
A Family of Strict/Tolerant Logics

Melvin Fitting∗

December 8, 2019

Abstract

Strict/tolerant logic, ST, evaluates the premises and the consequences of its consequence
relation differently, with the premises held to stricter standards while consequences are treated
more tolerantly. More specifically, ST is a three-valued logic with left sides of sequents un-
derstood as if in Kleene’s Strong Three Valued Logic, and right sides as if in Priest’s Logic
of Paradox. Surprisingly, this hybrid validates the same sequents that classical logic does. A
version of this result has been extended to meta, metameta , . . . consequence levels in [5].

In an earlier paper, [11], I showed that the original ideas behind ST are, in fact, much more
general than first appeared, and an infinite family of many valued logics have Strict/Tolerant
counterparts. This family includes both Kleene’s and Priest’s logic individually, as well as first
degree entailment. For instance, for both the Kleene and the Priest logic, the corresponding
strict/tolerant logic is six-valued, but with differing sets of strictly and tolerantly designated
truth values. In the present paper I extend that generalization in two directions. I examine
a reverse notion, of Tolerant/Strict logics, which exist for the same structures that were in-
vestigated in [11]. And I show that the generalization extends through the meta, metameta,
. . . consequence levels for the same infinite family of many valued logics. Finally I close with re-
marks on the status of cut and related rules, which can actually be rather nuanced. Throughout,
the aim is not the philosophical applications of the Strict/Tolerant idea, but the determination
of how general a phenomenon it is.

Keywords: Strict/Tolerant, bilattice, many valued logic, Kleene logic, logic of paradox,
first degree entailment

1 Introduction

Sequents are used with a wide variety of logics, Γ ⇒ ∆ where Γ and ∆ are finite sets of
formulas, but the basic idea is generally the same: if all members of Γ are true then some
member of ∆ is true. Or what is usually equivalent, if the conjunction of Γ is true then the
disjunction of ∆ is true. Of course the meaning of “true” is logic dependent, but whatever its
meaning is it applies on both sides of the ⇒ symbol. A case has been made, in [6] for instance,
that the antecedents (formulas on the left) of a sequent should be held to higher standards
than the consequents (formulas on the right). Consider physics as an example. We have some
theory, relativity, quantum, Newtonian, whatever, and in deducing things from such a theory
we adopt as premises the ‘laws’ of the theory, which are understood as simply true. We derive
consequences, and in testing these we examine the universe using our scientific instruments,
which have non-zero margins of error. Premises are taken to be strictly true; consequences
are evaluated as true with some leeway allowed. In fact, holding premises and consequences
to different standards is commonly done without any explicit mention. Perhaps the utility of

∗Departments of Philosophy, Computer Science, Mathematics (all emeritus), The Graduate Center, City University
of New York, 365 Fifth Avenue, New York, NY 10016, melvin.fitting@gmail.com

1

melvin.fitting@gmail.com

2 Melvin Fitting

the practice is clearest when sequents are used backwards (or for the present discussion, when
derivations in physics are used backwards). If the consequents turn out to be not true in the
sense that they assert things that do not hold in the world around us, within a reasonable
margin of error, one of our premises must simply fail.

The idea of evaluating the two sides of sequents under different standards has led to much
work on what is called Strict/Tolerant logic, ST. Both Kleene’s strong three-valued logic and
Priest’s logic of paradox are three-valued logics, though of course the motivation and intended
interpretations differ. We can think of them both as being over a common set of truth values, say
{0, 12 , 1}. With this common carrier, the two logics have the same truth tables for conjunction,
disjunction, and negation. They differ in their choices of designated truth values: for Kleene this
is {1} and for Priest it is { 12 , 1}. Suppose we work with sequents involving formulas that are built
up using conjunction, disjunction, and negation, but we have two versions of truth: a stricter
notion following Kleene, and a more tolerant version following Priest. Call a sequent valid in
the Strict/Tolerant sense, or just valid in ST, provided that under any assignment of truth
values from {0, 12 , 1}, strict truth of all antecedents implies tolerant truth of some consequent.
Remarkably, the sequents valid in ST are exactly the sequents valid classically. That is, classical
propositional logic and this Strict/Tolerant logic have the same consequence relation.

If one identifies a logic with its consequence relation, classical logic and ST would be the
same, though differently presented. It has been argued that using a Strict/Tolerant formulation
would avoid some of the problems of vagueness while keeping what is essentially a classical
framework, see [6] and further references found there. The papers [4, 17] have pointed out that
the two logics are not actually the same because consequence alone is not enough to look at.
Though ST and classical logic agree at the consequence level, they differ at the metaconsequence
level, in particular they differ on cut. On the other hand, [14] argues that cut isn’t actually part
of classical logic after all. This is not as settled an area as one might think, but the controversy
is outside our interests here, which are primarily technical, and no more will be said on the
subject.

Recently [5] expanded on the distinctions seen in the classical and ST case by considering
metaconsequence, metametaconsequence, and so on. They argue that just as classical and
Strict/Tolerant logics differ at the metaconsequence level, one can define related logics that
agree with classical logic on the meta, metameta, . . . , to any finite level, but that differ when one
more meta is added. Also Chris Scambler, [15], has shown that if one extends the construction
from [5] to the limit, and we have agreement at the metan level for all n, we still get logics that
differ on refutability. Things are complicated indeed.

In [11] I showed that the basic Strict/Tolerant phenomenon is actually quite widespread.
There is an infinite family of many-valued logics that have Strict/Tolerant versions, agreeing
on consequence, differing on metaconsequence. The present paper is a sequel to that paper,
and continues the earlier investigation, showing that all the work of [5], and the results of [15]
on antivalidity have a similar broad range. This is closely connected with a notion dual to
strict/tolerance, known as Tolerant/Strict, and details of the duality are examined in a general
setting. In fact, even the general methodology of the proofs found in [5] and [15] more or
less extends to a very general setting. The essential part of what has been added here is the
discovery of the right framework in which to apply their ideas. The direct connections with
the Kleene and Priest logics are replaced with constructions involving bilattices. To keep things
relatively self-contained here, we begin with a summary of earlier results from [11], together with
a discussion of the bilattice machinery needed to get them. Only after all this do we present
what is new to this paper.

2 Previous Work

We briefly summarize our terminology and notation from [11]. We also present a more detailed
version of our earlier results, as Proposition 2.4.

Throughout this paper we consider only propositional many valued logics, and we assume

A Family of Strict/Tolerant Logics 3

their formal languages are built using ∧, ∨, ¬, but not implication. Much use will be made of
sequents, including higher order sequents. For now, a sequent is an ordered pair of finite sets of
formulas, and as usual we will write sequents as Γ ⇒ ∆, rather than as 〈Γ,∆〉. We will write
Γ, X ⇒ ∆, where X is a formula, as short for Γ ∪ {X} ⇒ ∆, and so on through all the familiar
conventions. Throughout we will think of sequents as a representation of a multiple conclusion
consequence relation, that is Scott style [16], rather than the single conclusion Tarski style.

We briefly sketch the semantic basics, since this will be used throughout. Many valued logics
are specified by giving some space of truth values, V , some interpretation of the connectives in
that space, and some subset D of V of designated truth values. This generality is too much
for our methods, so we narrow things down. All our spaces of truth values will be De Morgan
algebras, where distributivity conditions may or may not hold. We use the ungainly term non-
distributive De Morgan algebras, though understand that non-distributive does not imply the
distributive laws do not hold, but rather that distributive laws are not needed for our purposes,
and so may or may not hold.

Definition 2.1 (Non-Distributive De Morgan Algebra) A De Morgan algebra is a
bounded distributive lattice with a De Morgan involution. We write 0 and 1 for the lower
and upper bounds of such an algebra, u and t for meet and join, and overbar for the De Mor-
gan involution. The De Morgan involution must meet the conditions that a u b = a t b and
a = a. (a t b = au b follows easily.) A non-distributive De Morgan algebra meets the conditions
for a De Morgan algebra except, possibly, for the distributive laws.

Non-distributive De Morgan algebras provide us with natural truth value spaces, and ac-
companying interpretations for ∧, ∨, and ¬ as meet, join, and De Morgan involution, and we
assume this is how formulas are evaluated from now on. We also need subsets of designated
truth values, and we want these with some natural structural properties. Being a prime filter
is common. We use the term logical De Morgan algebra for the resulting combination. This is
a piece of terminology that must be in the literature in some form, but we haven’t managed to
find it.

Definition 2.2 (Logical De Morgan Algebra) Let L be a non-distributive De Morgan al-
gebra. D is a prime filter on L if D is a non-empty proper subset of L that meets the following
two conditions:

a u b ∈ D if and only if a ∈ D and b ∈ D
a t b ∈ D if and only if a ∈ D or b ∈ D.

We call the pair 〈L,D〉 a non-distributive logical De Morgan algebra, thinking of it as a many
valued logic with D as the set of designated truth values.

A valuation in a non-distributive De Morgan algebra L is a mapping from propositional
letters to L. Any valuation in L extends (uniquely) to a mapping from all formulas to L using
the meet of L to interpret conjunction, the join to interpret disjunction, and the De Morgan
involution to interpret negation, and we generally identify a valuation with this extension. A
valuation v in L validates the sequent Γ ⇒ ∆ in 〈L,D〉 provided that, if v(X) ∈ D for every
X ∈ Γ then v(Y) ∈ D for some Y ∈ ∆. Equivalently stated, the condition is: v(X) 6∈ D for some
X ∈ Γ or v(Y) ∈ D for some Y ∈ ∆. We symbolize this by C〈L,D〉 |=v Γ⇒ ∆, and we say that
v is a valuation in C〈L,D〉. The notation involving C is to suggest that this is a many-valued
generalization of classical logic. A sequent Γ ⇒ ∆ is C〈L,D〉 valid if C〈L,D〉 |=v Γ ⇒ ∆ for
every valuation v in C〈L,D〉. For a single formula X it is easy to check that C〈L,D〉 |=v ∅ ⇒ X
if and only if v(X) ∈ D. We will write this as C〈L,D〉 |=v X.

Two particular De Morgan algebras are of special interest here, since they provided the first
example of the Strict/Tolerant phenomenon. {0, 12 , 1} is a (distributive) De Morgan algebra
where a u b is the minimum of a and b, a t b is the maximum of a and b, and a = 1− a. Both
{1} and { 12 , 1} are prime filters. Kleene’s logic K3 takes the first of these as designated, Priest’s

4 Melvin Fitting

LP takes the second. Thus both give us logical De Morgan algebras. Non-distributive logical
De Morgan algebras also include classical propositional logic and first degree entailment. They
are infinite in number.

Next we introduce our generalizations of the logic ST. They are like the many valued logics
from Definition 2.2, except that instead of a single designated set of truth values they have two,
one stricter than the other.

Definition 2.3 (Strict/Tolerant Logic) Let L be a non-distributive De Morgan algebra, and
let T (for tolerant) be a proper non-empty subset of L and S (for strict) be a proper, non-empty,
subset of T ; we call 〈L, S, T 〉 a Strict/Tolerant structure. If v is a valuation in L, we will also
say it is a valuation in ST〈L, S, T 〉. We say such a valuation validates sequent Γ ⇒ ∆ in the
Strict/Tolerant sense provided that, if v maps every member of Γ to S then v maps some member
of ∆ to T . We symbolize this by ST〈L, S, T 〉 |=v Γ⇒ ∆. A sequent Γ⇒ ∆ is ST〈L, S, T 〉 valid
if ST〈L, S, T 〉 |=v Γ⇒ ∆ for every valuation v in ST〈L, S, T 〉.

For a formula X we have that ST〈L, S, T 〉 |=v ∅ ⇒ X if and only if v(X) ∈ T , and this will
sometimes be written as ST〈L, S, T 〉 |=v X.

It should be noted that every non-distributive logical De Morgan algebra has validities. For
example, every sequent X ⇒ X is a validity, no matter what the algebra. This is an easy
consequence of the requirement that every strict designated truth value also be a tolerant one.

The following was proved in [11], but in the earlier paper significant details about the
Strict/Tolerant structure that is constructed were left implicit. In the Proposition below they
are made explicit. The proof will be sketched in Section 4, since we will build on it.

Proposition 2.4 (Central Result of [11]) Let 〈L,D〉 be any non-distributive logical De Mor-
gan algebra. There is an algorithm constructing a Strict/Tolerant structure 〈L∗, D,D∗〉 from
〈L,D〉 such that C〈L,D〉 and ST〈L∗, D,D∗〉 validate the same sequents, but differ at the meta-
consequence level. The Strict/Tolerant structure 〈L∗, D,D∗〉 meets the following conditions:

1. 〈L∗, D∗〉 is a non-distributive logical De Morgan algebra;

2. L∗ properly extends L in the sense that L is a bounded proper sublattice of L∗ having the
same bounds, and with the operations of L being those of L∗ restricted to L;

3. D is D∗ restricted to members of L.

We have ended our summary, and elaboration, of previous work. In this paper two new
things are added to what was just outlined. First, in response to much prodding from Graham
Priest, we examine Tolerant/Strict logics. These are like Strict/Tolerant logics except that the
roles are reversed. In such a logic a sequent is valid provided whenever all premises evaluate
to a tolerantly acceptable truth value, one of the consequents evaluates to a strictly acceptable
truth value. It should not be surprising that Tolerant/Strict behavior is, in a sense, dual to that
of Strict/Tolerant.

In [5] a hierarchy of logics is constricted, building on ST, and important connections with
classical logic are established. We show that this work extends to the same full generality
seen in Proposition 2.4. That is, for every non-distributive logical De Morgan algebra there is a
hierarchy of logics each of which agrees with with the logical De Morgan algebra on consequence,
metaconsequence, metametaconsequence, . . . , up to some particular level, with a limit case that
agrees at every level. In fact our constructions are drawn from those of [5], but are generalized
using bilattice machinery. Results from [15] concerning antivalidity (defined in Section 6) are
similarly extended.

3 Bilattices

Bilattices are our principal tool, and this is a summary section of their properties, without proofs.
It is not a detailed discussion, but should be enough for present purposes. The primary original

A Family of Strict/Tolerant Logics 5

references are as follows. Bilattices were introduced by Matt Ginsberg, [12, 13]. Among other
things, the bilattice product, discussed in Section 3.2 originates here. Applications to semantical
issues, primarily involving fixpoint constructions, can be found in [7, 8, 10], along with a full
representation theorem for the bilattice product, but restricted to distributive bilattices. The
representation theorem was extended to interlaced bilattices in [3], and fundamental logic issues
were beautifully investigated in [1, 2].

3.1 Bilattice Basics

A bilattice is an algebraic structure with two lattice orderings, B = 〈B,≤t,≤k〉. One ordering,
≤t, is intended to represent degree of truth. The other, ≤k, is intended to represent degree of
information (knowledge in an older usage, hence the k subscript). Various conditions are usually
added to the basic double lattice structure, in particular conditions connecting the two orderings.
The term bilattice broadly covers all such structures, with various conditions specified.

The four-valued Dunn-Belnap structure, appropriate for first-degree entailment, gives us
the simplest example of a bilattice. As a bilattice it is commonly called FOUR, and plays
a role with respect to the family of bilattices analogous to that of the two-valued Boolean
algebra in the family of all Boolean algebras. We use FOUR to illustrate various topics in our
summary discussion, and we give a diagram of it in Figure 1. As is customary with bilattices,
one ordering is shown horizontally and the other vertically. There is a general construction for
bilattices, discussed in Section 3.2, after which it will be clear that there is an infinite family of
bilattices. Other double Hasse diagrams for bilattices of interest can be found in [11].

Figure 1: The Bilattice FOUR

A pre-bilattice, B = 〈B,≤t,≤k〉, is the basic bilattice structure. Each of ≤t and ≤k are
bounded partial orderings on B. Meet and join operations with respect to ≤t are denoted by
∧ and ∨, and the least and greatest elements are denoted f and t. Meet and join with respect
to ≤k are denoted by ⊗ (consensus) and ⊕ (gullability). The least and greatest elements with
respect to ≤k are denoted ⊥ and >. In the basic example, FOUR, the four extreme elements
are all there are. In FOUR, and in most bilattices, their behavior with respect to the meet and
join operations is given in Figure 2.

∧ f t ⊥ >
f f f f f
t f t ⊥ >
⊥ f ⊥ ⊥ f
> f > f >

∨ f t ⊥ >
f f t ⊥ >
t t t t t
⊥ ⊥ t ⊥ t
> > t t >

⊗ f t ⊥ >
f f ⊥ ⊥ f
t ⊥ t ⊥ t
⊥ ⊥ ⊥ ⊥ ⊥
> f t ⊥ >

⊕ f t ⊥ >
f f > f >
t > t t >
⊥ f t ⊥ >
> > > > >

Figure 2: Extreme Element Operations on FOUR

6 Melvin Fitting

A pre-bilattice has a negation if there is a mapping ¬ : B → B, that reverses ≤t, preserves
≤k, and is an involution. That is, a ≤t b implies ¬b ≤t ¬a; a ≤k b implies ¬a ≤k ¬b; and
¬¬a = a. Such a negation obeys De Morgan’s laws for the truth connectives so, for instance,
¬(a∧b) = (¬a∨¬b). It leaves the information connectives alone, for instance ¬(a⊗b) = (¬a⊗¬b).
On the extreme elements, negation switches f and t, while leaving > and ⊥ alone. In FOUR
negation is seen as a left-right flip.

A pre-bilattice has a conflation if there is a mapping − : B → B, similar to negation, but with
the roles of truth and information switched. It reverses ≤k, preserves ≤t, and is an involution.
A conflation will obey De Morgan’s laws with respect to ⊗ and ⊕ while leaving ∧ and ∨ alone.
Also it switches > and ⊥, while leaving f and t unchanged. In FOUR conflation is a up-down
flip. Generally a conflation is assumed only if there is also a negation, and generally one assumes
negation and conflation commute, −¬a = ¬ − a. This is the case with FOUR for example.

Since each of the bilattice orderings is that of a lattice, monotonicity conditions for meet
and join with respect to their ordering are immediate. For instance, a ≤t b implies a∧ c ≤t b∧ c
and a ≤k b implies a⊗ c ≤k b⊗ c. A bilattice is called interlaced if such conditions hold across
orderings. Explicitly, interlacing requires the following.

a ≤t b implies a⊗ c ≤t b⊗ c
a ≤t b implies a⊕ c ≤t b⊕ c
a ≤k b implies a ∧ c ≤k b ∧ c
a ≤k b implies a ∨ c ≤k b ∨ c

Not all pre-bilattices are interlaced, but interlacing is a common minimal condition to require.
FOUR is an example of an interlaced bilattice. In any interlaced bilattice f ∧ t = ⊥, f ∨ t = >,
⊥⊗> = f , and ⊥⊕> = t.

A pre-bilattice is distributive if all possible distributive laws hold. For instance, ∧ and ∨
should not only distribute over each other, but over ⊗ and ⊕ as well. Thus a ∧ (b ⊕ c) =
(a ∧ b) ⊕ (a ∧ c) is required, as one example. There are 12 distributive laws altogether. Every
distributive bilattice is interlaced. The converse is not true. Once again, FOUR provides an
example, this time of a distributive bilattice.

3.2 Construction and Representation Theorems

There is a simple way of constructing bilattices using what will here be called a bilattice product.
Today it is sometimes known as a twist structure. Suppose L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉
are bounded lattices. Their bilattice product is L1 � L2 = 〈L1 × L2,≤t,≤k〉 where:

〈a, b〉 ≤k 〈c, d〉 iff a ≤1 c and b ≤2 d

〈a, b〉 ≤t 〈c, d〉 iff a ≤1 c and d ≤2 b

Note the reversal of the ≤2 ordering in the definition of ≤t. Informally one can think of members
of L1 as possible evidences for an assertion and members of L2 as possible evidences against.
Then information goes up if both evidence for and evidence against go up, while degree of truth
goes up if evidence for goes up while evidence against goes down.

Bilattice products are good tools for bilattice construction because L1 � L2 is always an
interlaced bilattice. Further, if L1 and L2 are distributive lattices then L1�L2 is a distributive
bilattice. If L1 = L2 = L then L� L is a bilattice with negation, where ¬〈a, b〉 = 〈b, a〉; and if
also L is a non-distributive De Morgan algebra then L� L is a bilattice with a conflation that
commutes with negation, where −〈a, b〉 = 〈b, a〉. In all these cases, the extreme elements of the
bilattice product are ⊥ = 〈01, 02〉, > = 〈11, 12〉, f = 〈01, 12〉, and t = 〈11, 02〉, where 01 and
02 are the least members of L1 and L2, and 11 and 12 are the greatest. Also in all cases the
bilattice operations are the following, where t1 and t2 are the respective lattice joins, and u1

A Family of Strict/Tolerant Logics 7

and u2 are the meets.

〈a, b〉 ∧ 〈c, d〉 = 〈a u1 c, b t2 d〉
〈a, b〉 ∨ 〈c, d〉 = 〈a t1 c, b u2 d〉
〈a, b〉 ⊗ 〈c, d〉 = 〈a u1 c, b u2 d〉
〈a, b〉 ⊕ 〈c, d〉 = 〈a t1 c, b t2 d〉

Bilattice product as a method of construction is completely general because there is a full
family of representation theorems. For instance, if we have an interlaced bilattice then it will be
isomorphic to L1 � L2 for some bounded lattices L1 and L2, and L1 and L2 will be unique up
to isomorphism. If we have an interlaced bilattice with negation then L1 and L2 are isomorphic
(and so can be taken to be identical). And similarly for all the other cases.

3.3 Consistent, AntiConsistent, Exact

For bilattices having a conflation, subsets called exact and consistent were defined in [7], with
anticonsistent added in [11]. Here is the simple characterization.

Definition 3.1 For bilattice B with conflation, a ∈ B is consistent if a ≤k −a, anticonsistent
if −a ≤k a, and exact if a = −a.

In FOUR the exact values are {f , t}, the consistent values are {f , t,⊥}, and the anticon-
sistent values are {f , t,>}. There are examples that show the three-way classification does not
always exhaust an entire bilattice. The representation theorems of the previous section provide
an alternative characterization, whose equivalence is easily checked. Suppose 〈x, y〉 ∈ L � L;
then we have the following.

〈x, y〉 is exact if and only if x = y
〈x, y〉 is consistent if and only if x ≤ y
〈x, y〉 is anticonsistent if and only if y ≤ x

The following play a fundamental role here and are, in a direct sense, generalizations of the
three-valued logic conditions used in [5, 15].

Proposition 3.2 Let B be an interlaced bilattice with negation and conflation.

1. The sets of exact values, consistent values, and anticonsistent values each contain f and
t, while ⊥ is consistent and > is anticonsistent.

2. Each of the consistent, exact, and anticonsistent sets is closed under ∧, ∨, and ¬.

3. Every consistent value is below some exact value, and every anticonsistent value is above
some exact value, in the ≤k ordering.

4. For exact a and b, if a ≤k b then a = b.

Proof We check the second part of item 3, and leave the rest as exercises. And for this we give
two arguments, as illustrations.

Suppose a is anticonsistent. Then −a ≤k a, so −a⊗a ≤k a. And −(−a⊗a) = −−a⊗−a =
a⊗−a, so −a⊗ a is exact, and below a.

For the second argument we use the representation theorems. Suppose 〈x, y〉 ∈ L � L is
anticonsistent, so y ≤ x. Then 〈y, y〉 is exact, and 〈y, y〉 ≤k 〈x, y〉.

In [11] the following item was added to the collection of representation theorems mentioned
in Section 3.2.

Proposition 3.3 Suppose L is a non-distributive De Morgan algebra, and B = L�L. The set
of exact members of B, under the ordering ≤t, is isomorphic to L.

8 Melvin Fitting

We refer the reader to the paper just cited for a direct proof, not making use of the representation
theorems. In Proposition 3.11 we give an extension, and there we make use of the representation
theorems to show it more easily.

3.4 Logical Bilattices

A bilattice is an algebraic structure into which one can map logical formulas. In [2] Arieli and
Avron introduced natural machinery to allow bilattices to define many valued logics. Their
methodology is analogous to what is done with Boolean algebras and prime filters. For Boolean
algebras, all such structures, in fact, characterize the same logic, namely classical logic. For
bilattices, all of the structures of Arieli and Avron also define the same logic, first degree
entailment, the logic associated with the bilattice FOUR.

Definition 3.4 A valuation in bilattice B = 〈B,≤t,≤k〉, with negation, is a mapping v from
the set of propositional letters to members of B. Valuations extend uniquely to the set of all
logical formulas in the familiar way, where the symbols ∧, ∨, and ¬ on the left are part of the
syntax of logic formulas, and those on the right are bilattice operations associated with the
truth ordering.

v(X ∧ Y) = v(X) ∧ v(Y)

v(X ∨ Y) = v(X) ∨ v(Y)

v(¬X) = ¬v(X)

We will use the same symbol v for both a valuation and its extension to all formulas.

We observed in Proposition 3.2 that consistent truth values in B are closed under the truth
operations, and similarly for anticonsistent and exact. This gives us the following.

Proposition 3.5 If a valuation v in a bilattice with negation and conflation maps every propo-
sitional letter to a consistent truth value, it maps every logical formula to a consistent truth
value. Similarly for the exact truth values, and for the anticonsistent truth values.

Valuations have an important monotonicity property that is fundamental to Kripke-style
theories of truth, [7, 9, 10]. Though formal work on self-reference and truth does not concern
us here, monotonicity retains its importance. The following is an easy consequence of the
interlacing conditions and negation conditions.

Proposition 3.6 Let u and v be valuations in B, an interlaced bilattice having negation and
conflation. If u(P) ≤k v(P) for every propositional letter P then u(X) ≤k v(X) for every logical
formula X.

Next we prove a simple result that appears in a more restricted version in earlier work on
strict/tolerant logics. First a few definitions.

Definition 3.7 For valuations u, v in bilattice B that is interlaced and has negation and con-
flation, we write u ≤k v if u(P) ≤k v(P) for every propositional letter P . We say u is exact if
u(P) is exact for every propositional letter P , and similarly for consistent and anticonsistent.

It follows from Proposition 3.6 that if u ≤k v in an interlaced bilattice with negation and
conflation, then u(X) ≤k v(X) for every formula X. Likewise by Proposition 3.5, if u is exact,
then u(X) is exact for every formula X, and similarly for consistent and anticonsistent.

We next turn to the notion of sharpening, which was introduced in [15] specifically for the
original ST case, and is now broadened.

Definition 3.8 Let u and v be anticonsistent valuations in bilattice B. We say u sharpens v if
u ≤k v and u is exact.

A Family of Strict/Tolerant Logics 9

We have the following rather simple proposition, which plays a surprisingly important role.

Proposition 3.9 Let B be an interlaced bilattice with negation and conflation.

1. Every anticonsistent valuation v in B has a sharpening.

2. If u sharpens v in B then u and v agree on exact values. That is, if u(P) and v(P) are
both exact, then u(P) = v(P).

Proof For part 1, let v be an anticonsistent valuation. By Proposition 3.2, every anticonsistent
member of B has an exact value below it in the ≤k ordering. For each propositional letter P
choose an exact a ≤k v(P), and let u(P) = a. Then u is exact and u ≤k v, so u is a sharpening
of v.

For part 2, suppose u sharpens v and u(P) and v(P) are both exact. By definition of
sharpening, u(P) ≤k v(P) so by Proposition 3.2 part 4, u(P) = v(P).

Now we turn to an important and fundamental notion, originating in [2].

Definition 3.10 A prime bifilter on B is a proper, non-empty subset F ⊆ B, that meets the
following conditions.

(PB-1) (a ∧ b) ∈ F if and only if a ∈ F and b ∈ F
(PB-2) (a⊗ b) ∈ F if and only if a ∈ F and b ∈ F
(PB-3) (a ∨ b) ∈ F if and only if a ∈ F or b ∈ F
(PB-4) (a⊕ b) ∈ F if and only if a ∈ F or b ∈ F
A logical bilattice is a pair 〈B,F〉 where F is a prime bifilter on B.

It is easy to show that a prime bifilter is upward closed in both bilattice orderings. FOUR
has exactly one prime bifilter, and thus the only logical bilattice built on FOUR is the one
in Figure 3, with the prime bifilter shown circled. Other examples can be found in [2, 11]. A
logical bilattice characterizes a many valued logic by taking the members of the bilattice as
truth values, with members of the prime bifilter as designated. The logical bilattice FOUR is
one of the common ways of specifying first degree entailment. In [2] a very nice result is shown:
the valid sequents of any logical bilattice are the same as they are for FOUR using the prime
bifilter {t,>}. This hardly means that the general family of logical bilattices looses its interest.
We will see some reasons why later on.

Finally, Proposition 3.3 has the following extension to logical bilattices and it is central to
our work.

Proposition 3.11 Let 〈L,D〉 be a non-distributive logical De Morgan algebra, where D is a
prime filter on L. The following hold.

1. D × L is a prime bifilter on the bilattice L� L, so 〈L� L,D × L〉 is a logical bilattice.

2. The set of exact members of the bilattice L� L, under ≤t, is isomorphic to L.

3. Under that isomorphism, the set of exact members of D × L is isomorphic to D.

Briefly stated, the logical De Morgan algebra 〈L,D〉 is isomorphic to the exact part of the logical
bilattice 〈L� L,D × L〉.

Proof Assume 〈L,D〉 is a non-distributive logical De Morgan algebra, and D is a prime filter
on L.

1. Four conditions must be checked; we do one, (PB-3), the others are similar. Assume
〈x, y〉, 〈z, w〉 ∈ L�L. Suppose first that 〈x, y〉∨〈z, w〉 ∈ D×L, that is, 〈xtz, yuw〉 ∈ D×L.
Then x t z ∈ D, which is a prime filter, so either x ∈ D or z ∈ D, say the first. Then
〈x, y〉 ∈ D × L. Conversely, suppose that 〈x, y〉 ∈ D × L. Then x ∈ D so x t z ∈ D since
it is a prime filter. But then 〈x t z, y u w〉 ∈ D × L, that is, 〈x, y〉 ∨ 〈z, w〉 ∈ D × L.

10 Melvin Fitting

2. Let E be the set of exact members of L � L. As we noted in Section 3.3, E consists of
those members of L�L of the form 〈x, x〉. Let θ : E → L be defined by θ(〈x, x〉) = x. It is
obvious that θ is 1-1 and onto. Finally, for x, y ∈ L, x ≤ y if and only if y ≤ x. So x ≤ y
if and only if x ≤ y and y ≤ x if and only if 〈x, x〉 ≤t 〈y, y〉. And thus θ(〈x, x〉) ≤ θ(〈y, y〉)
if and only if 〈x, x〉 ≤t 〈y, y〉.

3. The mapping θ, defined above, when restricted to E∩(D×L), the exact members of D×L,
is still 1-1, and order preserving. It is onto D because, for each x ∈ D, 〈x, x〉 ∈ E ∩ (D×L)
and θ(〈x, x〉) = x.

4 Our Basic Construction

Figure 3: First Degree Entailment, FOUR

In [11] we proved a simpler version of Proposition 2.4 using a construction involving bilattices.
We begin this section by repeating some notation from that paper and giving an outline of the
steps of the construction.

Definition 4.1 Let B be an interlaced bilattice with negation and conflation, and let F be
a prime bifilter on B, so that 〈B,F〉 is a logical bilattice. Let A be the set of anticonsistent
members of B, and let E be the set of exact members. We define the following sets, structures,
and notations for them.

Tolerant Truth Values: DT 〈B,F〉 = F ∩A.

Strict Truth Values: DS〈B,F〉 = F ∩ E .

Strict/Tolerant: 〈〈A,≤t〉,DS〈B,F〉,DT 〈B,F〉〉 is a Strict/Tolerant structure, where the under-
lying space of truth values is the anticonsistent part of the bilattice B using ≤t as lat-
tice ordering, the strict truth values are the exact members of the prime bifilter F , and
the tolerant values are the anticonsistent members of F . We abbreviate Strict/Tolerant
ST〈〈A,≤t〉,DS〈B,F〉,DT 〈B,F〉〉 by ST〈B,F〉, and thus Definition 2.3 provides a meaning
for ST〈B,F〉 |=v Γ ⇒ ∆, and for ST〈B,F〉 validity. This provides our generalization of
the standard Strict/Tolerantlogic ST.

Classical: 〈〈E ,≤t〉,DS〈B,F〉〉 is a many valued logic structure, whose truth value space is the
exact part of B ordered by ≤t, and having those exact members that are in the prime
bifilter F as the designated set. We write C〈B,F〉 as shorthand for C〈〈E ,≤t〉,DS〈B,F〉〉,
so Definition 2.2 provides a meaning for C〈B,F〉 |=v Γ⇒ ∆ and for C〈B,F〉 validity. This
provides our generalization of classical logic.

A Family of Strict/Tolerant Logics 11

Next we sketch our construction for establishing Proposition 2.4. As we go along we illustrate
the steps by applying them to classical logic, which was the original setting for Strict/Tolerant
investigations.

Construction 4.2 (Establishing Proposition 2.4)

(Step 1) Start with a non-distributive logical De Morgan algebra, 〈L,D〉. We say how to con-
struct a Strict/Tolerant logic agreeing with 〈L,D〉 at the consequence level, but differing
at the metaconsequence level.

Continuing Example: We follow an example through the steps of the construction. In this
example we take for L the simplest non-trivial De Morgan algebra whose lattice is {0, 1}
with 0 < 1, and whose involution is 0 = 1, and 1 = 0. (It is distributive, but we make
no use of that.) The subset D = {1} is a prime filter, and the corresponding logical De
Morgan algebra is simply the standard truth value space for classical logic.

(Step 2) Construct the bilattice product L�L as described in Section 3.2. It will be interlaced,
with a negation and a conflation. Note that by Proposition 3.3 the exact part, ordered by
≤t, will be isomorphic to L.

Continuing Example: For the De Morgan algebra of our classical logic example, the result-
ing bilattice is FOUR, shown in Figure 1. Using notation from that diagram the exact
part is {f , t}, which is isomorphic to the domain {0, 1} of the De Morgan algebra that we
began with.

(Step 3) The subset D × L of L× L is a prime bifilter of L� L, so 〈L� L,D × L〉 is a logical
bilattice as described in Section 3.4.

Continuing Example: In our running example, we get what is shown in Figure 3 with the
prime bifilter circled. In fact this is the structure for first degree entailment.

(Step 4) The exact part of 〈L�L,D×L〉 is isomorphic to the logical De Morgan algebra 〈L,D〉
with which we began, by Proposition 3.11. In other words, C〈L�L,D×L〉 and 〈L,D〉 are
isomorphic.

Continuing Example: Continuing our example, we have a logical De Morgan algebra with
truth values {0, 1} and with {1} designated. The exact part of the bilattice L� L is {f , t}
with {t} designated.

(Step 5) ST〈L�L,D×L〉 and C〈L�L,D×L〉 validate the same sequents, shown as Proposi-
tion 4.3 below. There is a metaconsequence scheme every instance of which is locally valid
in C〈L�L,D×L〉 but with an instance that is not locally valid in ST〈L�L,D×L〉, shown
as Proposition 4.4. Finally, there is an isomorphic copy 〈L∗, D,D∗〉 of ST〈L� L,D × L〉
that meets the structural conditions of Proposition 2.4. This is shown as Proposition 4.5.

Continuing Example: The anticonsistent part of FOUR is {f ,>, t} with f ≤t > ≤t t.
T = {>, t} and S = {t}. This is, in fact, a presentation of the semantic structure
for the standard strict/classical logic ST. When applied to this example, the proofs for
Propositions 4.3 and 4.4 are clearly versions of those for the standard classical and ST
connection, as found in the literature.

In (Step 5) above, we simply stated results; the details are found in the Propositions below.
Some of this repeats what is in [11].

Proposition 4.3 Using the Construction above, ST〈L�L,D×L〉 and C〈L�L,D×L〉 validate
the same sequents.

Proof First assume Γ ⇒ ∆ is valid in ST〈L � L,D × L〉. Let v be an arbitrary valuation in
C〈L� L,D × L〉 mapping every formula in Γ to DS〈L� L,D × L〉. Since exact values are also
anticonsistent, v is a valuation in ST〈L�L,D×L〉 too. Since v maps all of Γ to DS〈L�L,D×L〉
and Γ⇒ ∆ is valid in ST〈L�L,D×L〉, then for some Y ∈ ∆, v(Y) ∈ DT 〈L�L,D×L〉. But

12 Melvin Fitting

by Proposition 3.5, v(Y) will be exact, and so is in the set DS〈L � L,D × L〉. It follows that
C〈L� L,D × L〉 |=v Γ⇒ ∆. Since v was arbitrary, Γ⇒ ∆ is validated in C〈L� L,D × L〉.

Next assume Γ ⇒ ∆ is not valid in ST〈L � L,D × L〉. Then there is a valuation v in
ST〈L � L,D × L〉 mapping every X in Γ to DS〈L � L,D × L〉, but for some Y ∈ ∆, v(Y) 6∈
DT 〈L� L,D × L〉. Then v(Y) must be anticonsistent but not in the prime bifilter D × L.

By Proposition 3.9, v has a sharpening, choose one and call it u. Then u is a valuation
in C〈L � L,D × L〉. We show that C〈L � L,D × L〉 6|=u Γ ⇒ ∆. Since u is exact, then for
every logical formula X, u(X) is exact. Also v maps members of Γ to exact values. Then by
Proposition 3.9 part 2, u and v must agree on members of Γ, and so u maps every member of
Γ to DS〈L� L,D × L〉.

There is a formula Y ∈ ∆ such that v(Y) 6∈ DT 〈L � L,D × L〉, so v(Y) is anticonsistent
but not in D × L. If we had that u(Y) ∈ DS〈L � L,D × L〉 then u(Y) would be both exact
and in the prime bifilter D × L. Being in this prime bifilter we would also have v(Y) in the
prime bifilter because u(Y) ≤k v(Y) and prime bifilters are upward closed in both bilattice
orderings. But v(Y) is not in D × L, and hence u(Y) 6∈ D〈L � L,D × L〉. It follows that
C〈L� L,D × L〉 6|=u Γ⇒ ∆.

Proposition 4.4 Again using the Construction above, the metaconsequence scheme

Γ, A⇒ ∆ Γ⇒ ∆, A
Γ⇒ ∆

is locally valid in C〈L � L,D × L〉, but an instance is not locally valid in ST〈L � L,D × L〉.
(Local validity for a logic means that each valuation that validates all the premises of a schema
also validates the conclusion.)

Proof First we show local validity in C〈L�L,D×L〉, by showing the contrapositive. Suppose
v is a valuation in C〈L � L,D × L〉 but C〈L � L,D × L〉 6|=v Γ ⇒ ∆. Then v maps formulas
to exact members of L� L, for every X ∈ Γ, v(X) ∈ DS〈L� L,D × L〉, and for every Y ∈ ∆,
v(Y) 6∈ DS〈L�L,D×L〉. Either v(A) ∈ DS〈L�L,D×L〉 or v(A) 6∈ DS〈L�L,D×L〉. If the
first, then v(X) ∈ DS〈L�L,D×L〉 for every X in Γ, A, so C〈L�L,D×L〉 6|=v Γ, A⇒ ∆. If the
second, then v(Y) 6∈ DS〈L� L,D × L〉 for every Y in ∆, A, so C〈L� L,D × L〉 6|=v Γ⇒ ∆, A.
Either way, v does not validate one of the premises of the metaconsequence.

Second we show local non-validity in ST〈L�L,D×L〉. Pick any sequent Γ⇒ ∆ that is not
valid in ST〈L � L,D × L〉 (∅ ⇒ ∅ will do, for instance) and let v be a valuation that does not
validate it. That is, v maps to anticonsistent members of L� L, v(X) ∈ DS〈L� L,D × L〉 for
every X ∈ Γ, and v(Y) 6∈ DT 〈L� L,D × L〉 for every Y ∈ Γ.

Let P be a propositional letter that does not occur in Γ or in ∆ and redefine v so that
v(P) = >, where > is the largest member of L � L in the ≤k ordering. This can be done
without changing the behavior of v on Γ or ∆. We know that > is in the prime bifilter D × L
because prime bifilters are upward closed in both orderings. Also > is anticonsistent, but not
exact. Then ST〈L � L,D × L〉 |=v Γ, P ⇒ ∆ because v(P) 6∈ DS〈L � L,D × L〉, since v(P) is
not exact. Also ST〈L� L,D × L〉 |=v Γ⇒ ∆, P because v(P) = > ∈ DT 〈L� L,D × L〉, since
> is anticonsistent. Then v is a counterexample to the local validity of the metaconsequence
scheme, taking A to be the propositional letter P .

The proper status of cut has nuances that might not be obvious on first sight. This will be
discussed in Section 8.

Proposition 4.5 There is a Strict/Tolerant structure 〈L∗, D,D∗〉 that meets the structural
conditions of Proposition 2.4 and is isomorphic to the Strict/Tolerant structure of ST〈L �
L,D × L〉.

A Family of Strict/Tolerant Logics 13

Proof Recall that ST〈L�L,D×L〉 abbreviates ST〈〈A,≤t〉,DS〈L�L,D×L〉,DT 〈L�L,D×L〉〉,
where A is the anticonsistent part of L � L. Making use of Definition 4.1, the Strict/Tolerant
structure here is actually 〈〈A,≤t〉, (D×L)∩E , (D×L)∩A〉, where E is the exact part of L�L.
By Proposition 3.11 we know that 〈E ,≤t〉 (where ≤t is understood as being restricted to E) is
isomorphic to L, under an isomorphism θ that pairs up (D × L) ∩ E and D. Extend θ to the
entire of A by making it the identity on anticonsistent but not exact members. Now let L∗ be
the image of 〈A,≤t〉 under θ. Let D∗ be the image of (D × L) ∩ A under θ, and note that D
is the image of (D × L) ∩ E . The structure 〈L∗, D,D∗〉 is easily seen to meet the conditions of
Proposition 2.4.

5 Examples

We present several familiar examples of logical De Morgan algebras, and of the logical bilattices
constructed from them.

Example 5.1 (Classical Logic) The truth value space of classical logic is, of course, the
logical De Morgan algebra {0, 1} with the usual numerical ordering as its lattice ordering, and
with {1} as the set of designated truth values. The bilattice product of this with itself is FOUR,
and the prime bifilter we get from (Step 3) of Construction 4.2 is shown in Figure 3.

Example 5.2 (Kleene Strong Three-Valued Logic, K3) As truth values take {0, 12 , 1} with
the numerical ordering as lattice ordering, and with the designated set being the prime filter {1}.
It is a simple but good exercise for this and the next example, to construct the corresponding
logical bilattice.

Example 5.3 (Priest’s Logic of Paradox, LP) Use the same De Morgan algebra as in the
previous example, but now { 12 , 1} is the prime filter of designated values.

Example 5.4 (First Degree Entailment, FDE) In [11] a Strict/Tolerant example of some
complexity was presented, Example 10.5 in the numbering of that paper. Since it is somewhat
complex, it should be informative to present a detailed picture, which we do in Figure 4. Start
with the bilattice FOUR as shown in Figure 1, and consider the lattice we get by only consid-
ering the ≤t ordering, call it FOURt. This is a De Morgan algebra, using the bilattice negation
as the De Morgan involution. The bilattice product FOURt � FOURt is shown in Figure 4a;
it was called SIXT EEN in [11].

In the bilattice FOURt � FOURt, −〈⊥,>〉 = 〈¬>,¬⊥〉 = 〈>,⊥〉, using the negation of
FOUR. Likewise −〈>,⊥〉 = 〈⊥,>〉. Thus neither 〈⊥,>〉 nor 〈>,⊥〉 is exact. Likewise, neither
is consistent or anticonsistent. Our three-way classification is not exhaustive here. Figure 4b
highlights the anticonsistent values.

The only prime bifilter for FOUR is shown in Figure 3. It is a prime filter when considered
just on FOURt; let us call this prime filter Pt. Then 〈FOURt,Pt〉 is a logical De Morgan
algebra. This induces a prime bifilter in FOURt � FOURt, namely Pt × FOURt, consisting
of the members of the bilattice product whose first component is t or >, and this prime bifilter
is shown in Figure 4c.

We now construct the Strict/Tolerant/strict logic ST〈FOURt�FOURt,Pt×FOURt〉. The
truth values are the anticonsistent members of FOURt � FOURt. The tolerantly designated
truth values are the anticonsistent members of the prime bifilter, DT 〈FOURt�FOURt,Pt〉 =
{〈t, t〉, 〈>, t〉, 〈t,>〉, 〈t,⊥〉, 〈>,>〉, 〈t, f〉}. The strictly designated truth values are the exact
members of the prime bifilter, DS〈FOURt � FOURt,Pt〉 = {〈>,>〉, 〈t, f〉}. All this is shown
in Figure 4d, with the anticonsistent values highlighted, the tolerant designated values in the
oval , and the strictly designated values in the rectangle.

The classical analog, C〈FOURt �FOURt,Pt ×FOURt〉, has as its truth values the set of
exact values, that is, {〈f , t〉, 〈⊥,⊥〉, 〈>,>, 〉, 〈t, f〉, with 〈>,>〉, 〈t, f〉} as designated values. This
is isomorphic to the logical De Morgan algebra 〈FOURt,Pt〉 with which we began.

14 Melvin Fitting

(a) FOURt �FOURt Entire (b) FOURt �FOURt Anticonsistent Part

(c) FOURt � FOURt with Prime
Bifilter

(d) FOURt �FOURt with
Strict/Tolerant Structure

Figure 4: FOURt �FOURt and Subsystems

6 Tolerant/Strict Logics

We now start on new material. We have been looking at Strict/Tolerant logics; now we dualize
to Tolerant/Strict logics, in which the conclusion of the consequence relation is held to stricter
standards than the premise. For Tolerant/Strict logics definitions are almost the same as in
the Strict/Tolerant version we have been discussing, but with the roles of strict and tolerant
interchanged.

Definition 6.1 (Tolerant/Strict Logic) Let 〈L, S, T 〉 be a Strict/Tolerant logic structure,
as specified in Definition 2.3. A valuation v in L validates sequent Γ⇒ ∆ in the Tolerant/Strict
sense provided that, if v maps every member of Γ to T then v maps some member of ∆ to S.
We symbolize this by TS〈L, S, T 〉 |=v Γ ⇒ ∆ (and call v a valuation in TS〈L, S, T 〉). For a
single formula X we have that TS〈L, S, T 〉 |=v ∅ ⇒ X if and only if v(X) ∈ S, which we may
write as TS〈L, S, T 〉 |=v X.

1. Γ ⇒ ∆ is a TS〈L, S, T 〉 validity if TS〈L, S, T 〉 |=v Γ ⇒ ∆ for every valuation v in
TS〈L, S, T 〉.

A Family of Strict/Tolerant Logics 15

2. Γ ⇒ ∆ is a TS〈L, S, T 〉 antivalidity if TS〈L, S, T 〉 |=v Γ ⇒ ∆ for no valuation v in
TS〈L, S, T 〉.

Apart from the reversal of the roles of tolerant and strict designated values, the main new
item here is antivalidity. The emphasis on it derives from [15], where it turned out to play a
fundamental role, as it does here. In fact, one should not expect TS results about validity that
are in any way analogous to the ST results in Proposition 2.4, because the TS validities of any
Strict/Tolerant structure are never the same set as the set of validities of a non-distributive
logical De Morgan algebra. The reason is simple. In any non-distributive logical De Morgan
algebra X ⇒ X is validated for every formula X because it says that, for any valuation v, if
v(X) is designated then v(X) is designated. But if 〈L, S, T 〉 is any Strict/Tolerant structure
then S will be a proper non-empty subset of T . So if we take X to be atomic and let v(X) be
any member of T that is not in S, then v does not TS validate X ⇒ X in 〈L, S, T 〉.

Antivalidity for any logic is defined in a similar way. We will need it for C, but omit the
obvious definition. Connections now turn out to be between antivalidity in non-distributive
logical De Morgan algebras and TS antivalidity in Strict/Tolerant structures. We should note
that every non-distributive logical De Morgan algebra has antivalidities since ∅ ⇒ ∅ can never
be validated by any valuation.

Definition 6.2 (Continuing Definition 4.1) Assume the same conditions and notation as
in Definition 4.1: B is an interlaced bilattice with negation and conflation, F is a prime bifilter
on B and so 〈B,F〉 is a logical bilattice, and A is the set of anticonsistent members of B.

Tolerant/Strict: Recall that 〈〈A,≤t〉,DS〈B,F〉,DT 〈B,F〉〉 is a Strict/Tolerant structure, with
truth values being the anticonsistent part of bilattice B with ≤t as ordering, the tolerant
values being the anticonsistent members of F , and the strict values being the exact mem-
bers of F . We abbreviate TS〈〈A,≤t〉,DS〈B,F〉,DT 〈B,F〉〉 by TS〈B,F〉, thus providing a
meaning for TS〈B,F〉 |=v Γ⇒ ∆, and for TS〈B,F〉 validity and antivalidity.

As described in Construction 4.2, starting with a non-distributive logical De Morgan algebra
〈L,D〉 we construct a logical bilattice 〈L� L,D × L〉 following (Step 1) through (Step 4). But
now in place of (Step 5), we switch the roles of tolerant and strict, and of valid and antivalid.

(Alt Step 5) TS〈L�L,D×L〉 and C〈L�L,D×L〉 have the same set of antivalid sequents, but
differ on antivalidity at the metaconsequence level.

The following supply the proof for this.

Proposition 6.3 Let 〈B,F〉 be a logical bilattice, where B is interlaced, with negation and
conflation. The logics TS〈B,F〉 (Definition 6.1) and C〈B,F〉 (Definition 4.1) have the same
antivalid sequents.

Proof Recall that the strictly designated values, DS〈B,F〉, in TS〈B,F〉 are the same as the
designated values in C〈B,F〉, and also that DS〈B,F〉 is the exact subset of the set of tolerantly
designated values DT 〈B,F〉.
Left to Right : We show that if Γ ⇒ ∆ is antivalid in TS〈B,F〉 then it is antivalid in C〈B,F〉,

and we argue conversely. Assume Γ ⇒ ∆ is not antivalid in C〈B,F〉. Then there is
some valuation v that maps to E , the exact part of B, and C〈B,F〉 |=v Γ ⇒ ∆. Either
v(X) 6∈ DS〈B,F〉 for some X ∈ Γ or v(Y) ∈ DS〈B,F〉 for some Y ∈ ∆. Since every exact
value is anticonsistent, v is also a valuation in TS〈B,F〉. If v(X) ∈ DT 〈B,F〉, since v maps
to exact values we would have v(X) ∈ DS〈B,F〉. Hence either v(X) 6∈ DT 〈B,F〉 for some
X ∈ Γ, or v(Y) ∈ DS〈B,F〉 for some Y ∈ ∆, so TS〈B,F〉 |=v Γ⇒ ∆, and thus Γ⇒ ∆ is
not antivalid in TS〈B,F〉.

Right to Left : We show that if Γ⇒ ∆ is antivalid in C〈B,F〉 then it is antivalid in TS〈B,F〉, and
again we argue conversely. Assume Γ⇒ ∆ is not antivalid in TS〈B,F〉. Then there is some
valuation v mapping to A, the anticonsistent part of B, such that TS〈B,F〉 |=v Γ ⇒ ∆.
Either v(X) 6∈ DT 〈B,F〉 for some X ∈ Γ, or v(Y) ∈ DS〈B,F〉 for some Y ∈ ∆.

16 Melvin Fitting

Define a new valuation v′ as follows. For every propositional letter P , v(P) is anticonsis-
tent, and so there is some exact value x with x ≤k v(P). Choose one, and let it be v′(P).
Then v′ maps to exact values and hence is a valuation in C〈B,F〉. By Proposition 3.6,
v′(Z) ≤k v(Z) for every formula Z.

Suppose we have that v(X) 6∈ DT 〈B,F〉 for some X ∈ Γ. If v′(X) ∈ DS〈B,F〉 then
v′(X) ∈ DT 〈B,F〉, since the set of strict values is a subset of the set of tolerant ones. But
this set is F ∩A, the intersection of the prime bifilter and the anticonsistent values. Since
v′(X) ≤k v(X) then we would have v(X) ∈ DT 〈B,F〉 since bifilters are closed upward in
both orderings, and the anticonsistent part of B is also closed upward in the ≤k ordering.
This contradicts the supposition, so v′(X) 6∈ DS〈B,F〉.
Suppose we have that v(Y) ∈ DS〈B,F〉 for some Y ∈ ∆. Then v(Y) is exact, since
members of DS〈B,F〉 are. Since v′ maps to exact values, v′(Y) is exact. But also v′(Y) ≤k

v(Y), so it follows that v′(Y) = v(Y). Thus v′(Y) ∈ DS〈B,F〉.
Thus either v′(X) 6∈ DS〈B,F〉 for some X ∈ Γ or v′(Y) ∈ DS〈B,F〉 for some Y ∈ ∆, so
C〈B,F〉 |=v′ Γ⇒ ∆, and Γ⇒ ∆ is not antivalid in C〈B,F〉.

Proposition 6.4 Under the same conditions as in Proposition 6.3, the metaconsequence scheme

X ⇒ X
∅ ⇒ ∅

is locally antivalid in C〈L�L,D×L〉, but there is an instance that is not in TS〈L�L,D×L〉.
(Local antivalidity means that every valuation validates the premises but does not validate the
conclusion.)

Proof The first assertion is simply the consequence of the observations that X ⇒ X is a validity
in every logical De Morgan algebra, while ∅ ⇒ ∅ is never validated by any valuation. For the
second, let P be a propositional letter and let v be a valuation in TS〈L�L,D×L〉 mapping P
to >, the largest member of L� L under the ≤k ordering. Then TS〈L� L,D × L〉 6|=v P ⇒ P
because > ∈ DT 〈B,F〉 but > 6∈ DS〈B,F〉.

7 The Strict/Tolerant Hierarchy

The main result of [5] is that the results relating the original ST and classical logic can be “pushed
upwards” by moving to metaconsequence, past it to metametaconsequence, and beyond. Let us
say this in a bit more detail.

We have been thinking of a sequent, Γ⇒ ∆, as a concrete representation of a multiconclusion
consequence relation. Ordinarily cut is represented as

Γ, A⇒ ∆ Γ⇒ ∆, A
Γ⇒ ∆

which is a kind of metaconsequence statement, Read it as: from the two premise consequences
the conclusion consequence follows. But this is only one level up, and one can go further. Of
course this gets hard to read after a while, not to mention hard to type. In [5] the representation
selected is a version of higher type sequents. The cut rule becomes something like the following,
where parentheses have been used to avoid any confusion, and a ‘meta-arrow’ ⇒∗ is employed.

(Γ, A⇒ ∆), (Γ⇒ ∆, A)⇒∗ (Γ⇒ ∆)

A metaconsequence expression, then, would have as premises some consequence statements,
and have some consequence statements as conclusion. But then one can introduce a metameta-
consequence expression, which would have metaconsequence statements, and metaconsequence

A Family of Strict/Tolerant Logics 17

conclusions. And so on. Following [5] we use integer indexes on our arrows, thinking of them
as representing the level of ‘meta’ we are at. Formulas themselves are not really sequents, but
it is handy to think of them as sequents in a degenerate sense—sequents of level 0. Above this
ground level we have the hierarchy of proper sequent levels as we have loosely described them,
and which we now properly characterize.

Definition 7.1 (The Sequent Hierarchy)

Seq0 = the set of all formulas

Seqn+1 = {Γ⇒n+1 ∆ | Γ,∆ finite subsets of Seqn}

So far this has all been syntax. Semantics can be introduced, and for logical De Morgan
algebras at least, this is almost straightforward. We say “almost” because there are actually
two ways of doing it: local validity and global validity. Consider, for example, the familiar rule
of disjunctive syllogism, in classical logic.

¬X X ∨ Y
Y

Using the classical notion of two-valued valuations in the space {f , t}, this could be taken to
mean either of the following. First, local validity: each valuation that maps both premises ¬X
and X ∨ Y to t also maps the conclusion, Y , to t. Second, global validity: if both premises
are valid then the conclusion is valid, where validity for a formula means that every valuation
maps that formula to t. Commonly when discussing classical axiom systems we would justify
disjunctive syllogism as a rule by saying that it preserves validity, and we (probably) have global
validity in mind when we say this. But when we verify this preservation assertion, it is typically
local validity that we prove. In fact local validity is stronger; it is easy to see that it implies
global validity, at least for single conclusion sequents. On the other hand, in a modal setting we
commonly have a Rule of Necessitation, and this is globally valid without being locally valid.

Actually, what was just said is an oversimplification, but it is enough to motivate what
immediately follows. A fuller discussion will be found in Section 8, after some preliminaries
have been considered that will make our discussion more fruitful.

In the discussion of Strict/Tolerant logic and the hierarchy based on it, found in [5], local
validity is used throughout, and here we follow them in this. We begin by extending the notion
of validity in logical De Morgan algebras (Definition 2.2) to higher level sequents.

Definition 7.2 Let 〈L,D〉 be a non-distributive logical De Morgan algebra, and let v be a
valuation mapping propositional letters to L. We know that v extends to a mapping from all
formulas to L in the standard way.

Seq0: Let X ∈ Seq0, that is, X is a formula. Then C〈L,D〉 |=v X provided v(X) ∈ D.

Seqn+1: Let Γ ⇒n+1 ∆ ∈ Seqn+1. Then C〈L,D〉 |=v Γ ⇒n+1 ∆ provided that C〈L,D〉 |=v γ
for each γ ∈ Γ implies C〈L,D〉 |=v δ for some δ ∈ ∆.

A sequent Γ⇒n+1 ∆ ∈ Seqn+1 is C〈L,D〉 valid if C〈L,D〉 |=v Γ⇒n+1 ∆ for every valuation v
in L.

We look at a couple of examples. Suppose that n = 0, so Γ⇒n+1 ∆ is Γ⇒1 ∆, and Γ and
∆ are subsets of Seq0 and hence are sets of formulas. The definition of Γ⇒1 ∆ coincides with
that for Γ ⇒ ∆ from Definition 2.2, and so ⇒1 is simply alternate notation for ⇒. Then the
metaconsequence scheme appearing in the statement of Proposition 4.4 can also be written as

Γ, A⇒1 ∆ Γ⇒1 ∆, A
Γ⇒1 ∆

and this in turn can be written as the following higher level sequent.

{(Γ, A⇒1 ∆), (Γ⇒1 ∆, A)} ⇒2 {Γ⇒1 ∆}

18 Melvin Fitting

Proposition 4.4 really amounts to showing local validity for this in every non-distributive logical
De Morgan algebra, and non validity in the corresponding Strict/Tolerant logic..

The sets Seq0, Seq1, Seq2, . . . do not overlap, but there is a natural sense in which each
contains copies of its predecessors. Suppose, for instance, that Γ⇒3 ∆ ∈ Seq3. While Γ⇒3 ∆
is not in Seq4, the sequent ∅ ⇒4 {Γ ⇒3 ∆} is, and it is easy to see that for any valuation v in
logical De Morgan algebra 〈L,D〉, we have that C〈L,D〉 |=v Γ⇒3 ∆ if and only if C〈L,D〉 |=v

∅ ⇒4 {Γ ⇒3 ∆}. Indeed we have already seen the special case of n = 0, where we identified
C〈L,D〉 |=v ∅ ⇒ X with C〈L,D〉 |=v X. In Gentzen sequent calculus proof systems this
is used to define provability of a formula, since technically only sequents are provable. We
note that similar remarks apply to higher level sequents, and to the corresponding higher level
Strict/Tolerant and Tolerant/Strict systems we are about to discuss.

In [5], the Strict/Tolerant and Tolerant/Strict counterparts of classical logic were extended
to higher level sequents, with interesting results, which were further extended in [15]. We now
set about showing that the results are more general than the classical setting, extending to all
non-distributive logical De Morgan algebras.

Definition 7.3 (Strict/Tolerant Hierarchy) Let 〈L, S, T 〉 be a Strict/Tolerant structure,
and let v be a valuation in L. For each n = 0, 1, 2, . . . we define STn〈L, S, T 〉 and TSn〈L, S, T 〉
local validity by simultaneous recursion.

ST0: Let X ∈ Seq0. Then ST0〈L, S, T 〉 |=v X provided v(X) ∈ T .

TS0: Let X ∈ Seq0. Then TS0〈L, S, T 〉 |=v X provided v(X) ∈ S.

STn+1: Let Γ ⇒n+1 ∆ ∈ Seqn+1. Then STn+1〈L, S, T 〉 |=v (Γ ⇒n+1 ∆) provided that
TSn〈L, S, T 〉 |=v γ for all γ ∈ Γ implies STn〈L, S, T 〉 |=v δ for some δ ∈ ∆.

TSn+1: Let Γ ⇒n+1 ∆ ∈ Seqn+1. Then TSn+1〈L, S, T 〉 |=v (Γ ⇒n+1 ∆) provided that
STn〈L, S, T 〉 |=v γ for all γ ∈ Γ implies TSn〈L, S, T 〉 |=v δ for some δ ∈ ∆.

It should be pointed out that notation here is not yet standardized. In [15] what we denote
by STn is denoted by Tn, and TSn by Sn. In [5] Ln is used for our STn, and Ln for our TSn.
Following [5, 15], one often sees the n + 1 level conditions above symbolized as the following
(using our notation).

STn+1〈L, S, T 〉 = TSn〈L, S, T 〉/STn〈L, S, T 〉
TSn+1〈L, S, T 〉 = STn〈L, S, T 〉/TSn〈L, S, T 〉

Putting various definitions together, the following items are straightforward to show.

(Seq-1) For a formula X, ST0〈L, S, T 〉 |=v X if and only if ST〈L, S, T 〉 |=v X if and only if
C〈L, T 〉 |=v X (Definition 2.3)

(Seq-2) For a formula X, TS0〈L, S, T 〉 |=v X if and only if TS〈L, S, T 〉 |=v X if and only if
C〈L, S〉 |=v X (Definition 6.1)

(Seq-3) For sets of formulas Γ and ∆, ST1〈L, S, T 〉 |=v Γ ⇒1 ∆ if and only if ST〈L, S, T 〉 |=v

Γ⇒ ∆ (Definition 2.3)

(Seq-4) For sets of formulas Γ and ∆, TS1〈L, S, T 〉 |=v Γ ⇒1 ∆ if and only if TS〈L, S, T 〉 |=v

Γ⇒ ∆ (Definition 6.1)

Now we extend Definitions 4.1 and 6.2 to the hierarchical setting.

Definition 7.4 Let 〈B,F〉 be a logical bilattice, where B is an interlaced bilattice with nega-
tion and conflation and F is a prime bifilter on it. As before, 〈〈A,≤t〉,DS〈B,F〉,DT 〈B,F〉〉 is
a Strict/Tolerant structure, where A is the anticonsistent part of B. We write STn〈B,F〉 as short
for STn〈〈A,≤t〉,DS〈B,F〉,DT 〈B,F〉〉, and TSn〈B,F〉 for TSn〈〈A,≤t〉,DS〈B,F〉,DT 〈B,F〉〉. Also
recall that C〈B,F〉 abbreviates C〈〈E ,≤t〉,DS〈B,F〉〉, where E is the exact part of B.

A Family of Strict/Tolerant Logics 19

The original version of the heirarchy above was introduced in [5], where only the case of
classical logic and the original notion of ST based on the Kleene and Priest logics were considered.
This work was extended in [15], but still only the classical setting was examined. In fact, the
results in the papers just cited extend to the entire infinite family of non-distributive logical
De Morgan algebras, with classical logic as the simplest example. We are seeing a very general
phenomenon.

Proposition 7.5 Let 〈B,F〉 be a logical bilattice, where B is interlaced and has negation and
conflation. For n = 1, 2, . . ., the many valued C〈B,F〉 and the Strict/Tolerant STn〈B,F〉 validate
the same members of Seqn, but differ on Seqn+1. Likewise for n = 1, 2, . . ., C〈B,F〉 and the
Tolerant/Strict setting TSn〈B,F〉 antivalidate the same members of Seqn but differ on Seqn+1.

This Proposition is an easy consequence of a sequence of technical lemmas given below and
we omit the simple argument. By combining Proposition 7.5 with the construction outlined in
Section 4, we have the following.

Corollary 7.6 Let 〈L,D〉 be a non-distributive logical De Morgan algebra. The Strict/Tolerant
structure 〈L∗, D,D∗〉 is such that for each n = 1, 2, . . . we have C〈L,D〉 and STn〈L∗, D,D∗〉
validate the same members of Seqn, and C〈L,D〉 and TSn〈L∗, D,D∗〉 antivalidate the same
members of Seqn.

The Lemmas below generalize similar results from [5, 15]. To keep clutter down, throughout
all of them 〈B,F〉 is a logical bilattice where B is interlaced, with negation and conflation.
Recall that DT 〈B,F〉 = F ∩ A and DS〈B,F〉 = F ∩ E , where A and E are the anticonsistent
and exact parts of B. We systematically use A and E in these roles below. For the first two of
the lemmas the ground cases have appeared earlier in this paper but in a different form, when
discussing strict/tolerant and tolerant/strict logics. They are repeated here for convenience.
There is similar repetition involved in the third Lemma.

Lemma 7.7 Let v be a valuation mapping to the anticonsistent part of B, and let vs be any
sharpening of v. Then for each n = 1, 2, 3, . . . we have the following.

1. TSn〈B,F〉 |=v Γ⇒n ∆ implies C〈B,F〉 |=vs Γ⇒n ∆.

2. STn〈B,F〉 6|=v Γ⇒n ∆ implies C〈B,F〉 6|=vs Γ⇒n ∆

Proof We show 1 and 2 together. Let v be a valuation mapping to anticonsistent values, and
let vs be a sharpening of v.

Basis Ground step, n = 1. By (Seq-3) and (Seq-4) we can replace ⇒1 with ⇒, TS1 with TS,
and ST1 with ST.

Case 1. Assume TS〈B,F〉 |=v Γ⇒ ∆, where Γ and ∆ are sets of formulas. Suppose that
for each X ∈ Γ, vs(X) ∈ DS〈B,F〉 = F ∩ E . Since vs ≤k v, by upward closure of
prime bifilters v(X) ∈ F , and so v(X) ∈ DT 〈B,F〉 = F∩A. Then by our assumption,
for some Y ∈ ∆ we have v(Y) ∈ DS〈B,F〉, in particular, v(Y) ∈ E . Since vs ≤k v
and both vs(Y) and v(Y) are exact, then vs(Y) = v(Y), so vs(Y) ∈ DS〈B,F〉. We
have shown that C〈B,F〉 |=vs Γ⇒ ∆.

Case 2. Assume that ST〈B,F〉 6|=v Γ ⇒ ∆. Γ and ∆ are sets of formulas and, for each
X ∈ Γ, v(X) ∈ F ∩ E while for each Y ∈ ∆, v(Y) 6∈ F ∩ A. Since v maps to A, it
must be that v(Y) 6∈ F for each Y ∈ ∆.
Let X ∈ Γ. We have that vs ≤k v and vs maps to E . Since both vs(X) and v(X) are
exact, vs(X) = v(X). Then vs(X) ∈ F , and hence vs(X) ∈ DS〈B,F〉.
Let Y ∈ ∆. If vs(Y) ∈ F , by upward closure of prime bifilters v(Y) ∈ F which is not
the case, hence vs(Y) 6∈ F and so vs(Y) 6∈ DS〈D,F〉.
We have shown that C〈B,F〉 6|=vs Γ⇒ ∆.

Induction Step Assume that both implications 1 and 2 hold for n.

20 Melvin Fitting

Case 1. Suppose STn+1〈B,F〉 6|=v Γ ⇒n+1 ∆. Then TSn〈B,F〉 |=v γ for every γ ∈ Γ
and STn〈B,F〉 6|=v δ, for every δ ∈ ∆. By the induction hypothesis, C〈B,F〉 |=vs γ
for every γ ∈ Γ, and C〈B,F〉 6|=vs δ for every δ ∈ ∆. These are the conditions for
C〈B,F〉 6|=vs Γ⇒n+1 ∆.

Case 2. Suppose TSn+1〈B,F〉 |=v Γ ⇒n+1 ∆. Then STn〈B,F〉 6|=v γ for some γ ∈ Γ or
TSn〈B,F〉 |= δ for some δ ∈ ∆. By the induction hypothesis, C〈B,F〉 6|=vs γ for some
γ ∈ Γ or C〈B,F〉 |=vs δ for some δ ∈ ∆. But then C〈B,F〉 |=vs Γ⇒n+1 ∆.

Lemma 7.8 Let v be a valuation mapping to the exact part E of B. Then for each n = 1, 2, 3, . . .
we have the following.

1. C〈B,F〉 |=v Γ⇒n ∆ implies TSn〈B,F〉 |=v Γ⇒n ∆.

2. C〈B,F〉 6|=v Γ⇒n ∆ implies STn〈B,F〉 6|=v Γ⇒n ∆

Proof Once again we show 1 and 2 together, by induction.

Basis Ground case, replacing ⇒1 with ⇒, TS1 with TS, and ST1 with ST, as in the previous
proof.

Case 1 Assume Γ and ∆ are sets of formulas and C〈B,F〉 |=v Γ ⇒ ∆, for valuation v
mapping to E . Suppose that v(X) ∈ DT 〈B,F〉 for each X ∈ Γ. Since v maps to E , we
have the stronger fact that v(X) ∈ DS〈B,F〉. But then since C〈B,F〉 |=v Γ⇒ ∆ we
have v(Y) ∈ DS〈B,F〉 for every Y ∈ ∆. We have shown that TS〈B,F〉 |=v Γ⇒ ∆.

Case 2 Assume C〈B,F〉 6|=v Γ⇒ ∆, for valuation v mapping to E . Then for each X ∈ Γ,
v(X) ∈ DS〈B,F〉 = F ∩ E while for each Y ∈ ∆, v(Y) 6∈ DS〈B,F〉. Since v maps to
E , if v(Y) 6∈ DS〈B,F〉 it must be that v(Y) 6∈ F , and so v(Y) 6∈ DT 〈B,F〉 for each
Y ∈ ∆. We have shown that ST〈B,F〉 6|=v Γ⇒ ∆.

Induction Step Assume that both implications 1 and 2 hold for n.

Case 1 Suppose C〈B,F〉 |=v Γ ⇒n+1 ∆. Then C〈B,F〉 6|=v γ for some γ ∈ Γ or
C〈B,F〉 |= δ for some δ ∈ ∆, where γ and δ are level n sequents. By the induction hy-
pothesis, STn〈B,F〉 6|=v γ or TSn〈B,F〉 |=v δ. But then TSn+1〈B,F〉 |=v Γ⇒n+1 ∆.

Case 2 Suppose C〈B,F〉 6|=v Γ ⇒n+1 ∆. Then C〈B,F〉 |=v γ for every γ ∈ Γ and
C〈B,F〉 6|=v δ, for every δ ∈ ∆. By the induction hypothesis, TSn〈B,F〉 |=v γ for
every γ ∈ Γ, and STn〈B,F〉 6|=v δ for every δ ∈ ∆. These are the conditions for
STn+1〈B,F〉 6|=v Γ⇒n+1 ∆.

Lemma 7.9 For each n = 1, 2, 3, . . . there is an Seqn+1 schema for which each instance is a
validity of C〈B,F〉 but some instance is not a validity of STn〈B,F〉.

Proof First suppose n = 1, and consider the following schema in Seq2, where A is a formula
and Γ,∆ are sets of formulas.

(Γ, A⇒1 ∆), (Γ⇒1 ∆, A)⇒2 (Γ⇒1 ∆)

Assume we have a valuation v in C〈B,F〉. To show

C〈B,F〉 |=v (Γ, A⇒1 ∆), (Γ⇒1 ∆, A)⇒2 (Γ⇒1 ∆)

we argue contrapositively. Suppose C〈B,F〉 6|=v Γ ⇒1 ∆. Then for every X ∈ Γ, v(X) ∈
DS〈B,F〉, and for every Y ∈ ∆ is v(Y) 6∈ DS〈B,F〉. Either v(A) is in DS〈B,F〉 or it isn’t. If it
is, then v(X) is in DS〈B,F〉 for every X in Γ, A, so C〈B,F〉 6|=v (Γ, A ⇒1 ∆). If it isn’t, then
v(Y) is not in DS〈B,F〉 for every Y ∈ ∆, A, so C〈B,F〉 6|=v Γ⇒1 ∆, A.

Next we show the negative result concerning ST1〈B,F〉. Pick any sequent Γ⇒1 ∆ that is not
valid in ST1〈B,F〉, and let v be a valuation such that ST1〈B,F〉 6|=v Γ⇒1 ∆. That is, v maps

A Family of Strict/Tolerant Logics 21

every member of Γ to DS〈B,F〉, and maps no member of ∆ to a member of DT 〈B,F〉. Take
for A a propositional letter that does not occur in Γ or in ∆ and redefine v so that v(A) = >,
where > is the largest member of B in the ≤k ordering. This can be done without changing
the behavior of v on Γ or ∆. We know that > is in the prime bifilter D × L because prime
bifilters are upward closed in both orderings. Also > is anticonsistent, but not exact. Then
ST1〈B,F〉 |=v (Γ, A ⇒1 ∆) because v does not map every member of Γ, A to DS〈B,F〉, since
v(A) is not exact. Also ST1〈B,F〉 |=v (Γ ⇒ ∆, A) because v(A) = > ∈ DT 〈B, D × L〉, since >
is anticonsistent. Then

ST1〈B,F〉 6|=v (Γ, A⇒1 ∆), (Γ⇒1 ∆, A)⇒2 (Γ⇒1 ∆).

For values of n ≥ 2, properly the argument is by induction but the first few cases will suffice
to give the idea without all the formal details. For n = 2, use the following Seq3 schema.

∅ ⇒3 [(Γ, A⇒1 ∆), (Γ⇒1 ∆, A)⇒2 (Γ⇒1 ∆)]

It is easy to see that ST2〈B,F〉 |=v [∅ ⇒3 [(Γ, A⇒1 ∆), (Γ⇒1 ∆, A)⇒2 (Γ⇒1 ∆)]] if and only
if ST1〈B,F〉 |=v [(Γ, A ⇒1 ∆), (Γ ⇒1 ∆, A) ⇒2 (Γ ⇒1 ∆)], and similarly for C〈B,F〉, and this
reduces things to the previous case.

Likewise, for the n = 3 case use the following

∅ ⇒4 [∅ ⇒3 [(Γ, A⇒1 ∆), (Γ⇒1 ∆, A)⇒2 (Γ⇒1 ∆)]]

and so on.

Lemma 7.10 For each n = 1, 2, 3, . . . there is a Seqn+1 schema for which every instance is an
antivalidity of C〈B,F〉 but some instance is not an antivalidity of TSn〈B,F〉.

Proof For the n = 1 case we use the following schema in Seq2, where A is any formula.

(A⇒1 A)⇒2 (∅ ⇒1 ∅)

For every valuation v in C〈B,F〉 it is clear that C〈B,F〉 |=v A⇒1 A but C〈B,F〉 6|=v ∅ ⇒1 ∅, so

C〈B,F〉 6|=v (A⇒1 A)⇒2 (∅ ⇒1 ∅)

and thus we have an antivalidity of C〈B,F〉.
Next we consider TS〈B,F〉. Take A to be a propositional letter and let v be a valuation such

that v(A) = >. Since > ∈ F and is anticonsistent but not exact in L � L, v(A) is tolerantly
designated but not strictly designated. Then TS〈B,F〉 6|=v A⇒ A so

TS2〈B,F〉 |=v (A⇒1 A)⇒2 (∅ ⇒1 ∅)

and thus (A⇒1 A)⇒2 (∅ ⇒1 ∅) is not an antivalidity of TS2〈B,F〉.

For values of n ≥ 2 we proceed exactly as in the proof of the previous Lemma, using the
following metasequents.

∅ ⇒3 [(A⇒1 A)⇒2 (∅ ⇒1 ∅)]
∅ ⇒4 [∅ ⇒3 [(A⇒1 A)⇒2 (∅ ⇒1 ∅)]]
...

22 Melvin Fitting

8 The Status of Cut

Despite the title, this section is really about the general status of rules, metarules, . . . , sequents,
metasequents, Cut simply serves as a significant case study. For the rest of this section
assume 〈B,F〉 is a logical bilattice, where B is interlaced and has negation and conflation. Recall
Definition 7.4 of STn〈B,F〉, TSn〈B,F〉, and C〈B,F〉.

In Section 7 we formulated cut as a rule, and we repeat it here for convenience. We use
notation that has ⇒1 rather than ⇒. This is allowed since ⇒ and ⇒1 have the same behavior.
It is a minor point about which we say no more.

Γ, A⇒1 ∆ Γ⇒1 ∆, A
Γ⇒1 ∆

(?)

We also discussed how to represent cut as a metasequence, and we repeat this here too.

{(Γ, A⇒1 ∆), (Γ⇒1 ∆, A)} ⇒2 {Γ⇒1 ∆} (??)

We said validity for these could be understood locally or globally, and we said enough about
these notions to get things going. It is time to clear up some remaining obscurity about the two
validity notions, and establish the relationships they have to each other.

For the moment, let us assume we are just discussing classical logic. Then a particular
classical valuation v locally validates the sequent (??) provided, if it validates both Γ, A ⇒1 ∆
and Γ ⇒1 ∆, A then it validates Γ ⇒1 ∆. The point is, the same valuation v is applied to
each of the three level 1 sequents throughout. In brief, local validation requires that for each
valuation, if it valuates the premises then it valuates the conclusion. Then the metasequent
(??) is locally valid if each valuation locally validates it.

The same sequent, (??), is globally valid provided, if each of the two premises is valid then the
conclusion is valid, where a level 1 sequent is valid if every valuation valuates it in the usual way.
Or, restating, if every valuation validates each of the premises, then every valuation validates
the conclusion. Rather than the same valuation being applied throughout, all valuations are
applied to all three sequents, independently.

The rule version, (?), can also be understood either locally or globally, of course. But
somehow, as things get more complex the sequent version seems easier to work with. Perhaps
that is just personal prejudice, however.

We move from classical logic to its generalization C〈B,F〉, where local and global validity
are understood in same way as classically. There is an easy general result: if (??) is locally valid
then (??) is globally valid, and similarly for (?) of course. Here is the easy argument. Assume
(??) is locally valid; each valuation v individually validates it, meaning that if v validates the
two premise sequents, v validates the consequent sequent. And now suppose that the two level
1 premise sequents of (??) are valid, that is, each is validated by every valuation. Let v be an
arbitrary valuation in C〈B,F〉. Then C〈B,F〉 |=v Γ, A⇒1 ∆ and C〈B,F〉 |=v Γ⇒1 ∆, A, since
all valuations validate these sequents. Since (??) is locally valid, and v validates each premise,
it must validate the consequent, that is, C〈B,F〉 |=v Γ⇒1 ∆. And since v was arbitrary, every
valuation must validate Γ ⇒1 ∆, so we have shown validity of Γ ⇒1 ∆ in C〈B,F〉 under the
assumption of the validity of the two premise sequents.

The argument we just gave does not work if the logic is not an ordinary many-valued
logic, but instead is a strict/tolerant logic. Let us assume (??) is locally valid in ST2〈B,F〉.
That is, each valuation v individually validates it. Symbolically we assume that for each v,
ST2〈B,F〉 |=v {(Γ, A ⇒1 ∆), (Γ ⇒1 ∆, A)} ⇒2 {Γ ⇒1 ∆}, and using Definition 7.3, this says
that if TS1〈B,F〉 |=v (Γ, A ⇒1 ∆) and TS1〈B,F〉 |=v (Γ ⇒1 ∆, A) then ST1〈B,F〉 |=v (Γ ⇒1

∆). And now suppose the two premises of (??) are valid in ST1〈B,F〉; we would like to show
the consequent is also valid in ST1〈B,F〉. But there is a mismatch here: we are supposing that
v validates the premises in ST1〈B,F〉, but we actually need this in TS1〈B,F〉. The attempt
to derive global validity does not go through. Still, despite the failure of the argument just
discussed, we actually do have global cut, but by a more roundabout route.

A Family of Strict/Tolerant Logics 23

Proposition 8.1 The cut schema has the following behavior.

1. (??) is not locally valid in ST1〈B,F〉 in the sense that there is an instance of the schema,
and a valuation v, such that ST1〈B,F〉 |=v (Γ, A ⇒1 ∆) and ST1〈B,F〉 |=v (Γ ⇒1 ∆, A)
but ST1〈B,F〉 6|=v (Γ⇒1 ∆).

2. (??) is globally valid in ST1〈B,F〉 in the sense that for every instance of the schema, if
ST1〈B,F〉 |=v (Γ, A ⇒1 ∆) for every v and ST1〈B,F〉 |=v (Γ ⇒1 ∆, A) for every v then
ST1〈B,F〉 |=v (Γ⇒1 ∆) for every v.

3. As a level 2 sequent (??) is locally valid in ST2〈B,F〉, in the sense that for every instance
of the schema and for every v, ST2〈B,F〉 |=v {(Γ, A⇒1 ∆), (Γ⇒1 ∆, A)} ⇒2 {Γ⇒1 ∆}.

Proof The arguments are as follows.

1. This is Proposition 4.4.

2. Suppose that both Γ, A ⇒1 ∆ and Γ ⇒1 ∆, A are valid in ST1〈B,F〉. Then by Corol-
lary 7.6 we have that both Γ, A ⇒1 ∆ and Γ ⇒1 ∆, A are valid in C〈B,F〉. By Propo-
sition 4.4, cut is locally valid in C〈B,F〉 and then, as we showed above, globally valid as
well. We conclude that Γ⇒1 ∆ is valid in C〈B,F〉, and hence it is valid in ST1〈B,F〉 by
Proposition 4.3.

3. Finally we show that ST2〈B,F〉 |=v {(Γ, A ⇒1 ∆), (Γ ⇒1 ∆, A)} ⇒2 {Γ ⇒1 ∆} for an
arbitrary v. Assume TS1〈B,F〉 |=v Γ, A ⇒1 ∆ and TS1〈B,F〉 |=v Γ ⇒1 ∆, A; we show
ST1〈B,F〉 |=v Γ⇒1 ∆.

From the assumptions and part 1 of Lemma 7.7 we have both C〈B,F〉 |=vs Γ, A⇒1 ∆ and
C〈B,F〉 |=vs Γ ⇒1 ∆, A, where vs is any sharpening of v. It follows by Proposition 4.4
that C〈B,F〉 |=vs Γ⇒1 ∆. Then ST1〈B,F〉 |=v Γ⇒1 ∆ by part 2 of Lemma 7.7.

At the end of Section 7 we made use of a kind of ‘lifting’ of level n sequents to level n+ 1.
We now need this more systematically. We use notation from [15].

Definition 8.2 Let γ ∈ Seqn. We define a sequence γ0, γ1, γ2, . . . , where γk ∈ Seqn+k.

γ0 = γ

γk+1 = (∅ ⇒n+(k+1) γk)

It is easy to check that for any valuation v, STn〈B,F〉 |=v γ
0 if and only if STn+1〈B,F〉 |=v γ

1

if and only if STn+2〈B,F〉 |=v γ
2 if and only if . . . , and similarly for TS. This immediately gives

us the following metacut generalization of Proposition 8.1.

Corollary 8.3 For k = 0, 1, 2, . . ., {(Γ, A ⇒1 ∆)k, (Γ ⇒1 ∆, A)k} ⇒k+2 (Γ ⇒1 ∆)k is a
Seqk+2 schema with the following behavior.

1. The sequent is not locally valid in STk+1〈B,F〉. That is, STk+1〈B,F〉 |=v (Γ, A ⇒1 ∆)k

and STk+1〈B,F〉 |=v (Γ⇒1 ∆, A)k does not always imply STk+1〈B,F〉 |=v (Γ⇒1 ∆)k.

2. The sequent is globally valid in STk+1. That is, STk+1〈B,F〉 |=v (Γ, A ⇒1 ∆)k for all v,
and STk+1〈B,F〉 |=v (Γ ⇒1 ∆, A)k for all v, always implies STk+1〈B,F〉 |=v (Γ ⇒1 ∆)k

for all v.

3. The sequent is locally valid in STk+2〈B,F〉, when understood as a level k+2 sequent. That
is, for each v, STk+2〈B,F〉 |=k+2 {(Γ, A⇒1 ∆)k, (Γ⇒1 ∆, A)k} ⇒k+2 (Γ⇒1 ∆)k.

Analogous results obtain for antivalidity and TSn. Recall the rule examined in Proposi-
tion 6.4, and restated below.

X ⇒1 X
∅ ⇒1 ∅

(†)

24 REFERENCES

The sequent formulation of this is the following.

(X ⇒1 X)⇒2 (∅ ⇒1 ∅). (††)

Proposition 8.4 Antivalidity has the following behavior.

1. The rule (†) has an instance that is not locally antivalid in TS1〈B,F〉.
2. The sequent (††) is locally antivalid in TS2〈B,F〉.

Proof The arguments are as follows.

1. This appeared earlier, in Proposition 6.4.

2. The claim is that for every valuation v, TS2〈B,F〉 6|=v (X ⇒1 X) ⇒2 (∅ ⇒1 ∅). This in
turn is equivalent to having both ST1〈B,F〉 |=v (X ⇒1 X) and TS1〈B,F〉 6|=v (∅ ⇒1 ∅).
Both are easily checked.

Again things lift to higher levels, and we omit details.

9 Conclusion

Strict/tolerant logic, ST, was introduced as a kind of mashup of Kleene’s Strong Three Valued
Logic and Priest’s Logic of Paradox, and was seen to be of interest because of its connections
with classical logic. For some purposes it can serve as a replacement for classical logic, since
it is missing some of the features that can make classical logic problematic at times. More
fundamentally, it has led to a multifaceted discussion concerning just what classical logic is
and, more generally, what makes different logics different. One might think that a logic can
be identified with its consequence relation, but here we have a counter-example. We can go to
higher order consequence, meta, metameta, and so on, but no additional level is sufficient to
fully characterize classical logic. When the whole sequence of levels has been accumulated, as in
[5], we have full consequence agreement between ST and classical logic but [15] argues that even
so, ST and classical logic aren’t the same because the two differ on antivalidity. The discussion
continues, as it should.

In [11] and here I have avoided entirely the issue of what makes logics the same, or different.
Instead I have been investigating the extent to which the ideas behind ST, and its connections
to classical logic are, in fact, general. It turned out that there is an infinite family of many
valued logics that have Strict/Tolerant counterparts, that this extends from consequence to
meta consequence, metameta consequence, and so on, and further that these many valued logics
also have Tolerant/Strict counterparts, with all that that brings. What is happening is not rare.

The machinery we have been using for our investigation is that of bilattices. This, so far,
has been a good fit, but there is no reason to suppose that it is the only machinery that
might work. And further, what about logics that aren’t many valued? Is there such a thing
as a Strict/Tolerant counterpart of intuitionistic logic, for instance? Indeed, what might this
mean? Or again, what might be said about those sequents for which, if all antecedents are
intuitionistically valid then some consequent is classically valid? Once the door has been opened
into a world in which different sides of sequents meet different standards, might it be possible
that further interesting things will be seen?

References

[1] O. Arieli and Arnon Avron. “Reasoning with logical bilattices”. In: Journal of
Logic, Language, and Information 5.1 (1996), pp. 25–63.

REFERENCES 25

[2] Ofer Arieli and Arnon Avron. “The Value of Four Values”. In: Artificial Intelli-
gence 102 (1998), pp. 97–141.

[3] Arnon Avron. “The structure of interlaced bilattices”. In: Mathematical Structures
in Computer Science 6.3 (1996), pp. 287–299.

[4] E. Barrio, L. Rosenblatt, and D. Tajer. “The logics of strict-tolerant logic”. In:
Journal of Philosophical Logic 44.5 (2015), pp. 551–571.

[5] Eduardo Alejandro Barrio, Federico Pailos, and Damian J. Szmuc. “A Hierarchy
of Classical and Paraconsistent Logics”. In: Journal of Philosophical Logic (2019).
On Line. url: https://doi.org/10.1007/s10992-019-09513-z.

[6] P. Cobreros et al. “Tolerant, classical, strict”. In: Journal of Philosophical Logic
41.2 (2012), pp. 347–385.

[7] Melvin C. Fitting. “Bilattices and the theory of truth”. In: Journal of Philosoph-
ical Logic 18 (1989), pp. 225–256.

[8] Melvin C. Fitting. “Bilattices and the semantics of logic programming”. In: Jour-
nal of Logic Programming 11 (1991), pp. 91–116.

[9] Melvin C. Fitting. “A Theory of Truth that prefers falsehood”. In: Journal of
Philosophical Logic 26 (1997), pp. 477–500.

[10] Melvin C. Fitting. “Bilattices are nice things”. In: Self-Reference. Ed. by Thomas
Bolander, Vincent Hendricks, and Stig Andur Pederrsen. Center for the Study of
Language and Information, 2006. Chap. 3, pp. 53–77.

[11] Melvin C. Fitting. “The Strict/Tolerant Idea and Bilattices”. To appear in Springer
series on Outstanding Contributions to Logic, Arnon Avron. 2019.

[12] Matthew L. Ginsberg. “Multivalued logics: a uniform approach to reasoning in
artificial intelligence”. In: Computational Intelligence 4 (1988), pp. 265–316.

[13] Matthew L. Ginsberg. “Bilattices and modal operators”. In: Journal of Logic and
Computation 1.1 (1990), pp. 41–69.

[14] David Ripley. “Paradoxes and Failures of Cut”. In: Australasian Journal of Phi-
losophy 91.1 (2013), pp. 139–164.

[15] Chris Scambler. “Classical logic and the strict tolerant hierarchy”. In: Journal of
Philosophical Logic (2019). On Line. url: https://doi.org/10.1007/s10992-
019-09520-0.

[16] Dana S. Scott. “Completeness and axiomatizability in many-valued logic”. In:
Proceedings of the Tarski Symposium (Proceedings of Symposia in Pure Math-
ematics). Ed. by Leon Henkin. Vol. 25. American Mathematical Society. 1975,
pp. 411 –435.

[17] E. Zardini. “Naive modus ponens”. In: Journal of Philosophical Logic 42.4 (2013),
pp. 575 –593.

https://doi.org/10.1007/s10992-019-09513-z
https://doi.org/10.1007/s10992-019-09520-0
https://doi.org/10.1007/s10992-019-09520-0

	Introduction
	Previous Work
	Bilattices
	Bilattice Basics
	Construction and Representation Theorems
	Consistent, AntiConsistent, Exact
	Logical Bilattices

	Our Basic Construction
	Examples
	Tolerant/Strict Logics
	The Strict/Tolerant Hierarchy
	The Status of Cut
	Conclusion

