
Quasi-Realization

Melvin Fitting
e-mail: melvin.fitting@gmail.com

web page: melvinfitting.org

City University of New York, emeritus

Abstract. Justification logics connect with modal logics via Realization
Theorems. The first such theorem was proved constructively by Artemov,
[1]. It showed how to translate an S4 sequent proof, as a whole, into an
LP proof. We present a different algorithmic Realization proof for LP/S4,
proceeding step by step instead of working on the entire proof, dividing
the argument into two natural parts, one specific to LP/S4, the other
widely applicable to justification/modal pairs. This structure makes an
implementation easier, and we provide a link to one in Prolog.

Keywords: justification logic, modal logic, realization, quasi-realization,
tableau, Prolog

1 Introduction

Justification logics are similar to modal logics, but with modal operators replaced
by an infinite family of justifications. The first justification logic, LP (logic of
proofs), was introduced by Artemov [1]. It played an essential role in Artemov’s
arithmetic completeness result for intuitionistic logic, finishing a line of research
that began with Gödel, [16]. A step in that work shows that LP has a direct
connection with modal S4, via a Realization Theorem. This says that every S4
theorem has a Realization, a replacement of modal operators by justification
terms, that is a theorem of LP. In a sense, a Realization represents the flow of
information hidden in the modal operators. One sometimes sees references to S4
as a logic of implicit knowledge, while LP explicitly represents that knowledge.

Since Artemov’s work many justification logics have been created, and many
proofs of Realization have been developed. It is now known that the family of
modal/justification pairs is infinite, and much work has gone into the investiga-
tion of justification counterparts of familiar of modal logics such as K, T, K4, S5,
and so on. See [2,12] for a discussion of the family of justification logics. Recently
quantification has been added, but this is another story, see [3,6].

The first proof of a Realization theorem can be found in [1]. It is constructive.
Constructive proofs commonly use cut-free Gentzen sequent systems but prefixed
tableaus/nested sequents have also been used, providing a modular approach
applicable to a basic family of modal logics, [17]. There are non-constructive
proofs based on semantics, [11]. Recently there is a non-constructive proof using
the model existence theorem, [15].

2

Here we give a new constructive proof of Realization. We present it for LP and
S4, but the argument is clearly more general. We use semantic tableaus rather
than a sequent calculus, but there is a well-known connection between them.
The central fact is that our Realization algorithm proceeds step by step, rather
than working with a tableau proof as a whole, and this makes implementation
easier. A link to a Prolog impmentation can be found at [8]. In addition, our
algorithm divides into two parts. First a Quasi-Realization Theorem is shown.
This extracts a Quasi-Realization from a modal tableau proof—a simpler thing
to do than getting a Realization proper. This part depends on details of S4, and
needs modification for other modal logics. Algorithmic conversion from Quasi-
Realization to Realization is independent of the particular logic, and can be
found in [7]. This part is omitted here, because of space limitations.

2 The Logic LP

This section contains a brief formulation of LP axiomatically, which comes from
[1]. A semantics will not be needed in this paper.

Justification terms are built up from justification variables, v1, v2, . . . , and
justification constants, c1, c2, . . . , using the function symbols ·, +, and !. If t is
a justification term, so is !t, and if t and u are justification terms, so are (t+ u)
and (t · u). (We may omit some parenthesis when no harm is done.) Ground
justification terms are those without variables.

Formulas are built up from propositional variables, P , Q, . . . , and the propo-
sitional constant ⊥ using ⊃ (with other connectives defined in the usual way),
and an extra rule of formation: if t is a justification term and X is a formula
then t:X is a formula.

The formula t:X can be read: “t is a justification ofX.” Justification constants
represent justifications of basic, assumed truths—axioms. Justification variables
are thought of as implicitly universally quantified over justifications. If t is a
justification of X ⊃ Y and u is a justification of X, think of t ·u as a justification
of Y . The operation ! is a checker: if t is a justification of X then !t is a verification
that t is such a justification. The operation + combines justifications, in that
t+ u justifies all the things that t justifies plus all the things that u justifies.

The following axiom system for LP is from [1]. Axioms are specified by giving
axiom schemas and rules, and these are:

A0. Classical Enough classical propositional axiom schemes
A1. Application t:(X ⊃ Y) ⊃ (s:X ⊃ (t·s):Y)
A2. Factivity t:X ⊃ X
A3. Justification Checker t:X ⊃ !t:(t:X)
A4. Weakening s:X ⊃ (s+t):X

t:X ⊃ (s+t):X
R1. Modus Ponens ` Y provided ` X and ` X ⊃ Y
R2. Axiom Necessitation ` c:X where X is an axiom A0 – A4

and c is a justification constant.

3

A proof is a finite sequence of formulas each of which is an axiom or comes
from earlier terms by one of the rules of inference. Derivations can be introduced
either directly, or indirectly by defining Γ `LP X to mean that (G1∧. . .∧Gn) ⊃ X
is a theorem for some finite subset {G1, . . . , Gn} of Γ .

Which constants are associated with which axioms for rule R2 applications
is called a constant specification. More formally, a constant specification is a set
C whose members are of the form c:A where c is a justification constant and
A is an axiom. A proof uses constant specification C if each instance of Axiom
Necessitation is in C. A constant specification can be given ahead of time, or
created during the course of a proof. We will assume all constant specifications
are axiomatically appropriate: every axiom is assigned at least one constant. In
addition, all such assignments will be injective, no justification constant is used
for more than one axiom. Many other conditions have been investigated, but we
are not interested in constant specification details here.

If Z is any theorem of LP, and we replace every proof polynomial by � (the
forgetful projection), the result is a theorem of S4. This is easy to see: it is the
case for each axiom of LP, and is preserved by the LP rules of derivation. The
Artemov Realization Theorem, from [1], is a converse to this.

Theorem 1 (Realization Theorem). If Z is a theorem of S4, there is some
replacement of � symbols with justification terms to produce a theorem of LP,
provable using an injective, axiomatically appropriate constant specification).
This can be done so that negative occurrences of � in Z are replaced with distinct
justification variables, and positive occurrences by justification terms that may
involve those variables.

Negative occurrences of justification variables can be thought of as inputs,
and positive justification terms as outputs. Thus theorems of S4 carry implicit
constructive functional content which their LP Realizations make explicit.

A fundamental result is the Lifting Lemma, from [1,2], which says that proofs
and derivations in LP can be internalized.

Theorem 2 (Lifting Lemma). Assume we have an axiomatically appropriate
constant specification. Suppose s1:X1, . . . , sn:Xn, Y1, . . . , Yk `LP Z. Then there is
a justification term t(s1, . . . , sn, y1, . . . , yk) (where the yi are justification vari-
ables) such that s1:X1, . . . , sn:Xn, y1:Y1, . . . , yk:Yk `LP t(s1, . . . , sn, y1, . . . , yk):Z.

Corollary 1. With an axiomatically appropriate constant specification, if Z has
an LP proof, then for some ground proof polynomial t, t:Z will have an LP proof.

3 Tableaus

Tableaus are refutation proof systems. Informally, one assumes a formula X
could be false under some circumstances and derives a syntactic contradiction.
Classical formulas are built up from propositional letters and ⊥ using ∧, ∨, ⊃,
and ¬, though other binary connectives could also be admitted. Smullyan’s uni-
form notation is useful here, [18,19], both for theoretical purposes and to simplify

4

tableau implementations. We use signed formulas. Two special symbols, T and
F , are introduced and T X and F X are signed formulas if X is a formula. The
intended reading is that X is true, or false respectively. Signed formulas involv-
ing binary connectives divide into α cases, conjunctive, and β cases, disjunctive.
For each case, two components are also specified. This is given in Figure 1.

Conjunctive Disjunctive
α α1 α2 β β1 β2

T X ∧ Y T X T Y F X ∧ Y F X F Y
F X ∨ Y F X F Y T X ∨ Y T X T Y
F X ⊃ Y T X F Y T X ⊃ Y F X T Y

Fig. 1. α- and β-Formulas and Components

A tableau proof is a special labeled binary tree. A proof of X begins with a
tree having only a root node, labeled F X. Then a tree is ‘grown’ using the branch
extension rules, given in Figure 2. All trees produced this way are tableaus.

T ¬X
F X

F ¬X
T X

α

α1

α2

β

β1 | β2

Fig. 2. Classical Branch Extension Rules

Tableaus are displayed as downward branching trees. Think of a tree as
representing the disjunction of its branches, and a branch as representing the
conjunction of the signed formulas on it. The members of a tableau branch can
be thought of as constituting a set, or a multi-set, or even a sequence. We treat
branches as sets. Tableau rules are non-deterministic. At each stage we choose
a signed formula occurrence on a branch and apply a rule to it. Since the order
of choice is arbitrary, there can be many tableaus for a single signed formula.
A tableau branch is closed if it contains T A and F A for some formula A, or if
it contains T ⊥. If each branch is closed, the tableau is closed. A closed tableau
for F X is a tableau proof of X. A branch is atomically closed if it contains
T P and F P where P is atomic. We require atomic closure, which still gives us
completeness. Classical branch extension rules can be restricted to single use: a
classical tableau rule is never applied to a signed formula occurrence on a branch
more than once. (This does not work for all logics, however.)

An example of a classical tableau proof is given in Figure 3. Numbers are for
reference purposes only. In it, 2 and 3 are from 1 by α; 4 and 5 are from 3 by α;
6 and 7 are from 5 by α; 8 and 9 are from 2 by β. 10 and 11 are from 4 by β.

5

Reading from left to right, the branches are closed because of 8 and 10, 7 and
11, and 6 and 9. Notice that on one of the branches closure is on a non-atomic
formula. This branch can be continued to yield atomic closure.

10. T P 11. T S

�
�
@
@

8. F P 9. T Q ⊃ R

�
�

@
@

1. F [(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))]

2. T P ⊃ (Q ⊃ R)

3. F ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))

4. T P ∨ S
5. F ((Q ⊃ R) ∨ S)

6. F (Q ⊃ R)

7. F S

Fig. 3. Classical Proof of (P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))

Justification logics make little use of possibility, so there is no advantage now
to modal uniform notation, and we do not use it. Syntactically �, but not ♦, is
added to the classical language. We present what are called destructive tableaus.
The name comes from the fact that certain modal rules cause branch information
to disappear. Such tableaus exist for K, T, D, D4, K4, S4, among others, but not
for S5. Here we only give rules for S4.

Definition 1. Let S be a set of signed formulas. S] = {T �X | T �X ∈ S}.

The destructive tableau rules for S4 are the classical tableau rules together
with those in Figure 4. The first rule embodies reflexivity in an obvious way. The
second rule is different, and is destructive, indicated by the double line. Suppose
we have a branch containing F �X, with S being the set of other formulas on
the branch. The entire branch can be replaced with a new branch consisting of
the members of S], and F X. Note that information is lost passing from S to
S], hence the name destructive.

T �X
T X

S,F �X

S], F X

Fig. 4. S4 Branch Extension Rules

6

With classical propositional tableaus, any order of rule application is accept-
able. This is not the case for S4. If both F �X and F �Y are present, applying
a rule to one eliminates the other, and it may be that only one of the two possi-
bilities will lead to a proof. Now backtracking becomes critical to proof search.

Figure 5 shows a proof, using the S4 rules, of �X ⊃ �(�X ∨ Y). We have
indicated branch replacement witn horizontal lines. Lines 2 and 3 are from 1 by
α. Next an S4 modal rule is applied to F �(�X ∨ Y), adding 4 while replacing
S by S] eliminates 1 and 3. Now an α-rule application to 4 adds 5 and 6, and
produces a closed tableau, though not an atomically closed one. Continuing,
we apply an S4 modal rule again, to 5, adding 7 while eliminating 4, 5, and 6.
Applying the second S4 modal rule to 2 adds 8, and we have atomic closure.

1. F �X ⊃ �(�X ∨ Y)
2. T �X
3. F �(�X ∨ Y)

2. T �X
4. F �X ∨ Y
5. F �X
6. F Y

2. T �X
7. F X
8. T X

Fig. 5. S4 proof of �X ⊃ �(�X ∨ Y)

The rule S, F �X ⇒ S], F X is automatically single usage since applying
it with F �X eliminates the formula. The rule T �X ⇒ T X is trickier. For
S4, if T �X ⇒ T X is applied to a signed formula occurrence it need not be
applied again, until the rule S, F �X ⇒ S], F X has been applied. The intuition
is simple: the destructive rule might eliminate the conclusion of T �X ⇒ T X
but for S4 it will not eliminate the premise, so a new application may be useful.

4 Annotated Formulas and Tableaus

Mapping modal formulas to formulas of justification logic requires that we keep
track of the occurrences of �. In [5] we introduced annotated formulas for this;
we use a simpler version here.

Definition 2. An annotated modal formula is like a standard modal formula,
except that instead of a single modal operator � there is an infinite family, �1,
�2, . . . , of indexed modal operators. In an annotated formula, no index may
occur twice.

If A is an annotated formula and A′ is the result of replacing all indexed
modal operators, �n, with �, regardless of index, we say A is an annotated
version of A′, and A′ is an unannotated version of A.

7

Annotations are purely for bookkeeping purposes. The α/β classification is
exactly as with unannotated formulas, as is the definition of components. For
instance, T �1P ∧ �2Q counts as an α, with α1 = T �1P and α2 = T �2Q.
In tableau constructions, branch extension rules apply to annotated formulas
exactly as to unannotated ones. The annotated version of the] operation is
S] = {T �iX | T �iX ∈ S}. Since we are requiring atomic closure, closure
conditions are not affected by annotations.

Figure 6 is an annotated version of the proof shown in Figure 5. Every S4
tableau proof can be turned into an annotated proof by annotating the modal
operators appearing in the root, and then propagating these annotations down-
ward through the tree.

1. F �1X ⊃ �2(�3X ∨ Y)
2. T �1X
3. F �2(�3X ∨ Y)

2. T �1X
4. F �3X ∨ Y
5. F �3X
6. F Y

2. T �1X
7. F X
8. T X

Fig. 6. Annotated S4 proof of �1X ⊃ �2(�3X ∨ Y)

5 Changing the Tableau Representation

So far tableaus have been trees, and formula occurrences could be common to
multiple branches. While this has advantages for some purposes, it does not
when our Quasi-Realization algorithm is introduced. We will be associating a
set of Quasi-Realizers with each signed formula occurrence in a tableau. How
that is done depends on the history of the branch containing a given occurrence.
If an occurrence is common to more than one branch, it is part of more than
one history and things become ambiguous. Our solution is to change the way
tableaus are represented, something that also brings us much closer to the data
structure used in our Prolog implementation.

From now on a tableau is not a tree, but instead it is the set of its branches,
where each branch is the set of signed formulas on it. When we write a branch

as B, Z, or more graphically
B
Z, we mean it is the set whose members are those

of B, together with signed formula Z. This notation assumes that Z is not part
of B. We reformulate the S4 tableau rules in this style, building in the notion of
single-usage for tableau rules. Here are the formal details, which apply equally
well to tableaus of signed formulas or of annotated signed formulas.

8

Definition 3 (Classical Tableau Revised). A classical tableau is a finite set
of finite sets (called branches) of signed formulas. A branch is closed if T P and
F P are members for some atomic P , or if T ⊥ is a member. A tableau is closed
if each of its branches is closed. We say a signed formula is on a branch if it is a
member of it, and a branch is in a tableau if it is a member of it. A tableau proof
of X is a sequence of tableaus, beginning with a single branch tableau where that
branch contains only F X, continuing using the Branch Extension Rules given
in Figures 7 and 8, and ending with a closed tableau.

B
T ¬X
B
F X

B
F ¬X
B
T X

B
α

B
α1

α2

B
β

B B
β1 β2

Fig. 7. Classical Branch Extension Rules Revised

As an example, the β rule in Figure 7 is to be read as follows. If a tableau
has B, β as a branch, then the result of removing the branch from the tableau
and replacing it with two branches, B, β1 and B, β2 is another tableau, which
we call a successor of the original tableau. Similarly for the other rules. Note
that the new branches do not contain β, but have β1 and β2 instead. This is
our general strategy for enforcing single usage. That branches do not share any
common parts is essential here.

There is one misleading aspect to the notation above. In the rule for T ¬ for
instance, it may happen that F X already occurs in B, in which case the display
of B, F X below the line is not correct—it should be simply B. We allow this
mild abuse, rather than complicating notation.

B
T �X
B
���T �X
T X

B
F �X

B]

F X

where B] = {T �X | T �X ∈ B or���T �X ∈ B}

Fig. 8. S4 Modal Branch Extension Rules Revised

Single usage is trickier for modal rules. As noted earlier, single usage for the
F � rule is automatic, but for the T � rule of S4 single usage only applies until
the next application of the F � rule. We build this into Figure 8 by crossing off
an occurrence of T �X when a rule has been applied to it, and providing no rule

9

that has a crossed off signed formula as a trigger. A cross off mark is removed,
as part of the definition of B], when an F � rule is applied.

Figure 9 shows a revised tableau proof of �(P ⊃ Q) ⊃ (�P ⊃ �Q). It is not
the shortest, by the way.

1. {{F �(P ⊃ Q) ⊃ (�P ⊃ �Q)}}
2. {{T �(P ⊃ Q), F �P ⊃ �Q}}
3. {{((((

((
T �(P ⊃ Q), T P ⊃ Q,F �P ⊃ �Q}}

4. {{((((
((

T �(P ⊃ Q), T P ⊃ Q,T �P, F �Q}}
5. {{T �(P ⊃ Q), T �P, F Q}}
6. {{((((

((
T �(P ⊃ Q), T P ⊃ Q,T �P, F Q}}

7. {{((((
((

T �(P ⊃ Q), F P, T �P, F Q}, {((((
((

T �(P ⊃ Q), T Q, T �P, F Q}}
8. {{((((

((
T �(P ⊃ Q), F P,���T �P , T P, F Q}, {((((

((
T �(P ⊃ Q), T Q, T �P, F Q}}

Fig. 9. Tableau As Set Of Sets

6 Quasi-Realizations

Our algorithm for computing Realizations divides into two halves. The first half
constructs an intermediate object, a Quasi-Realization, from a tableau proof.
The second half converts a Quasi-Realization into a proper Realization. The
construction of Quasi-Realizations is logic dependent—we present an algorithm
for S4 only. Input to this algorithm is a tableau proof. The input to the Quasi-
Realization to Realization algorithm is a Quasi-Realization, not a formal proof,
and the construction is independent of the particular logic involved. Because
space is limited, the Quasi-Realization to Realization algorithm is not given
here. It can be found in both [14,7].

Informally the goal is to associate a Quasi-Realization with each signed for-
mula occurrence in a tableau proof. This quasi-Realization is constructed ac-
cording to how the branch on which the signed formula appears is continued to
closure. A problem is that a particular signed formula occurrence can be on more
than one branch, appearing before the branch splits. A Quasi-Realization com-
puted on one branch might be different than a Quasi-Realization computed on
another. If we were dealing with Realizations, a merging solution to this problem
would involve the + operation and substitution, and would be of some complex-
ity since the entire nested structure of the realizing formulas would need to be
taken into consideration. Our approach here bypasses this problem by allowing
a set of Quasi-Realizations rather than insisting on a single one. In fact + does
not appear until we reach the Quasi-Realization to Realization algorithm.

From now on we assume that v1, v2, . . . is an enumeration of all justification
variables of LP with no variable repeated, fixed once and for all. Case 4 of the
definition below always uses vk in Quasi-Realizations where the sign is T and
�k is involved. In case 2 two conjunctive, or α, signed formulas are mentioned.

10

For one we use α with α1 and α2 as components. For the other we use α′ with
α′1 and α′2 as components. Similarly for disjunctive, or β, signed formulas.

Definition 4 (Quasi-Realization Function). The mapping 〈〈 · 〉〉 is defined re-
cursively on the set of signed annotated modal formulas.

1. If A is atomic, 〈〈T A 〉〉 = {T A} and 〈〈F A 〉〉 = {F A}.
2. 〈〈T ¬A 〉〉 = {T ¬U | F U ∈ 〈〈F A 〉〉 }.
〈〈F ¬A 〉〉 = {F ¬U | T U ∈ 〈〈T A 〉〉 }.

3. 〈〈α 〉〉 = {α′ | α′1 ∈ 〈〈α1 〉〉 and α′2 ∈ 〈〈α2 〉〉 }.
〈〈β 〉〉 = {β′ | β′1 ∈ 〈〈β1 〉〉 and β′2 ∈ 〈〈β2 〉〉 }.

4. 〈〈T �nA 〉〉 = {T vn:U | T U ∈ 〈〈T A 〉〉 }.
〈〈F �nA 〉〉 = {F t:(U1 ∨ . . . ∨ Uk) | F U1, . . . , F Uk ∈ 〈〈F A 〉〉 and
t is any justification term}.

5. The mapping is extended to sets of signed annotated formulas by letting
〈〈S 〉〉 = ∪{ 〈〈Z 〉〉 | Z ∈ S}.

Members of 〈〈Z 〉〉 are called Quasi-Realizers of Z.

As an example, suppose t, u, and w are justification terms and P and Q
are atomic formulas. Here are some Quasi-Realization calculations, leading up
to F �1(�2P ∨ ¬�3Q). We do not produce all Quasi-Realizations, an infinite
set. Here’s the reasoning for one case. F �2P ∨ ¬�3Q, in item 5, is an α, with
α1 = F �2P and α2 = F ¬�3Q. By items 2 and 3, we can take α′1 = F t:P and
α′2 = F ¬v3 :Q, and then α′ = F t:P ∨ ¬v3 :Q, which is taken to be one of the
members of 〈〈F �2P ∨ ¬�3Q 〉〉 .

1. {F P} = 〈〈F P 〉〉 and {T Q} = 〈〈T Q 〉〉
2. {F t:P, F u:P} ⊆ 〈〈F �2P 〉〉
3. {T v3:Q} = 〈〈T �3Q 〉〉
4. {F ¬v3:Q} = 〈〈F ¬�3Q 〉〉
5. {F t:P ∨ ¬v3:Q,F u:P ∨ ¬v3:Q} ⊆ 〈〈F �2P ∨ ¬�3Q 〉〉
6. {F t:((t:P ∨ ¬v3:Q) ∨ (u:P ∨ ¬v3:Q)), F w:(u:(P ∨ ¬v3:Q)} ⊆ 〈〈F �1(�2P ∨
¬�3Q) 〉〉

In Section 8 we give an algorithm which will establish the following.

Theorem 3. Let X be an annotated modal formula. Given a tableau proof of X
in S4, a finite set {F Q1, . . . , F Qk} of quasi-realizers for F X can be constructed
so that Q1 ∨ . . . ∨Qk is a theorem of LP.

7 Mixed Tableaus

We now introduce what we call mixed tableaus, which unite modal features with
justification logic features. They are based on tableaus as defined in Section 5,
using a set of sets representation. Informally, a mixed tableau expands an S4
tableau by associating a set of Quasi-Realizers to each signed annotated modal
formula appearing in it.

11

Definition 5 (Mixed Tableau). A mixed S4 tableau is like a tableau except
that members of branches are pairs (M,S) where M is a signed annotated modal
formula and S is a finite set of signed justification formulas, meeting the follow-
ing requirements.

1. If (M,S) occurs in a mixed tableau, it is required that S ⊆ 〈〈M 〉〉 .
2. If, in a mixed tableau, we replace each entry (M,S) by just M , the result

must be an annotated S4 tableau.

In a mixed tableau, we refer to M as the modal part of (M,S), and to S as the
justification part of (M,S). We say a mixed tableau T mix is an expansion of
an S4 tableau T if T results from T mix by eliminating the justification parts of
node labels, as in item 2 of Definition 5.

Definition 6 (Justification Sound). Let B be a branch of a mixed tableau. By
the associated justification formula for B we mean

∧
BjustT ⊃

∨
BjustF where BjustT

is the set of all justification formulas X such that T X occurs in the justification
part of some member of B and BjustF is the set of X such that F X occurs in the
justification part of some member of B.

We say a mixed S4 tableau branch is justification sound provided that its
associated justification formula is provable in axiomatic LP. We say a mixed S4
tableau is justification sound if each branch is.

The heart of our Quasi-Realization work is the following, which immediately
gives us a proof of Theorem 3.

Theorem 4. Let T be an annotated S4 tableau that can be continued to one
that is closed (or is closed already). Then T has a mixed tableau expansion T mix

that is justification sound, where T mix can be algorithmically constructed from
any closed modal tableau extending T .

Proof (of Theorem 3). Suppose X is an annotated modal formula, and we have
a closed S4 tableau proof for X. The construction of that proof begins with
the single-branch modal tableau consisting of just a root node, labeled F X.
Since this trivial tableau can be continued to a closed tableau, by Theorem 4 it
can be expanded to a mixed tableau that is justification sound. Such a mixed
tableau must consist of just a root node, labeled (F X, {F Q1, . . . , F Qk}), where
{F Q1, . . . , F Qk} ⊆ 〈〈F X 〉〉 . Since this expanded tableau is justification sound,
the formula

∧
∅ ⊃

∨
{Q1, . . . , Qk} is axiomatically LP provable. That is, Q1 ∨

. . . ∨Qk is provable, where Q1, . . . , Qk are quasi-realizers for F X.

8 The Quasi-Realization Algorithm

Figure 10 contains an algorithm for constructing justification sound mixed tableaus
from closed S4 tableaus, followed by an example in Figures 11 and 12. In Section 9
a proof of the correctness of the algorithm is given, and this establishes Theo-
rem 4. The construction is a kind of ‘backward induction’. Suppose T1, T2, . . . , Tk

12

is a sequence of annotated S4 tableaus, in which each arises from the preceding
by a single application of an S4 branch extension rule, as given in Section 5.
Suppose also that Tk is closed. We show Tk has a mixed tableau expansion
that is justification sound. Then, using this, we show the same for Tk−1, then
for Tk−2, and so on back to T1. A bit more properly, the algorithm produces
a mixed tableau expansion for each Ti; the correctness proof in the following
section shows that it must be justification sound.

A branch extension rule application modifies only one branch—all others
remain unchanged. Consequently the algorithm is stated in terms of branch
extension rules applied to single branches. The rest of the mixed tableau being
constructed does not change, so unaffected branches are not explicitly displayed.

S4 tableaus are understood as sets of branches, with branches being sets of
signed annotated formulas, as in Section 5. We make use of the notion convention

introduced there, where B, Z, or
B
Z, is a branch consisting of the members of B,

and Z (which is understood not to occur in B).
The idea is to expand branches of an annotated S4 tableau so they become

branches of a mixed tableau. If B is an S4 tableau branch, we will write BE to
denote an expansion of it to a mixed tableau branch. Each signed annotated
formula M in B is transformed into a pair (M,S) in BE so that S ⊆ 〈〈M 〉〉 .
Of course BE is not unique—it is simply some expansion. In one case of the
algorithm more than one branch expansion must be referenced, and we use BE1

and BE2 as notation. We write B exp−−−−→ BE to indicate that annotated S4
tableau branch B expands to mixed tableau branch BE .

If BE1 and BE2 are both expansions of the same branch, B, by BE1 ∪̇ BE2 we
mean the mixed tableau branch consisting of all (M,S1 ∪ S2) where (M,S1) ∈
BE1 and (M,S2) ∈ BE2 .

In a few of the algorithm cases we refer to a trivial expansion. A trivial
expansion of a signed formula M is (M,S) where S is any finite set such that
S ⊆ 〈〈M 〉〉 . A trivial expansion of an S4 branch replaces each member with a
trivial expansion. In our Prolog implementation a particular easily computed
trivial expansion is used, but the details don’t matter here.

The algorithm is stated schematically below. We give a reading of the α Case
as a representative example of how the algorithm notation should be understood.
The idea is, we say how to expand the S4 tableau branch B, α provided we
already know how to expand B, α1, α2. So, assume we have an expansion for
S4 tableau branch B, α1, α2, where B expands to BE , α1 expands to (α1, S1),
and α2 expands to (α2, S2). Then S4 tableau branch B, α expands to BE , (α, S),
where S consists of all α signed formulas for which α1 ∈ S1 and α2 ∈ S2. (In
the schematic we used α′, α′1, and α′2 in characterizing S, simply because α, α1,
and α2 were already in use to designate members of S4 tableau branches.)

Recall that v1, v2, . . . is a fixed enumeration of all justification variables of
LP with no variable repeated.

In the F � case of Figure 10,
∧
A ⊃

∨
S appears as the associated justifi-

cation formula for the branch ((B])E , (F X,S0). In fact, A = ((B])E)justT , using
the notation of Definition 6, but such detailed notation distracts from the ba-

13

Atomic Cases

B
T P
F P

exp−−−−−→
BE

(T P, {T P})
(F P, {F P})

where BE trivially expands B

B
T ⊥

exp−−−−−→ BE

(T ⊥, {T ⊥}) where BE trivially expands B

α Cases

B
α1

α2

exp−−−−−→
BE

(α1, S1)
(α2, S2)

B
α

exp−−−−−→ BE

(α, S)

where S = {α′ | α′
1 ∈ S1 and α′

2 ∈ S2}

β Cases

B
β1

exp−−−−−→ BE1

(β1, S1)
B
β2

exp−−−−−→ BE2

(β2, S2)

B
β

exp−−−−−→ BE

(β, S)

where S = {β′ | β′
1 ∈ S1

and β′
2 ∈ S2} and BE = BE1 ∪̇ BE2

Negation Cases

B
F X

exp−−−−−→ BE

(F X,S0)

B
T ¬X

exp−−−−−→ BE

(T ¬X,S)

where S = {T ¬Z | F Z ∈ S0}

B
T X

exp−−−−−→ BE

(T X, S0)

B
F ¬X

exp−−−−−→ BE

(F ¬X,S)

where S = {F ¬Z | T Z ∈ S0}

T � Case

B
���

�T �kX
T X

exp−−−−−→
BE

(��
��T �kX,S0)

(T X, S1)

B
T �kX

exp−−−−−→ BE

(T �kX,S)

where S = S0 ∪ {T vk:Z | TZ ∈ S1}

F � Case

B]

F X
exp−−−−−→ (B])E

(F X,S0)

B]

B − B]

F �nX

exp−−−−−→
(B])E

(B − B])E

(F �nX, {F t:
∨
S})

where (B − B])E trivially expands B − B],
S = {Z | F Z ∈ S0},∧
A ⊃

∨
S is the associated justification

formula for branch ((B])E , (F X,S0)
and `LP

∧
A ⊃ t:

∨
S

Fig. 10. Quasi-Realization Algorithm

14

sic idea and we have suppressed it here. The existence of a term t such that
`LP

∧
A ⊃ t:

∨
S will be guaranteed by the Lifting Lemma. Also note that the

combination B] and B − B] below the line simply amounts to B, though the
separation is useful for our purposes.

We give an example to illustrate how the Quasi-Realization Algorithm works.
Figure 11 shows an S4 proof of the annotated formula (�1A∨�2B) ⊃ �3(A∨B),
using the representation of tableaus described in Section 5. Each numbered item
should be thought of as the set of signed formulas making up a tableau branch. A
detailed description follows. 1 is the initial single branch tableau. Single branch
tableau 2 follows from 1 by α. A β rule application creates a tableau with two
branches, 3 and 4. Modal rule applications on F �3(A ∨ B) in 3 and 4 produce
the two-branched tableau having branches 5 and 6. Modal rule applications
on T �1A and T �2B in these give the two branches 7 and 8. Finally, α rule
applications give the two branches 9 and 10, both of which are atomically closed.

1. F (�1A ∨�2B) ⊃ �3(A ∨B)

2.
T �1A ∨�2B
F �3(A ∨B)

3.
T �1A
F �3(A ∨B)

4.
T �2B
F �3(A ∨B)

5.
T �1A
F A ∨B 6.

T �2B
F A ∨B

7.
���T �1A
F A ∨B
T A

8.
���T �2B
F A ∨B
T B

9.

���T �1A
T A
F A
F B

10.

���T �2B
T B
F A
F B

Fig. 11. S4 Tableau Proof (to be expanded)

Next, the proof created in Figure 11 is converted to a mixed tableau, displayed
in Figure 12. The work is from bottom up. In Figure 11, 9 is an atomically
closed branch. For this, the algorithm makes use of a trivial expansion, giving
the corresponding 9 of Figure 12, and similarly for 10. Branch 7 in Figure 11
yields branch 9 by an α rule. Since 9 in Figure 11 expands to 9 in Figure 12, 7
of Figure 11 converts to 7 of Figure 12 by the α case of the Algorithm. Similarly
for 8 and 10. Then branch 5 of Figure 11 converts to 5 of Figure 12 because
of the 7 conversion, and the T � case of the Algorithm, and similarly for 6
and 8. Branch 3 of Figure 11 yields branch 5 by the F� rule. The associated

15

justification formula for branch 5 is v1:A ⊃ (A ∨ B). Justification term t, in 3,
is such that v1:A ⊃ t:(A ∨B) is provable in LP. Existence is guaranteed by the
Lifting Lemma 2. Similarly u in branch 4 is such that v2:B ⊃ u:(A∨B). Branch
2 yields branches 3 and 4 using the β rule. Note that in branch 2 in Figure 12,
the justification part associated with F �3(A ∨ B) is the union of those parts
from branches 3 and 5. Finally 1 is a straightforward application of the α rule.

Then, according to the algorithm, {F (v1:A∨ v2:B) ⊃ t:(A∨B), F (v1:A∨ v2:
B) ⊃ u:(A ∨ B)} is a set of quasi-realizers for F (�1A ∨�2B) ⊃ �3(A ∨ B). In
fact, the following is provable in LP.∨

{(v1:A ∨ v2:B) ⊃ t:(A ∨B), (v1:A ∨ v2:B) ⊃ u:(A ∨B)}

1. (F (�1A ∨�2B) ⊃ �3(A ∨B), {F (v1:A ∨ v2:B) ⊃ t:(A ∨B)
F (v1:A ∨ v2:B) ⊃ u:(A ∨B)})

2.
(T �1A ∨�2B, {T v1:A ∨ v2:B})
(F �3(A ∨B), {F t:(A ∨B), F u:(A ∨B)})

3.
(T �1A, {T v1:A})
(F �3(A ∨B), {F t:(A ∨B)}) 4.

(T �2B, {T v2:B})
(F �3(A ∨B), {F u:(A ∨B)})

5.
(T �1A, {T v1:A})
(F A ∨B, {F A ∨B}) 6.

(T �2B, {T v2:B})
(F A ∨B, {F A ∨B})

7.
(���T �1A, {T v1:A})
(F A ∨B, {F A ∨B})
(T A, {T A})

8.
(���T �2B, {T v2:B})
(F A ∨B, {F A ∨B})
(T B, {T B})

9.

(���T �1A, {T v1:A})
(T A, {T A})
(F A, {F A})
(F B, {F B})

10.

(���T �2B, {T v2:B})
(T B, {T B})
(F A, {F A})
(F B, {F B})

Justification term t, in 3, is such that v1:A ⊃ t:(A ∨B) is provable in LP. Similarly u
in 4 is such that v2:B ⊃ u:(A ∨B) is LP provable.

Fig. 12. S4 Tableau Proof (expanded)

9 Quasi-Realization Algorithm Correctness Proof

This section is devoted to showing the correctness of the Quasi-Realization Al-
gorithm, and hence proving Theorem 4. It is straightforward that the algorithm
produces a mixed tableau expansion. We concentrate on showing the resulting
mixed tableau must be justification sound, Definition 6. To do this, we show
it for the Atomic Cases, and show that each rule of the algorithm preserves
justification soundness.

16

Proof (Correctness for Quasi-Realization Algorithm).

Atomic Cases Consider the first of the two atomic cases—the second is sim-
ilar. The mixed tableau branch produced in this case is BE , T P, F P . The
associated justification formula is [

∧
(BE)justT ∧ P] ⊃ [

∨
(BE)justF ∨ P], and

this is trivially an LP theorem, so the branch is justification sound.
α Case Assume that BE , (α1, S1), (α2, S2) is a mixed tableau branch that is

justification sound. We must show the same for BE , (α, S) where S = {α′ |
α′1 ∈ S1 and α′2 ∈ S2}. Since S1 ⊆ 〈〈α1 〉〉 and S2 ⊆ 〈〈α2 〉〉 , it is easy to see
from Definition 4 that S ⊆ 〈〈α 〉〉 . After this case we leave such arguments to
the reader. We must show the branch is justification sound.
Since we only consider ∧, ∨, and ⊃, there are three possibilities for α. We
look at one of them, with α = F A ⊃ B; the other two cases are simi-
lar. All three could be condensed into a single argument by making use of
uniform notation, but this would be a bit of a diversion just now. So, as-
sume BE , (T A, S1), (F B, S2) is justification sound; we show the same for
BE , (F A ⊃ B,S).
Let us say S1 = {T A1, . . . , T Am} and S2 = {F B1, . . . , F Bn}. Then the
associated justification formula for BE , (T A, S1), (F B, S2) is the following.[∧

(BE)justT ∧
∧
{A1, . . . , Am}

]
⊃

[∨
(BE)justF ∨

∨
{B1, . . . , Bn}

]
By classical logic we also have provability of the following, where i ranges
over 1, . . . ,m and j ranges over 1, . . . , n.

∧
(BE)justT ⊃

∨(BE)justF ∨
∨
i,j

(Ai ⊃ Bj)


Thus the associated justification formula for B, (F A ⊃ B,S) is provable.

β Case Assume that BE1 , (β1, S1) and BE2 , (β2, S2) are justification sound. We
show this also the case for βE , (β, S), where S = {β′ | β′1 ∈ S1 and β′2 ∈ S2}
and BE = BE1 ∪̇ BE2 . As with α there are three cases, and we only consider
one of them, where β = T A ⊃ B. So, assume that BE1 , (F A, S1) and
BE2 , (T B, S2) are justification sound.
Suppose S1 = {F A1, . . . , F Am} and S2 = {T B1, . . . , T Bn}. Then the prov-
able associated justification formulas for BE1 , (F A, S1) and BE2 , (T B, S2)
are the following.∧

(BE1)justT ⊃
[∨

(BE1)justF ∨
∨
{A1, . . . , Am}

]
[∧

(BE2)justT ∧
∧
{B1 ∧ . . . ∧Bn}

]
⊃

∨
(BE2)justF

BE = BE1 ∪̇ BE2 , and it follows easily that (BE)justT = (BE1)justT ∪ (BE2)justT

and (BE)justF = (BE1)justF ∪ (BE2)justF . Then we have provability of the fol-
lowing. ∧

(BE)justT ⊃
[∨

(BE)justF ∨
∨
{A1, . . . , Am}

]

17[∧
(BE)justT ∧

∧
{B1 ∧ . . . ∧Bn}

]
⊃

∨
(BE)justF

By classical logic this gives provability of the following, where i ranges over
1, 2, . . . ,m and j ranges over 1, 2, . . . , n.∧(BE)justT ∧

∧
i,j

(Ai ⊃ Bj)

 ⊃∨
(BE)justF

Thus the associated justification formula for B, (T A ⊃ B,S) is provable.
Negation Cases These cases are similar to the α and β cases, but are simpler

and are left to the reader.
T � Case Assume that BE , (����T �kX,S0), (T X, S1) is a justification sound mixed

tableau branch. Then BE , (T �kX,S) is a mixed tableau branch, where
S = S0 ∪ {T vk:Z | TZ ∈ S1}. We show it is justification sound.
Suppose S0 = {T vk :W1, . . . , T vk :Wm} and S1 = {T Z1, . . . , T Zk}. Then
the provable associated justification formula for BE , (����T �kX,S0), (T X, S1)
is the following.[∧

(BE)justT ∧
∧
{vk:W1, . . . , vk:Wm} ∧

∧
{Z1, . . . , Zk}

]
⊃

∨
(BE)justF

Using Factivity, Axiom A2, we have LP provability of the following.[∧
(BE)justT ∧

∧
{vk:W1, . . . , vk:Wm, vk:Z1, . . . , vk:Zk}

]
⊃

∨
(BE)justF

This is the associated justification formula for BE , (T �kX,S).
F � Case Assume that (B])E , (F X,S0) is a justification sound mixed tableau

branch. Then (B])E , (B − B])E , (F �nX, {F t :
∨
S}) is a mixed tableau

branch, where (B −B])E trivially expands B −B], S = {Z | F Z ∈ S0}, and
t is any justification term. We show (B])E , (B−B])E , (F �nX, {F t:

∨
S}) is

justification sound, given the right choice of t.
Note that since all members of B] are T -signed, the LP-provable associ-
ated justification formula for (B])E , (F X,S0) is simply

∧
((B])E)justT ⊃

∨
S,

where S = {Z | F Z ∈ S0}. Also members of B] are necessitated, so by the
Lifting Lemma 2, for some justification term t, `LP

∧
((B])E)justT ⊃ t:

∨
S.

Then, trivially, the following is also LP-provable[∧
((B])E)justT ∧

∧
((B − B])E)justT

]
⊃

[
t:
∨
S ∨

∨
((B − B])E)justF

]
and this is the associated justification formula for (B])E , (B−B])E , (F �nX, {F t:∨
S}) as specified by the algorithm.

10 Realizations

Quasi-Realizations convert to Realizations. There is an algorithm for doing this
in [7] that does not depend on tableau proofs, but only on the structure of a

18

Quasi-Realization formula. It applies uniformly to a wide range of justification
logics, not just to LP. Because of space limitations we omit the algorithm, and
just state what it gives us.

We begin with a definition of Realization equivalent to the usual one, but
following the lines of Definition 4. Differences are confined to case 4 where dis-
junction appearing in the definition of quasi-realizer is folded into a justification
term by using the + operator. We still assume that v1, v2, . . . is an enumeration
of all justification variables of LP, with no justification variable repeated.

Definition 7. The mapping [[·]] is defined recursively on the set of signed anno-
tated modal formulas.

1. If A is atomic, [[T A]] = {T A} and [[F A]] = {F A}.
2. [[T ¬A]] = {T ¬U | F U ∈ [[F A]]}.

[[F ¬A]] = {F ¬U | T U ∈ [[T A]]}.
3. [[α]] = {α′ | α′1 ∈ [[α1]] and α′2 ∈ [[α2]]}.

[[β]] = {β′ | β′1 ∈ [[β1]] and β′2 ∈ [[β2]]}.
4. [[T �nA]] = {T vn:U | T U ∈ [[T A]]}.

[[F �nA]] = {F t:U | F U ∈ [[F A]] and t is any justification term}.
5. The mapping is extended to sets of signed annotated formulas by letting

[[S]] = ∪{ [[Z]] | Z ∈ S}.

Members of [[Z]] are Realizers of Z, where Z is a signed, annotated modal for-
mula. A normal Realization of annotated modal A is any justification formula
U where F U ∈ [[F A]] . For a modal formula A without annotations, a normal
Realization for A is any normal Realization for A′, where A′ is an annotated
version of A.

Substitutions are fundamental. A substitution σ replaces justification vari-
ables with justification terms. For a justification formula A the result of applying
a substitution σ is denoted Aσ. It is easy to show that substitutions turn LP the-
orems into LP theorems, though generally the constant specification will change.
Substitution σ meets the no new variable condition if, for every vk in the domain
of σ, the justification term vkσ contains no variables other than vk. σ lives on
A if, for every justification variable vk in the domain of σ, �k occurs in A,

Definition 8. Let A be an annotated modal formula, A be a set of justification
formulas, A′ be a single justification formula, and σ be a substitution.

1. A T A−−−−−→ (A′, σ) means: σ lives on A and meets the no new variable con-
dition; T A ⊆ 〈〈T A 〉〉 ; T A′ ∈ [[T A]] ; and `LP A′ ⊃ (

∧
A)σ.

2. A F A−−−−−→ (A′, σ) means: σ lives on A and meets the no new variable con-
dition; F A ⊆ 〈〈F A 〉〉 ; F A′ ∈ [[F A]] ; and `LP (

∨
A)σ ⊃ A′.

One can read A T A−−−−−→ (A′, σ) as saying that the set of quasi-realizers A for
T A condenses to the single realizer T A′ using substitution σ, and similarly for

A F A−−−−−→ (A′, σ).

19

Theorem 5 (Condensing). Let A be an annotated modal formula. For each
finite set A of justification formulas:

1. If T A ⊆ 〈〈T A 〉〉 then there are A′ and σ so that A T A−−−−−→ (A′, σ).

2. If F A ⊆ 〈〈F A 〉〉 then there are A′ and σ so that A F A−−−−−→ (A′, σ).

As has been said several times, the proof of Theorem 5 is algorithmic, and
[7] can be consulted for details.

Corollary 2 (Realization). Every formula provable in S4 has a normal Real-
ization that is provable in LP.

Proof. Suppose X is a theorem of S4. Let A be an annotated version of X, any
one will do. Then from Theorem 3, proved using the algorithm given in Figure 10,
there are Q1, . . . , Qk with {F Q1, . . . , F Qk} ⊆ 〈〈F A 〉〉 such that Q1 ∨ . . .∨Qk is
a theorem of LP. By part 2 of Theorem 5 there is a substitution σ and a formula
A′ with F A′ ∈ [[F A]] such that (Q1 ∨ . . .∨Qk)σ ⊃ A′ is a theorem of LP. Since
(Q1 ∨ . . . ∨ Qk)σ must also be provable in LP, so is A′, and this is a normal
Realization of A, and hence of X.

At the end of Section 8 we presented an example showing that the annotated
modal formula (�1A ∨ �2B) ⊃ �3(A ∨ B), provable in S4, has the following
Quasi-Realization set, {(v1 :A ∨ v2 :B) ⊃ t : (A ∨ B), (v1 :A ∨ v2 :B) ⊃ u :
(A ∨ B)}, where `LP v1 :A ⊃ t : (A ∨ B) and `LP v2 :B ⊃ u : (A ∨ B). Then
`LP [(v1 :A ∨ v2 :B) ⊃ t:(A ∨ B)] ∨ [(v1 :A ∨ v2 :B) ⊃ u:(A ∨ B)]. Applying the
(unstated) algorithm converting Quasi-Realizers to Realizers, we obtain that,
(v1 :A ∨ v2 :B) ⊃ (c · t + c · u) : (A ∨ B) is a provable normal Realization of
(�1A ∨�2B) ⊃ �3(A ∨B), where c internalizes a proof of (A ∨B) ⊃ (A ∨B).

11 What Next?

Here is a brief summary of work that remains undone. It is extensive.
We have given a constructive proof of Quasi-Realization from modal S4 to

justification LP. As noted several times, a uniform algorithmic conversion from
Quasi-Realizers to Realizers is available, [7]. The ideas extend directly to any
modal logic having a similar destructive tableau system. Other cut-free proof
methods extend things to a still richer variety of logics. In [7] it is shown that the
family of modal logics having justification logic counterparts is infinite, which is
somewhat surprising. But the proof is non-constructive. It is not known whether
something similar can be shown constructively.

Recently LP has been extended to admit quantifiers, [3,6], with a Realiza-
tion theorem connecting it with first-order S4. But a monotinicity condition is
assumed. Work is in progress on a constant domain version, but this is incom-
plete. Varying domain assumptions have not yet been considered. No modal logic
except S4 has been examined.

Hybrid logic and paraconsistent modal logics are largely unexplored as far
as justification counterparts are concerrned.

There are still things to do.

20

References

1. S. N. Artemov. Explicit provability and constructive semantics. Bulletin of Sym-
bolic Logic, 7(1):1–36, Mar. 2001. 1, 2, 3

2. S. N. Artemov. The logic of justification. The Review of Symbolic Logic, 1(4):477–
513, Dec. 2008. 1, 3

3. S. N. Artemov and T. Yavorskaya (Sidon). First-order logic of proofs. Technical
Report TR–2011005, CUNY Ph.D. Program in Computer Science, May 2011. 1,
19

4. S. Feferman, J. W. Dawson Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, J. van
Heijenoort, W. D. Goldfarb, C. Parsons, and W. Sieg, editors. Kurt Gödel Collected
Works. Oxford, 1986-2003. Five volumes. 20

5. M. Fitting. Realizations and LP. Annals of Pure and Applied Logic, 161(3):368–
387, Dec. 2009. Published online August 2009. 6

6. M. Fitting. Possible world semantics for first order LP. Technical Report TR–
2011010, CUNY Ph.D. Program in Computer Science, Sept. 2011. 1, 19

7. M. C. Fitting. Modal logics, justification logics, and realization. Submitted October
6, 2015. 2, 9, 17, 19

8. M. C. Fitting. Prolog code for S4 realization. See Realization Implemented at
http://melvinfitting.org/bookspapers/techreports.html. 2

9. M. C. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Pub-
lishing Co., Dordrecht, 1983.

10. M. C. Fitting. First-order modal tableaux. Journal of Automated Reasoning,
4:191–213, 1988.

11. M. C. Fitting. The logic of proofs, semantically. Annals of Pure and Applied Logic,
132:1–25, 2005. 1

12. M. C. Fitting. Reasoning with justifications. In D. Makinson, J. Malinowski, and
H. Wansing, editors, Towards Mathematical Philosophy, number 28 in Trends in
Logic, chapter 6, pages 107 – 123. Springer, 2009. 1

13. M. C. Fitting. Prefixed tableaus and nested sequents. Annals of Pure and Applied
Logic, 163:291–313, 2012. Available on-line at http://dx.doi.org/10.1016/j.

apal.2011.09.004.
14. M. C. Fitting. Realization implemented. Technical Report TR-

2013005, CUNY Ph.D. Program in Computer Science, May 2013.
http://www.cs.gc.cuny.edu/tr/. 9

15. M. C. Fitting. Realization using the Model Existence Theorem. Journal of Logic
and Computation, July 16, 2013. Published online. 1

16. K. Gödel. Eine Interpretation des intuistionistischen Aussagenkalkuls. Ergebnisse
eines mathematischen Kolloquiums, 4:39–40, 1933. Translated as An interpretation
of the intuitionistic propositional calculus in [4] I, 296-301. 1

17. R. Goetschi and R. Kuznets. Realization for justification logics via nested sequents:
Modularity through embedding. Annals of Pure and Applied Logic, 163(9):1271–
1298, Sept. 2012. Published online March 2012. 1

18. R. M. Smullyan. A unifying principle in quantification theory. Proceedings of the
National Academy of Sciences, 49(6):828–832, June 1963. 3

19. R. M. Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968. Revised Edition,
Dover Press, New York, 1994. 3

http://melvinfitting.org/bookspapers/techreports.html
http://dx.doi.org/10.1016/j.apal.2011.09.004
http://dx.doi.org/10.1016/j.apal.2011.09.004

	Quasi-Realization

