incomparable with
respect to ≤t—neither is least.

In the example above, the two stable models are both minimal. This always
happens: stable models are minimal. Therefore if there are several stable mod-
els, they must be incomparable.

For a program having no negations, the unique stable model will also be the
least fixed point of its T operator, since the program transformation process
changes nothing. Thus stable model semantics fills the requirement of extend-
ing the Apt-van Emden-Kowalski semantics, taking false as the default, and
supplying meanings for at least some programs with negations. Unfortunately,
as we noted earlier, stable models need not exist (A← not A is an example),
and if stable models exist there need be no favored one, as we saw above. We
return to these issues in the next section.

8 Stable Models, Generalized

Przymusinski generalized the notion of stable model to allow partiality, or
three-valuedness, calling the result stationary model semantics [33,32,34]. We
will continue to use the term stable here, and when it is necessary to distin-
guish, we will refer to two-valued, three-valued, or four-valued stable models.
Even though Przymusinski presents a three-valued semantics, he keeps the
idea of false rather than ⊥ as the default. It solves the problem of programs
having no stable model, since one is always guaranteed to exist. It also solves
the problem of some programs having many stable models, since there is one
that is, in a certain sense, minimal. This minimal stable model was char-
acterized in more than one way—van Gelder, Ross and Schlipf [43,44] gave
a construction that led to its standard name, the well-founded model. Van
Gelder gave an alternating fixpoint construction [42]. And Pryzmusinski gave
yet another construction that established its minimality [33].

The investigation of stable models fits well with the four-valued approach
presented earlier. In addition, extracting the algebraic features behind the
constructions makes it clear that they are really quite general. We sketch the
four-valued version now, so for the rest of this section the underlying logic is
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Belnap’s, as presented in section 6. Programs are general logic programs, and
we can even allow ⊗ and ⊕ to appear in program bodies, if desired.

For a general program P the operator ΦP is monotonic with respect to ≤k,
but it is generally not with respect to ≤t. This is the source of the difficulties
in taking false as default. The key to the solution is to modify the single-
step operator so that the role of negation can be isolated. We introduce a
two-input single-step operator ΨP(v, w) with the idea that input v be used
to supply values to positive literals in clause bodies, and input w be used to
supply values to negative literals. Apart from this separation of inputs, the
output of Ψ is calculated in essentially the same way that the output of Φ
was.

Definition 23 Let v and w be two four-valued valuations, mappings from
ground atoms to Belnap’s four truth values. We define a pseudo-valuation
(v4w), which is a mapping from ground literals to Belnap’s space, as follows.
For a ground atom A,

(v4w)(A) = v(A)

(v4w)(not A) =¬w(A)

The action of a pseudo-valuation is extended to more complicated ground for-
mulas, involving ∧, ∨ (and possibly ⊗ and ⊕) in the expected way, using the
various operations of Belnap’s logic.

Now, here is the definition of the two-input single-step operator.

Definition 24 Let P be a general logic program. ΨP(v, w) = u where u is the
unique valuation determined by the following: if A ← B is in P∗∗, u(A) =
(v4w)(B).

The following items are straightforward to prove, and are the key to what
follows.

Proposition 25 For a general logic program P:

(i) ΦP(v) = ΨP(v, v).
(ii) ΨP(v, w) is monotone in both v and w, with respect to ≤k.

(iii) ΨP(v, w) is monotone in v, with respect to ≤t.
(iv) ΨP(v, w) is anti-monotone in w, with respect to ≤t (that is, if w1 ≤t w2

then ΨP(v, w1) ≥t ΨP(v, w2)).

The entire of the rest of this section follows from the items in the Proposition
above, without any further reference to logic programming details. That is,
the rest of this section consists of general facts about operators on Belnap’s
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logic, and these facts are applicable to any programming paradigm meeting
the monotonicity/anti-monotonicity conditions of Proposition 25.

Since ΨP is monotonic in its first input, with respect to ≤t, and four-valued
valuations are complete lattices with respect to ≤t, the following definition is
meaningful.

Definition 26 Let P be a general logic program. We define a single-input
derived operator, Ψ′P as follows.

Ψ′P(w) = the least fixed point, with respect to ≤t, of (λv)ΨP(v, w)

Now we can give a simple characterization of stable models—but recall, we
are in a four-valued setting.

Definition 27 A four-valued stable model for general program P is any fixed
point of the derived operator Ψ′P .

This definition relates to earlier work in the following way. Stable models in
the Gelfond-Lifschitz sense are the fixed points of Ψ′P that are two-valued, i.e.,
that never take on ⊥ or > as values. Stationary models in the Przymusinski
sense are the fixed points of Ψ′P that are three-valued, i.e., that never take on
> as a value.

The following are direct lattice-theoretic consequences of the Definition and
Proposition 25.

Proposition 28 Let P be a general logic program.

(i) If Ψ′P(v) = v then ΦP(v) = v.
(ii) Ψ′P is monotone with respect to ≤k.

(iii) Ψ′P is anti-monotone with respect to ≤t.

The first item above essentially says that stable models must be (supported)
models. Since four-valuations constitute a complete lattice with respect to ≤k,
the second item above guarantees that stable models exist. In particular, there
is a smallest one with respect to ≤k. It is called the well-founded model. The
present characterization of it is not the original one of van Gelder, Ross and
Schlipf, but is due to Przymusinski. In general, the well-founded model need
not be two-valued. The program A ← not B, B ← not A, discussed earlier,
has two two-valued stable models, but in the well-founded model both A and
B evaluate to ⊥.

The third item above led van Gelder to a most interesting characterization of
the well-founded model, using what he called an alternating fixpoint approach.
It is rather easier to present this approach in our algebraic setting. The main
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tool is the following, which can be derived from the Knaster-Tarski theorem
after observing that if f is anti-monotone, then f 2 is monotone.

Proposition 29 Let f be anti-monotone on a complete lattice. Then f has
a unique pair of extreme oscillation points, a and b. By this we mean the
following:

(i) a ≤ b;
(ii) f(a) = b and f(b) = a;

(iii) If f(x) = y and f(y) = x then both x and y are between a and b in the
lattice ordering ≤.

This proposition is applicable to a derived operator Ψ′P , which must be anti-
monotone with respect to ≤t—such an operator must have extreme oscillation
points. Now we have the following remarkable fact [15].

Proposition 30 Let P be a general logic program, and let vt and Vt be the
extreme oscillation points of Ψ′P , with respect to ≤t. Also let vk and Vk be the
smallest and biggest fixed points of Ψ′P , with respect to ≤k. (Recall, vk is the
well-founded stable model). Then

vk = vt ⊗ Vt

So we have a second characterization of the well-founded model as the consen-
sus of extreme oscillation points. But, we also have the following items

Vk = vt ⊕ Vt
vt = vk ∧ Vk
Vt = vk ∨ Vk

This can be summarized in the picture of Figure 1.

All
Stable
Models

Vt = vk ∨ Vk
oscillation point

fixed point
Vk = vt ⊕ Vt

fixed point
vk = vt ⊗ Vt

oscillation point
vt = vk ∧ Vk

Fig. 1. Distribution of stable models
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9 Bilattices

Belnap’s four-valued logic is the simplest of a whole family of similar structures
called distributive bilattices, due to Matt Ginsberg [19]. All the results in pre-
vious sections that made use of Belnap’s logic extend to arbitrary distributive
bilattices with essentially no changes in proofs. And the more general struc-
tures provide a natural setting for useful extensions of the logic programming
paradigm.

Definition 31 A pre-bilattice is a structure B with two partial orderings, ≤t
and ≤k, each making B a lattice with a top and a bottom. B is complete if
each partial ordering makes B a complete lattice.

In a pre-bilattice, think of ≤k as a knowledge, or information, ordering, and
≤t as a degree of truth ordering, as in Belnap’s logic. We continue to use ⊗
and ⊕ for meet and join with respect to ≤k, and ∧ and ∨ for meet and join
with respect to ≤t. We also continue to use ⊥ and > for bottom and top with
respect to ≤k, and false and true for bottom and top with respect to ≤t.

Definition 32 A distributive bilattice is a pre-bilattice in which all 12 dis-
tributive laws hold. An infinitely distributive bilattice is a complete pre-bilattice
in which all infinitary, as well as finitary, distributive laws hold.

Belnap’s four-valued logic is a distributive bilattice (even an infinitely dis-
tributive one, since it is a finite structure). The set of mappings from ground
atoms to a distributive (or infinitely distributive) bilattice inherits a distribu-
tive (or infinitely distributive) bilattice structure, when pointwise orderings
are imposed. We assume this throughout.

There is a standard method of constructing bilattices, due to Ginsberg, that
is quite suggestive. Let L1 and L2 be two distributive lattices with bottoms
and tops. Think of L1 as a way of measuring evidence for propositions, and
L2 as a way of measuring evidence against. For instance, in an experimental
science, evidence for could be a probability measure, representing degree of
confirmation, while evidence against could be, simply, {false, true}, since one
counter-experiment is enough to invalidate a theory. Now, take as the domain
of a bilattice the set L1×L2. Thus each member of the bilattice simultaneously
encodes evidence for and evidence against. Give L1 × L2 the following two
orderings.

〈a, b〉 ≤k 〈x, y〉 iff a ≤ x and b ≤ y

〈a, b〉 ≤t 〈x, y〉 iff a ≤ x and y ≤ b
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(Here ≤ denotes the ordering of L1 or L2, as appropriate.) The ≤k ordering
considers an increase as meaning both kinds of evidence have increased. The
≤t ordering considers an increase as meaning the evidence for increased, but
the evidence against went down.

If we take L1 = L2 = {false, true} we get Belnap’s four-valued logic (isomor-
phically, of course). If we take L1 = L2 to be sets of experts, ordered by inclu-
sion, we get a bilattice capable of dealing with information from more than one
source. If we take L1 = L2 = [0, 1], we get a ‘fuzzy’ bilattice—appropriate for
the extensions to logic programming proposed in [36,40]. Many other examples
are available. Ginsberg’s Representation Theorem says that every distributive
bilattice is isomorphic to one constructed in the way above. And every in-
finitely distributive bilattice similarly arises using this construction, starting
with lattices satisfying infinitary distributive laws.

In the construction above, if L1 = L2 an obvious notion of negation is available:
¬〈a, b〉 = 〈b, a〉. That is, we switch around the roles of positive and negative
evidence. The representation theorem extends directly to distributive bilattices
with negation.

Central Fact Every result stated earlier for logic programming semantics
based on Belnap’s four-valued logic extends to any infinitely distributive bi-
lattice with negation, with no essential changes in the proof.

As a matter of fact this result can be strengthened to what are called in-
terlaced bilattices, in which distributivity conditions are weakened [3]. Also,
for many bilattices, natural subsystems can be extracted that are analogous
to the classical sublogic or the Kleene three-valued sublogic of Belnap’s four-
valued logic. (One uses an operation called conflation for this—it plays the
role for ≤k that negation plays for ≤t. We do not give details here, see [16].)
These generalizations of the classical or Kleene logics continue to have many
of the key properties of the logics they generalize, and are interesting objects
of study in themselves.

10 Metric Spaces

Consider again the program of Example 16, which we repeat here for conve-
nience.

even(0)←
even(s(x))← not even(x)
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This, call it P , is a well-behaved program that still presents some problematic
features. We cannot use the Apt-van Emden-Kowalski approach on it, since
TP is not monotone with respect to ≤t. Either a three-valued or a four-valued
approach provides us with a semantical meaning. It guarantees that ΦP has a
smallest fixed point with respect to ≤k, but this could involve the value ⊥. It
guarantees that the sequence ΦP↑α converges to the smallest fixed point, but
this could require as many as Church-Kleene ω1 steps. As a matter of fact,
the smallest fixed point of ΦP is two valued—it does not involve ⊥. Further,
it is the only fixed point, hence is the unique stable model as well. And finally,
the sequence ΦP↑α converges in ω steps. So the Kripke-Kleene semantics for
this program P happens to have many nice features, but we don’t get them
from basic theory; we need extra work. In this case, induction arguments are
needed to go beyond what the general semantical arguments provide.

This example provides some of the motivation for the introduction of tech-
niques based on metric space methods into the semantics of logic program-
ming. Before giving a general discussion, let us apply metric methods directly
to this example. Suppose we define a distance function on the space of valua-
tions. Actually, we can define it for two-valued or three-valued or four-valued
valuations—the definition reads the same in any case.

Distance Definition If v and w are different, set d(v, w) = 1/2n, where n is
that integer such that v(even(sn(0))) 6= w(even(sn(0))), but v(even(sk(0))) =
w(even(sk(0))) for all k < n. And set d(v, v) = 0.

It is straightforward to check that this definition makes the space of valuations
into a complete metric space (whether we consider two-valued, three-valued,
or four-valued valuations).

Suppose we consider the space of two-valued valuations for the moment. If
valuations v and w agree on even(sk(0)), it is immediate from the single-step
operator definition that TP(v) and TP(w) will agree on even(sk+1(0)). It follows
that if the distance between v and w is 1/2n, then the distance between TP(v)
and TP(w) is 1/2n+1, and thus

d(TP(v), TP(w)) ≤ 1

2
d(v, w)

and so TP is a contraction.

Now by the Banach Contraction Theorem, TP has a unique fixed point. The
same thing applies to ΦP , hence there is only one fixed point, no matter which
semantics is applied. Thus there is a unique stable model. Further, the Banach
Contraction Theorem also tells us that we approximate to the unique fixed
point in ω steps, independently of starting point.
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A space of valuations generally will have many possible metrics on it. A single-
step operator will not be a contraction with respect to all of them—the right
one must be found. Metrics do not come supplied with a program. In some ways
they are like loop invariants in imperative programming, and the suggestion
with them is the same as with loop invariants: have a metric in mind when
designing a program. That is, have in mind what a single step of the program
simplifies.

Logic programmers are not used to thinking in terms of metrics, of course.
Here is a notion that is more familiar.

Definition 33 A level mapping is a function from ground atoms to natural
numbers. We use the notation: |A| is the level of ground atom A.

Associated with a level mapping is a metric: set d(v, w) to be 1/2n where
valuations v and w differ on some ground atom of level n, but agree on all
ground atoms of lower levels. This always gives us a complete metric space.
The metric used in the even number example above is simply

|even(sn(0))| = n.

From now on we define metrics using level mappings, rather than doing so
directly.

Example 34 Consider the following game program. We have some game in
mind, and for it, impossibility of moving constitutes loosing. We assume that
each state of the game is encoded by a term t of the language—if the game
is chess, for instance, a state consists of the positions of all pieces, the game
history, and who is to move next. We also assume there are only a finite
number of different possible states.

Now, the program begins with a list of clauses

move(a, b)←
move(c, d)←

...

enumerating all possible legal moves of the game. And there is one additional
clause:

win(x)← move(x, y), not win(y)

If we assume the game has no loops, then the single-step operator for this
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program has a unique fixed point, and this can be verified as follows.

Define a level mapping by setting |win(p)| to be the height of the game tree with
root p—the assumption that the game has no loops gives us finiteness of game
trees, so this is well-defined. Arbitrarily set |move(t, u)| to be 1, independently
of t and u.

Let d be the metric that corresponds to this level mapping. With respect to this
metric, the single-step operator is a contraction—loosely, an application of
the single-step operator amounts to making one move in the game, and hence
shortening the game tree one level.

Despite the success of metric methods with these simple programs, various
problems remain.

Example 35 We elaborate the program of Example 16 a little.

even(0)←
even(s(x))← not even(x)

any(x)← any(x)

Clearly we want the part involving even to behave properly, but the part involv-
ing any should be allowed to have arbitrary behavior. That is, the single-step
operator for this program should have many fixed points, not just one, but they
should all agree on even and differ on any. But once multiple fixed points are
involved, the Banach theorem no longer applies, since it guarantees a unique
fixed point.

Perhaps the simplest generalization of metrics is to pseudo-metrics, which
are like metrics except that the distance between objects can be 0 without
the objects necessarily being identical. Pseudo-metric spaces carry a natural
equivalence relation: call objects equivalent if the distance between them is
0. If a pseudo-metric space is factored using this equivalence relation, the
pseudo-metric induces a true metric on the factor space.

Pseudo-metrics give us the additional machinery we need to handle Exam-
ple 35—in effect we say that valuations can differ on any and it doesn’t matter.
Technically it is convenient to extend Definition 33 first.

Definition 36 A partial level mapping is a function from a subset of ground
atoms to natural numbers. We use the notation: |A| is the level of ground atom
A, if defined.
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A partial level mapping induces a pseudo-metric as follows. If v and w agree
on all ground atoms A for which |A| is defined, set d(v, w) = 0. Otherwise,
set d(v, w) = 1/2n, where v and w differ on some A for which |A| = n, but
agree on all ground atoms having lower levels. This defines a pseudo-metric,
and the factor space defined earlier will be complete, so the Banach theorem
can be used after all. This lets us treat Example 35 quite directly—we omit
details.

Pseudo-metrics, or partial level mappings, also let us deal with programs like
the following.

even(0)←
even(s(x))← not even(x)

triple(0)←
triple(s(s(x)))← not triple(s(x)), not triple(x)

sextuple(x)← even(x), triple(x)

Using partial level mappings, the even and the triple parts of this can be
understood independently by discounting differences on other parts of the
program. Then the sextuple part can be understood by combining results about
even and triple. More complicated examples are possible. In general, pseudo-
metrics seem to be quite a useful tool here.

The application of metric techniques is being extended in several directions.
Seda, by using quasi-metric spaces, shows how both the lattice-theoretic and
the metric approaches can be combined into a single treatment [35]. Khamsi,
Kreinovich and Misane [21] have shown that more powerful metric fixed point
theorems also have natural applications here.

11 Conclusion

There are two important topics that are common in articles on semantics but
that have not yet been mentioned: higher types, and non-determinism. As a
matter of fact, both of these have logic programming variants. And both of
them are susceptible to the approaches sketched above, though work in these
areas is less well-developed.

Existing approaches to higher type logic programming essentially amount to
allowing implications to appear within program bodies, thus permitting a
kind of modular structure [31]. Such embedded implications have behavioral
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similarities with intuitionistic implication, and as such have been investigated
in [29,30]. Either an intuitionistic version of negation, or negation as failure
can be added. If negation as failure is added, a three-valued approach seems
most natural, [20].

Example 37 Suppose we have a directed graph, and we wish to write a pro-
gram that can determine whether there is a path from one node to another.
Here is a logic program, using embedded implications and negation as failure,
for this purpose. Assume each node has a label, a, b, and so on. The program
begins with a list of clauses specifying the graph structure, edge(a, b) ← for
each pair of nodes such that a connecting edge exists. Then, the key item:

path(x, y)← edge(x, z),

not visited(z),

(visited(z)⇒ path(z, y))

The idea is, there is a path from x to y if there is an edge from x to z, where z
has not yet been visited, and there is a path from z to y under the assumption
that z has been visited.

Operationally, to establish that visited(z) ⇒ path(z, y), the logic engine adds
visited(z) to the program, then asks the query path(z, y) of that enlarged
program.

This is a simple example of embedded implications. More complex examples
could have embedded implications within embedded implications, and so on.
But rather nicely, the bilattice approach extends quite naturally to cover such
embedded implications, and the entire machinery of stable models carries over
as well. The idea is to take as valuations maps from atoms and programs to a
bilattice. Adding programs as an argument allows relativization to modules.
Details of the bilattice approach can be found in [17].

The other item we mentioned was disjunctive logic programming. In this,
heads of clauses are allowed to be not just atoms, but disjunctions of atoms.
Roughly, such a clause says that if the members of its body are the case, one of
the items in its head also is. Semantically, instead of working with valuations,
one works with sets of valuations, and this suggests that a powerdomain ap-
proach should be appropriate. This is, indeed, the case, though the literature
so far uses powerdomain theory implicitly, rather than explicitly. On the other
hand, the metric approach of section 10 carries over rather neatly, [21], and
shows promise of further extension.

We have tried to show that at least some of the kinds of concerns that are
important in developing semantic approaches to imperative and functional
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programs also arise in logic programming. But logic programming contributes
its own twists that make the game a little different, and give the results a
strange beauty of their own.
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