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Abstract

The family of all stable models for a logic program has a surprisingly simple overall structure,
once two naturally occurring orderings are made explicit. In a so-called knowledge ordering
based on degree of definedness, every logic program P has a smallest stable model, skP — it
is the well-founded model. There is also a dual largest stable model, SkP , which has not been
considered before. There is another ordering based on degree of truth. Taking the meet and
the join, in the truth ordering, of the two extreme stable models skP and SkP just mentioned,
yields the alternating fixed points of [29], denoted stP and StP here. From stP and StP in turn,
skP and SkP can be produced again, using the meet and join of the knowledge ordering. All
stable models are bounded by these four valuations. Further, the methods of proof apply not
just to logic programs considered classically, but to logic programs over any bilattice meeting
certain conditions, and thus apply in a vast range of settings. The methods of proof are largely
algebraic.

1 Introduction

Stable model semantics [17, 6] and well-founded model semantics [30, 31] have provided valuable
insights on the meaning of logic programs. While much is known about these semantics, it has not
been made clear just how elegant a structure the family of stable models has. The delineation of this
structure is the primary aim of this paper. We do not attempt to state our results rigorously at this
point, but wait until Section 9, after appropriate terminology and concepts have been introduced.
We can give the general flavor, however.

As originally formulated, stable model semantics was classical, two-valued. Under these circum-
stances not every program has a stable model. Three-valued, or partial model semantics has had
an extensive development for logic programs generally, [7, 20, 21]. Soon Przymusinski extended
the notion of stable model to allow three-valued, or partial, stable models, [22, 23], and showed
every program has at least one partial stable model, and the well-founded model is the smallest
among them, in a natural ordering, [24]. Once one has made the transition from classical to partial
models allowing incomplete information, it is a small step to also allow models admitting inconsis-
tent information. Doing so provides a natural framework for the semantic understanding of logic
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programs that are distributed over several sites, with possibly conflicting information coming from
different places, [10]. We make the extension to such a setting in this paper, as part of a much
more general investigation.

One can formally think of allowing incompleteness or inconsistency of information in logic
programs in the following way. Take a valuation to be a mapping from ground atoms to sets of
truth values. The values {true} and {false} correspond to the usual notions of truth and falsity,
while ∅ and {false, true} correspond to no information and inconsistent information, respectively.
These are the four truth values of a logic due to Belnap, [3], one that contains the Kleene strong
three-valued logic as a sublogic. Now the space of valuations has two natural orderings. One is
on the ‘degree of truth.’ In this ordering an increase means that one or more ground atoms loses
an assignment of false, or gains an assignment of true. The other ordering is on the ‘degree of
knowledge.’ In this ordering an increase means at least one ground atom gains an assignment of
true or false that it did not have, without loosing any value it did have. As we will see, these
two orderings are intimately connected. Now, we will show that the family of stable models for a
program is bounded from above and below, in the knowledge ordering, by a biggest and a smallest
stable model. The smallest is the well-founded model; this is Przymusinski’s result. The existence
of a largest stable model is new, and could not have been formulated without moving to the setting
of Belnap’s logic. Also the family of stable models is bounded from above and below in the truth
ordering by two valuations that are not necessarily stable models themselves, but which are extremal
in a certain sense. This, essentially, is the ‘alternating fixpoint construction’ of [29]. Finally, we
will show that the smallest and biggest stable models in the knowledge ordering, and the extremal
valuations in the truth ordering, are closely connected, and can be ‘calculated’ from each other.
This is new.

The results just sketched actually hold in a much broader setting than was indicated. Estab-
lishing them in this broader setting takes no more work than it does in the classical context. In
addition, working in the extended context tends to strip away some of the unnecessary detail and
make the underlying simplicity of the proofs stand out. We briefly outline the setting we have in
mind.

The four-valued logic of Belnap is the simplest example of a non-trivial bilattice, a notion intro-
duced by Matt Ginsberg in [19]. We have made use of bilattices in previous work on the semantics
of logic programming [11, 12, 13], and once again we find them the proper tool. Motivation will be
supplied in more detail in Section 4. For now, we merely remark that bilattices arise naturally in
two ways, which we sketch briefly.

First, instead of the all-or-nothing approach of classical logic, we might introduce a more general
notion of evidence, such as a confidence factor. Then, further, we might separate the roles of positive
and negative evidence. This leads directly to bilattices, and is the approach presented in [11, 12].
From this point of view, classical logic programming is based on there being only two kinds of
evidence: totally convincing, and totally unconvincing.

Alternatively we might think of the underlying logic as being more general than two-valued.
For instance, if we have a program divided among two sites, then an answer to a ground query
should contain information on which sites answer yes, and so there are four natural truth values:
neither, one, the other, both. We might even allow dependencies between sites. This gives rise to
an algebraic structure of truth values [25, 15]. If, further, we admit the possibility of incomplete
or inconsistent information about the behavior of these sites, we once again get the structure of a
bilattice [14]. A summary of this, and the previous approach, will be presented in Section 4.

The work in this paper extends results previously presented in [13]. At the time the earlier
paper was written, the real simplicity of the structure of stable models had not become clear, hence
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the need for this fuller presentation. We remark again that moving from the classical setting to
that of bilattices adds no complications. Indeed, we believe it makes the underlying simplicity of
the results stand out by removing unessential details.

2 Belnap’s logic, FOUR
In [3], Belnap introduced a logic intended to deal in a useful way with inconsistent or incomplete
information. It is the simplest example of a non-trivial bilattice and it illustrates many of the basic
ideas concerning them. In the next section we present the general notion of bilattice, and in the
following one we show there are lots of them, and they arise in natural ways. But in fact, Belnap’s
logic is a good enough representative of the whole family so that, if you wish, on a first reading
of this paper you could skip from the end of this section directly to Section 5, just assuming that
every bilattice discussed is sufficiently like the Belnap one.

We can think of Belnap’s values as sets of ordinary truth values. Suppose we write, simply,
true for {true} and false for {false}. Also we write ⊥ for ∅ and think of it as indicating a lack of
information. And we write > for {false, true}, and think of it as indicating inconsistency.

The truth values of Belnap’s logic have two natural orderings. One is the subset relation. For
instance, ⊥ = ∅ ⊆ {false} = false. If A ⊆ B, in a natural sense B represents more information
than A, so this is referred to as a knowledge ordering, and is denoted by ≤k. Thus ⊥ ≤k false. The
other ordering is on the degree of truth, and is denoted ≤t. Here A ≤t B if ‘B is at least as true
as A is, and A is at least as false as B is.’ More precisely, A ≤t B if A ∩ {true} ⊆ B ∩ {true} and
B ∩ {false} ⊆ A ∩ {false}. Under this ordering, false ≤t ⊥. The two orderings are represented in
the double Hasse diagram shown in Figure 1.

Figure 1: The logic FOUR

Both ≤k and ≤t give FOUR a lattice structure. Meet and join under ≤t are denoted ∧ and ∨;
they are natural generalizations of the usual conjunction and disjunction notions. Meet and join
under ≤k are denoted ⊗ and ⊕. x⊗ y is the most information x and y can agree on — we call ⊗
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a consensus operator. Likewise x ⊕ y simply combines the knowledge represented by x with that
represented by y, without checking for consistency — we call ⊕ a gullability operator. The four
operations, ∧, ∨, ⊗, and ⊕ are intimately connected: all 12 distributive laws hold.

There is a natural notion of negation: flip the diagram from left to right, switching false and true,
leaving ⊥ and > alone. This is denoted ¬. There is also a natural symmetry vertically, switching
⊥ and >, leaving false and true alone. This is denoted − and is called conflation. Conflation and
negation commute: −¬x = ¬ − x.

The role of conflation is less immediate than that of negation. Notice that the truth values
left unchanged under conflation are false and true, the classical ones. These are marked with dark
circles in Figure 1. The operations ¬, ∧, and ∨, restricted to the values false and true reduce to
those of classical logic. In addition, the values of FOUR that contain no more information than
their conflation (x ≤k −x) are false, true, and ⊥, circled in Figure 1. It turns out that the operations
∧, ∨, and ¬, restricted to false, true, and ⊥ are exactly those of Kleene’s strong three-valued logic.
This way of distinguishing natural sublogics of FOUR, using conflation, is something that carries
over to bilattices generally.

3 Bilattice definitions

Now we turn to the general notion of bilattice — keep FOUR in mind as a representative example.
A bilattice is a lattice-like structure with two inter-related orderings. Loosely, one of the orderings
represents degree of truth, the other represents degree of knowledge, as with FOUR. We sketch
ways bilattices arise in the next section, after the formal definitions have been presented. One can
make assumptions of various strengths concerning relationships between the orderings — in this
way one obtains different kinds of bilattices. We will need rather strong assumptions for this paper.

Definition 3.1 A pre-bilattice is a structure 〈B,≤t,≤k〉 where B is a non-empty set and ≤t and
≤k are each partial orderings giving B the structure of a lattice with a top and a bottom.

Remark As originally defined, in [19], both ≤t and ≤k were required to yield complete lattices. In
various subsequent papers completeness has sometimes been assumed, sometimes not. Generally
it has been assumed if an application involved quantifiers, but it was not assumed if algebraic
properties of bilattices were being studied. We feel it is time to end this confusion. In this paper
we do not assume completeness without saying so. Thus a pre-bilattice will specifically be called
complete if its partial orderings give the structure of complete lattices. Similarly for interlaced and
distributive bilattices below.

Definition 3.2 In a pre-bilattice 〈B,≤t,≤k〉, meet and join under ≤t are denoted ∧ and ∨, and
meet and join under ≤k are denoted ⊗ and ⊕. Top and bottom under ≤t are denoted true and
false, and top and bottom under ≤k are denoted > and ⊥. If the pre-bilattice is complete, infinitary
meet and join under ≤t are denoted

∧
and

∨
, and infinitary meet and join under ≤k are denoted∏

and
∑

.

The operations ∧ and ∨ should be thought of as generalizations of conjunction and disjunction in
the classical space {false, true}. The operations ⊗, consensus, and ⊕, gullability, are not meaningful
in the classical setting. One needs at least the structure of FOUR for them to arise. Now we define
the various basic notions we will be using here.
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Definition 3.3 A distributive bilattice is a pre-bilattice 〈B,≤t,≤k〉 in which all 12 distributive laws
connecting ∧, ∨, ⊗ and ⊕ hold. An infinitely distributive bilattice is a complete pre-bilattice in
which all infinitary, as well as all finitary, distributive laws hold.

An example of a distributive law is: x ⊗ (y ∨ z) = (x ⊗ y) ∨ (x ⊗ z). An example of an infinitary
distributive law is: x ⊗ ∧{yi | i ∈ S} =

∧{x ⊗ yi | i ∈ S}. There is a weaker notion than
distributivity that also has played a role in the semantics of logic programming [11, 12].

Definition 3.4 The pre-bilattice 〈B,≤t,≤k〉 satisfies the interlacing conditions if each of the lattice
operations, ∧, ∨, ⊗, ⊕, is monotone with respect to both orderings. If the pre-bilattice is complete,
it satisfies the infinitary interlacing conditions if each of the infinitary meet and join operations is
monotone with respect to both orderings.

An example of an interlacing condition is: x1 ≤t y1 and x2 ≤t y2 implies x1 ⊗ x2 ≤t y1 ⊗ y2. An
example of an infinitary interlacing condition is: xi ≤t yi for each i ∈ S implies

∏{xi | i ∈ S} ≤t∏{yi | i ∈ S}. A distributive bilattice meets the interlacing conditions as well. This is easily
verified. But an infinitely distributive bilattice need not meet the infinitary interlacing conditions.
We will explicitly assume such conditions, when needed.

As defined in [19], bilattices were required to have a negation operation, and the connection
between the two orderings was a very simple one, expressed via negation. We find this too weak for
our purposes, though negation still plays an important role here, along with the ‘dual’ operation
of conflation. In the following, bilattice refers to any of the above: distributive bilattice, complete
distributive bilattice, interlaced bilattice, or complete interlaced bilattice.

Definition 3.5 A bilattice has a negation if there is a mapping ¬ that reverses the ≤t ordering,
leaves unchanged the ≤k ordering, and ¬¬x = x. Similarly a bilattice has a conflation if there is a
mapping − that reverses the ≤k ordering, leaves unchanged the ≤t ordering, and − − x = x. If a
bilattice has both, we say they commute if −¬x = ¬ − x for all x.

Bilattices can have negations without conflations, conflations without negations, neither, or both.
Examples are not hard to come by.

4 Bilattice constructions

Bilattices come up in natural ways — indeed the simplest non-trivial bilattice, FOUR, was already
introduced in [3]. Two general, but different, constructions have appeared in the literature. We
sketch them briefly here in order to give a feeling for bilattices and their possible applications.

The first construction comes from [19], and is completely general for distributive bilattices —
that is, a representation theorem can be proved. Here we follow the presentation of [11].

Suppose we have two lattices, 〈L1,≤1〉 and 〈L2,≤2〉. Think of L1 as the lattice of values we
use when we measure the degree of belief, evidence, confidence, etc. that we have in a sentence.
Likewise, think of L2 as what we use when we measure the degree of doubt, counter-evidence, lack
of confidence, etc. that we have against a sentence. For instance, L1 and L2 could both be just
{false, true}, with false ≤ true, where we have all-or-nothing judgments. Or each could be the unit
interval, with the standard ordering. Or L1 could be the unit interval and L2 could be {false, true},
a choice that is appropriate for a theoretical science, where one has a degree of confidence in a
sentence, but a single counter-experiment is enough to falsify. Or again, L1 and L2 could be sets of
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experts, ordered by inclusion (the {false, true} example can be thought of as arising from a single
expert).

Now we define a structure L1 ¯ L2 as follows. The structure is 〈L1 × L2,≤t,≤k〉, where:

• 〈x1, x2〉 ≤t 〈y1, y2〉 if x1 ≤1 y1 and y2 ≤2 x2;

• 〈x1, x2〉 ≤k 〈y1, y2〉 if x1 ≤1 y1 and x2 ≤2 y2.

The idea is: knowledge goes up if evidence, both for and against, goes up; degree of truth goes up
if evidence for goes up while evidence against goes down.

It is straightforward to verify that L1 ¯ L2 will always be a bilattice meeting the interlacing
conditions, and if L1 and L2 are complete, L1¯L2 will be a complete bilattice meeting the infinitary
interlacing conditions as well. Further, if both L1 and L2 are distributive lattices, L1 ¯ L2 will be
a distributive bilattice, and if L1 and L2 are complete and infinitely distributive, L1 ¯ L2 will be
an infinitely distributive bilattice. This can be carried yet further. If L1 = L2 = L then we are
measuring belief and doubt the same way, and so a negation can be introduced into the bilattice
L¯L in the obvious way: set ¬〈x, y〉 = 〈y, x〉. This is easily seen to meet the appropriate conditions
for a negation operation. The intuition is straightforward: in passing from a member of L ¯ L to
its negation we simply switch the roles of belief and doubt. Finally, suppose L1 = L2 = L, and
further suppose that L has an order reversing involution (we denote the involute of x by x). Such
an operation is called a de Morgan complement. Then a conflation operation can be introduced into
L ¯ L as well. Set −〈x, y〉 = 〈y, x〉. Once again it is easy to verify that this meets the conditions
for a conflation operation, and conflation and negation will commute.

The idea behind this notion of conflation is a little more complicated than that behind negation.
Think, for example, of L as being the unit interval, with members measuring degree of belief or
doubt. Set x = 1 − x, which is a de Morgan complement. Then −〈x, y〉 = 〈1 − y, 1 − x〉, and so
in passing from a member of L¯ L to its conflation, we replace the degree of belief by the degree
to which we did not doubt, and we replace the degree of doubt by the degree to which we did not
believe. Many other examples of this nature can be given.

A de Morgan lattice is a distributive lattice with a de Morgan complement. Thus we have: if
L is a de Morgan lattice, L ¯ L is a distributive bilattice with a negation and a conflation that
commute.

The simplest non-trivial de Morgan lattice is L = {false, true}, of course, with false ≤ true. The
corresponding bilattice, L¯L, is just FOUR all over again, with ⊥ = 〈false, false〉, > = 〈true, true〉,
false = 〈false, true〉, and true = 〈true, false〉. The bilattice FOUR has a long history. It was
introduced in [4], outfitted with two orderings in [3], and recognized as a bilattice in [19].

The method just sketched for constructing bilattices is general for the distributive case. That
is, one can show representation theorems along the following lines. If B is a distributive bilattice,
it is isomorphic to L1 ¯ L2, where L1 and L2 are distributive lattices. If B has a negation, L1 and
L2 can be taken to be the same lattice. If B has a negation and a conflation that commute, L1 is a
de Morgan lattice. Proofs of this can be found in [19, 11, 16]. In fact, the result can be looked at
as a variation on the Polarities Theorem of Dunn, which goes back to his dissertation of 1966 (see
[5]).

A bilattice with conflation and negation that commute with each other contains some natural
sublogics within it. Suppose B is such a bilattice. Call a member x ∈ B consistent if x ≤k −x,
and call x exact if x = −x. Just as with FOUR, the exact members of a bilattice always form a
generalization of the classical truth values. In particular, they are closed under ∧, ∨, and ¬. In the
bilattice L¯L, where L is the unit interval, for instance, the exact members are those of the form
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〈x, y〉 where y = 1 − x; thus they are the ones for which doubt exactly complements belief. The
consistent members of a bilattice also are closed under ∧, ∨, and ¬. In addition they are closed
under ⊗, and under ⊕ when applied to a set that is directed under ≤k. In [9] these facts were used
to generalize Kripke’s theory of truth to bilattices, and in [12] they played a role in developing a
semantics for logic programming. In the bilattice based on the unit interval, mentioned above, the
consistent values are those 〈x, y〉 for which x + y ≤ 1, and thus represent situations where belief
and doubt are not contradictory.

There is a second way in which bilattices arise naturally. It was sketched in [19], and developed
in detail in [14]. The idea is to think of the consistent members as ‘approximations’ to the exact
values. This approach leads directly to Kleene’s three-valued logic, and indirectly to FOUR, rather
than the other way around, as above.

Suppose we have a lattice of truth values L. Think of these as the ‘real’ values we are interested
in. In classical logic the intended lattice is {false, true}. If we have two independent experts, say
A and B we have a more complicated lattice to work with, because the experts might disagree.
In this case the natural lattice of truth values to work with is

{
∅, {A}, {B}, {A,B}

}
, ordered by

inclusion, where we think of a set of experts as a representation that those experts said “yes” to a
query. Other lattices of truth values arise if we allow probabilities as truth values, and so on.

In general we may be uncertain about the status of a sentence; what truth value in L to assign
to it. Our ignorance may not be total however, we may have some information to work with. In [14]
approximations to a ‘real’ truth value were represented by intervals containing that truth value.

Definition 4.1 Let a, b ∈ L, where L is a lattice, and assume a ≤L b. The interval [a, b] is
{x ∈ L | a ≤L x ≤L b}. I(L) is the set of all intervals in L.

Now we take the space of intervals and give it a bilattice-like structure.

Definition 4.2 Let L be a lattice. K(L) is the structure 〈I(L),≤t,≤k〉 where, for [a, b], [c, d] ∈
I(L):

1. [a, b] ≤t [c, d] if a ≤L c and b ≤L d;

2. [a, b] ≤k [c, d] if [c, d] ⊆ [a, b].

The idea is, knowledge increases if the approximation interval narrows, and degree of truth increases
if the interval shifts upward in the ordering of L.

This can be carried a little further. Suppose L also has an order-reversing involution, a de Mor-
gan complement (again we denote the de Morgan complement of x by x). Then a negation can be
introduced in K(L) by:

¬[a, b] = [b, a].

As an example, suppose we start with the lattice of classical truth values, L = {false, true}.
Then K(L) has three members, two one-point intervals, [false, false] and [true, true], and the entire
lattice, [false, true]. The entire lattice represents a state of no information — denote it by ⊥.
Likewise [false, false] can be identified with false, and [true, true] with true. Then the ordering ≤t
of K(L) yields operations ∧ and ∨ that are those of Kleene’s strong three-valued logic, and the
negation operation on K(L) is likewise that of Kleene’s logic. The ≤k ordering puts ⊥ below both
false and true, which are incomparable. It is the natural notion of approximation in this context.

Kleene’s three-valued logic, it was noted above, is a sublogic of FOUR — the sublogic of
consistent members. In fact this relationship is quite general, and thus the notion of interval
approximation yields another approach to bilattices. Proofs of the following can be found in [14].
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Theorem 4.3 Suppose L is a lattice with a de Morgan complement. Then K(L) is isomorphic to
the set of consistent members of an interlaced bilattice B having a negation and a conflation that
commute. If, further, L is distributive (that is, L is a de Morgan lattice), B will be a distributive
bilattice.

Theorem 4.4 Suppose B is a distributive bilattice with a negation and a conflation that commute.
Then the set of consistent members of B is isomorphic to K(L) where L is a de Morgan lattice.

Remark As proved in [14], the isomorphisms of the theorems above did not take negations into
account. However, it is simple to check that the isomorphisms do respect the negation operations
as well.

Thus we have two rather different approaches that both lead to bilattices. In one version we
can think of assigning evidence for a sentence as being independent of assigning evidence against
it. In the other we work with approximations to the ‘real’ truth values. As the theorems above
indicate, these give rise to essentially the same structures. Among these structures are Belnap’s
four-valued logic, with Kleene’s three-valued logic as a sublogic. These can be thought of as the
setting for much of the semantical work on logic programming that has appeared in the literature,
and thus our discussion below, which concerns bilattices in general, applies directly to the usual
notions of stable, stationary, and well-founded models.

5 Logic programs

We want to define logic programs in as general a way as possible, so that the results proved later on
will be widely applicable. Conventional logic programming is thought of as having {false, true} as
its intended space of truth values. But since not every query may produce an answer, partial models
are often allowed. That is, ⊥ is added. Likewise, if a mechanism that can produce inconsistent
programs is introduced, > must also be considered. Thus FOUR can be thought of as the ‘home’
of ordinary logic programming. In this section we want to extend the notion of logic program, so
that a bilattice B other than FOUR can be thought of as the space of truth values. The more
general the setting allowed, the more general the results.

Assume B is a complete (so that quantifiers can be interpreted) bilattice with negation. For
starters, we might take a logic program to be a finite set of clauses. As usual in semantic discussions,
we will think of a clause as standing for the possibly infinite set of its instances, over a Herbrand
base H. Further, we will take a clause to be something of the form A ← B, where A is the head
and B is the body of the clause. The question is, what should be allowed as head and body.

As a first approximation, we might take a head to be an atomic formula A, and a body to be a
finite list L1, . . . , Ln of atomic formulas and their negations. We can assume equality is available,
since we can always add the clause eq(x, x) ← to a program. Then in the usual way, clauses
having the same predicate letter in their heads can be combined, provided we have conjunction,
disjunction, and existential quantification explicitly available. For instance, the two clauses:

A(x) ← B(x)
A(f(x)) ← C(x), D(x)

combine into the single clause:

A(y)← (∃x)[(eq(y, x) ∧B(x)) ∨ (eq(y, f(x)) ∧ C(x) ∧D(x))].
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Notice also that the explicit quantification makes it possible for all free variables of the clause body
to appear in the head, and for the head to contain no function symbols. Since this transformation
can always be done, it will simplify things if we generally assume that program bodies can be
arbitrary formulas built up using ∧, ∨, ¬, ∃, that all free variables in clause bodies also occur in
clause heads, that clause heads contain no function symbols, and that programs are restricted so
that a given predicate letter can occur in the head of only a single clause.

Further it will do no harm, at least semantically, if we also allow ∀, and by doing so we gain a
useful advantage. The usual de Morgan laws hold in any bilattice with negation. That is, as might
be expected, ∧ and ∨ are duals, as are ∃ and ∀, so in a clause body we can always push negations
all the way inside. Since we also have ¬¬x = x, we can assume the only occurrences of the negation
symbol are at the literal level. This will simplify things considerably. There is a significant problem
with this, however. Allen Van Gelder has pointed out (private communication) that the definition
of well-founded semantics from [30, 31], based on the use of unfounded sets, apparently does not
extend to include ∀. The alternating fixpoint approach from [29] does extend to allow it, and it
is this approach that we generalize here. It is not the case that all program transformations that
preserve meaning when using the original definition of well-founded semantics continue to do so
when applied to programs containing ∀, using the alternating fixpoint approach. This caveat must
be kept in mind in what follows.

Gelfond and Lifschitz, [18], have introduced a kind of classical negation into logic programming.
In addition to ¬P (x) they also allow ∼P (x), where ∼ is intended to behave classically. In particular,
it is allowed in clause heads. In fact, for most purposes ∼P (x) can be treated semantically as if it
were a new atom, P ′(x). The exception is if a logic program involving this new notion of negation
turns out to be inconsistent, in which case they argue that every query should have a yes answer.
We feel this may sometimes be undesirable; that contradictions should be localizable. If we have
inconsistent information about ducks, it is possible that our information about decimals can still
be trusted. To this end we do, in fact, treat ∼P (x) as a new atom, P ′(x), but if we want to
say that from a contradiction everything follows, we do so by explicitly adding clauses of the form
A← B ∧B′ to a program, for every atom A and every literal B. But this is not the only solution
to the problem of what to do if we get yes answers to both the queries B and B′? We could, for
instance, take B as overdefined, and act as if its truth value was > in the bilattice B. In other
circumstances we might want to take B as underdefined, ⊥, and act accordingly. To allow for the
utmost generality, we admit a mechanism for this into logic programs directly. We allow ⊗ and ⊕
to appear in clause bodies. Then, if desired, we can include a clause real B← B⊕B′, for instance,
to specify explicitly that a yes answer to both B and B′ should be thought of as overdefining B.
Briefly, rather than determine once and for all how contradictions should be treated, we have added
machinery to allow a program writer to specify this. Incidentally, ⊗ and ⊕ are their own duals
under ¬, so we still can assume negations only occur in literals.

In conventional logic programming the truth values true and false are available. The value true
is generally implicit; A ← is treated as if it were A ← true. Likewise having no clause for A is
treated as if A ← false were present. Since we have a more general truth value space in mind, we
need a more general mechanism. We want to be able to write something like A ← b where b is
some arbitrary member of the bilattice B (or maybe a member of a restricted sublogic of B, such
as its exact part). To this end, we simply treat members of B as atoms, and allow them to appear
in clause bodies. Semantically we will, of course, interpret them as designating themselves.

• We call a formula that does not contain a member of B a pure formula.

We now have arrived at a very general notion of logic program, relative to the bilattice B. It is
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broad enough to encompass a variety of generalizations of conventional logic programming. Note,
however, that we have not included a mechanism for disjunctive logic programming. This must
wait on further research. Now, to summarize precisely.

Definition 5.1

1. A formula is an expression built up from literals and members of B using ∧, ∨, ⊗, ⊕, ∃ and
∀.

2. A clause is P (x1, . . . , xn) ← ϕ(x1, . . . , xn), where the pure atomic formula P (x1, . . . , xn) is
the head, and the formula ϕ(x1, . . . , xn) is the body. It is assumed that the free variables of
the body are among x1, . . . , xn.

3. A logic program is a finite set of clauses with no predicate letter appearing in the head of
more than one clause.

If P is a program, by P∗ we mean the set of all ground instances of members of P, over the Herbrand
base.

We will often want to use conventional logic programs as examples. To make this easier, we
introduce the following.

Convention A conventional logic program is one whose underlying truth value space is the bilat-
tice FOUR, and which does not involve ⊗, ⊕, ∀, > or ⊥. Such programs can be written in the
customary way, using commas to denote conjunction.

6 The Gelfond-Lifschitz transformation

In [6, 17] the stable model semantics for logic programs was introduced, and a number of basic
results reported. Since this definition and the results will be generalized here, we include the
original characterization for reference. For this section only, program will mean a conventional logic
program. Also the semantics is based on classical logic, FOUR restricted to its exact values. In
this case, then, we can follow the usual convention of identifying a classical Herbrand model with
the set of ground atoms that are true in it.

The semantics of positive programs (those containing no negations in clause bodies) is well
understood. In the classic papers [28, 1] it was shown that a positive program has a unique smallest
model, and that smallest model is well-behaved and relates nicely to other semantical approaches.
The notion of smallest used here is with respect to the subset relation, identifying a model with
a set of ground atoms as mentioned above. In order to extend this to programs with negations,
Gelfond and Lifschitz proposed the following approach. Start with a set S that is a candidate for
a model of program P; use S to give meaning to the negative literals of P, thus converting it into
a positive program P ′; then compute the smallest model of P ′. If this turns out to be S again, S is
a good candidate for a model of P. The conversion of P into P ′ is straightforward. If B is in S we
can assume B is true, so any clause in P containing ¬B in its body is unusable. If B is not in S
we can assume ¬B is true, so any occurrence of ¬B in a clause body of P can be replaced by true,
or equivalently, dropped. The following more formal treatment is still a sketch, and we adopt the
convenience that the program is ground.

Definition 6.1 Let P be a conventional ground program and let S be a set of ground atoms. The
Gelfond-Lifschitz transformation of P relative to S is the positive program P ′ arising from P by:
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1. deleting each clause in P that has a negative literal ¬B in its body, where B ∈ S;

2. from the remaining set of clauses, deleting all negative literals.

Let S′ be the least model of P ′. If S′ = S, then S is called a stable set.

Gelfond and Lifschitz show that a stable set, if it exists, must be a model for the program, and
so stable sets are often called stable models. In [30, 31], another semantics called the well-founded
semantics is introduced, and it is shown that if a program has a well-founded (two valued) model,
that will be its unique stable model as well. Connections with other semantical approaches were
also established, but these will not concern us here. The results just mentioned are generalized
later on in this paper.

The semantics sketched above is classical, two-valued. Rather early on, however, the approach
was extended to allow partial, or three-valued models. Once this was done, it was possible to
show a stable model always exists, though it may be partial. We will consider this point more
thoroughly below. For now, we merely remark on an issue of terminology. Stable models were
originally intended to be two-valued models. When generalized, three-valued stable models were
talked about. Przymusinski introduced the terminology stationary for three-valued stable, reserving
the term stable for the two-valued case. We will not follow this terminology here (preferring to
believe the term stable has some stability to it). Since we will be extending notions beyond the
classical setting, to fairly arbitrary bilattices, we prefer to minimize terminology as far as possible
to keep the comprehensible complexity of the paper down.

7 Immediate consequence operators

In [28, 1] an ‘immediate consequence’ operator TP is associated with each positive, conventional
program P, mapping sets of formulas to sets of formulas. Loosely the idea is that one application
of TP represents carrying out a single step of deduction, based on the program P. It is shown that
TP is monotonic (in the subset relation), and has a smallest fixed point. That fixed point is taken
to be the semantic meaning of the program P. It is this that was used in the previous section to
associate a model with the positive program P ′ resulting from the Gelfond-Lifschitz transformation.
The operator TP makes sense for programs P allowing negation in clause bodies, but then it loses
its monotonicity feature, so a fixed point can no longer be guaranteed.

In [7, 8] this approach was extended to a three-valued setting, in which case the operator is
generally denoted ΦP . This operator turns out to be well-behaved, even for programs having
negations in clause bodies. But, the intended ordering must be changed. When TP is used, one
thinks of the natural ordering as one in which an increase means more ground atoms are true.
When using ΦP an increase loosely means more literals acquire classical truth values. Thus the
two orderings of a bilattice begin to be visible: TP uses the truth ordering, ΦP uses the knowledge
ordering. This will be made more precise below. At any rate, it can be shown that ΦP always has
a smallest fixed point under the appropriate ordering, whether negations are present or not, and
this can be taken as a meaning for the program P. It is not always a satisfactory meaning, and
has led to modifications in [20, 21], and to the alternative approaches sketched earlier.

In [11, 12] the three-valued approach was generalized to the family of bilattices meeting the
interlacing conditions. The first thing is to extend the representation of a valuation. In the classical
approach, a model is often identified with a set of ground atoms, those that are true in the model.
Then the subset relation corresponds to the ≤t ordering of bilattices. In the three-valued approach,
a model is sometimes identified with a (consistent) set of ground literals, where if a ground atom
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A is in the set, it means A has the value true in the model; if ¬A is in the set, it means A has
the value false in the model; if neither A nor ¬A is in the set, it means A has the value undefined,
or ⊥ in the model. Under this representation, the subset relation corresponds to the ≤k ordering
of bilattices. But when moving to more general settings, representation by sets of formulas is no
longer adequate.

Definition 7.1 Let B be a bilattice. By a valuation in B we mean a mapping v from pure ground
atoms to members of B. The family of all valuations is denoted V(B). It is given two pointwise
orderings:

1. v1 ≤t v2 if and only if v1(A) ≤t v2(A) for every pure ground atom A;

2. v1 ≤k v2 if and only if v1(A) ≤k v2(A) for every pure ground atom A.

The space of valuations itself is a bilattice, and inherits much of the structure of the underlying
bilattice. Let us be more precise. First, V(B) = 〈V(B),≤t,≤k〉 is a pre-bilattice. (v ∧ w)(A) =
v(A) ∧ w(A), and similarly for the other operations. V(B) is complete if B is complete. V(B) is
distributive if B is distributive. V(B) is infinitely distributive if B is infinitely distributive. V(B)
satisfies the interlacing conditions if B satisfies them. And V(B) satisfies the infinitary interlacing
conditions if B does. Finally, V(B) will have a negation or a conflation if B does. All this is
straightforward, and verification is omitted.

The action of a valuation is easily extended from pure ground atoms to all formulas. If b ∈ B,
set v(b) = b. Further, set v(X ∧ Y ) = v(X) ∧ v(Y ), where the ∧ on the right is the meet of B in
the ≤t ordering. Similarly for ∨, ⊗, ⊕ and ¬ (assuming B has a negation operation). Assuming
completeness too, we can also set v((∃x)ϕ(x)) =

∑{v(ϕ(t)) | all closed terms t} (the operation is
the infinitary join under ≤t.) Similarly for the universal quantifier.

Connections with earlier work are easy to make. Suppose we use the bilattice FOUR, shown in
Figure 1. This is infinitely distributive, and has negation and conflation. Hence so does its space
of valuations. A valuation in FOUR corresponds to a set of pure ground literals in a direct way.
Say the valuation v and the set S correspond provided:

1. v(A) = ⊥ if and only if A 6∈ S and ¬A 6∈ S;

2. v(A) = false if and only if A 6∈ S and ¬A ∈ S;

3. v(A) = true if and only if A ∈ S and ¬A 6∈ S;

4. v(A) = > if and only if A ∈ S and ¬A ∈ S.

Then, if the valuation v and the set S correspond, v is exact just in case S contains exactly one of
each pure ground atom and its negation; v is consistent just in case S is consistent as a set. This
correspondence should be kept in mind in what follows.

Suppose now that B is a complete bilattice with negation, and P is a program as in Definition 5.1.
We associate with it an operator ΦP on the space of valuations. The idea directly extends the
three-valued ΦP operator mentioned above. Recall that programs are assumed to have at most one
defining clause for each predicate letter, and all free variables of a clause body also appear in the
clause head. It follows that for a ground atom A, at most one member of P∗ can have A as head
(recall that P∗ is the set of ground instances of members of P).

Definition 7.2 ΦP : V(B)→ V(B) is defined as follows. Let v ∈ V(B); ΦP(v) is the valuation such
that:



The Family of Stable Models 13

1. if the pure ground atom A is not the head of any member of P∗, ΦP(v)(A) = false;

2. if A← B occurs in P∗, ΦP(v)(A) = v(B).

This operator naturally generalizes those mentioned above. Suppose B is the bilattice FOUR of
Figure 1. Then, if P is a conventional program without negations, on exact valuations ΦP behaves
like the operator TP . Further, if P is a conventional program allowing negations, on consistent
valuations ΦP behaves like the Kripke-Kleene partial operator of [7].

It can be shown that if B meets the finitary and infinitary interlacing conditions, ΦP is always
monotone in the ≤k ordering of V(B), and thus must have fixed points. These fixed points are
natural generalizations to the bilattice setting of models. Further, ΦP will be monotone in the ≤t
ordering if P has no negations. Relationships between extremal fixed points of ΦP are established
in [12].

8 The Gelfond-Lifschitz transformation generalized

In Section 7 we saw how the immediate consequence operator TP generalizes to the bilattice setting.
What we want is to produce a similar generalization of the Gelfond-Lifschitz transformation of
Section 6. In order to do this it is necessary to shift the point of view from that of program
transformations to that of operators on valuations. Suppose we have a conventional logic program
P, and we have a set S of pure ground atoms. Carry out the Gelfond-Lifschitz transformation on P,
relative to S, getting the positive program P ′. This program has a smallest fixed point, S′, which
is another set of pure ground atoms. Thus an operator has been associated with the program P:
the operator that turns S into S′. In [29] this was called the stability operator. It is the stability
operator that we generalize in this section, following [13].

One of the ideas behind the stable model approach, and the well-founded approach too, is to
separate the roles of positive and negative information. Thus we extend the immediate consequence
operator of Section 7 to reflect this separation. The extended immediate consequence operator will
accept two input valuations, one assigning meanings to positive literals, the other to negative
literals. This means we will sometimes want to think of a negative literal ¬A as a strangely
written atom, with no connections to A. We use the term B-pseudo-valuation for a mapping from
pure ground literals to B. When using a pseudo-valuation the value assigned to ¬A can be quite
independent of the value assigned to A.

Now we introduce a convenient notation for representing a pseudo-valuation in terms of real
valuations.

Definition 8.1 Let v1 and v2 be valuations in the bilattice B with negation. We define a pseudo-
valuation in B, v14v2 as follows. For a pure ground atom A:

(v14v2)(A) = v1(A)
(v14v2)(¬A) = ¬v2(A)

Pseudo-valuations are extended to non-literals by induction, in the obvious way.

The idea is, in v14v2, v1 supplies the positive information and v2 supplies the negative information.
Now Definition 7.2 can be suitably generalized. We use Ψ for the new operator, and keep Φ as it
was defined earlier, since we will need it as well.

Definition 8.2 The extended immediate consequence operator, ΨP : V(B) × V(B) → V(B), is
defined as follows. Let v1, v2 ∈ V(B); ΨP(v1, v2) is the valuation such that:
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1. if the pure ground atom A is not the head of any member of P∗, ΨP(v1, v2)(A) = false;

2. if A← B occurs in P∗, ΨP(v1, v2)(A) = (v14v2)(B).

In ΨP positive and negative input has been separated. It is easy to see that ΦP(v) = ΨP(v, v).

Definition 8.3 A mapping f on a partially ordered space is monotonic if x ≤ y implies f(x) ≤
f(y); it is anti-monotonic if x ≤ y implies f(x) ≥ f(y).

If we assume the interlacing conditions hold for B, under the ordering ≤k, ΨP is monotonic
in both arguments. But under the ordering ≤t, ΨP is monotonic in its first argument and anti-
monotonic in its second. (Proofs of these and other results are given in the Appendix.) Then under
the ≤t ordering, if we hold the second argument of ΨP fixed, we have a monotone operator of its
first argument, and this will have a least fixed point. Thus we can make the following definition.

Definition 8.4 The derived (or stability) operator of ΨP is the single input mapping Ψ′P given by:
Ψ′P(v) is the smallest fixed point, in the ≤t ordering, of the mapping (λx)ΨP(x, v).

It is the derived operator, Ψ′P , that generalizes the Gelfond-Lifschitz transformation. Suppose
P is a conventional logic program and B is the bilattice FOUR of Figure 1. Let S be a consistent
set of ground literals, and let v be the valuation in B that corresponds to S. Suppose S′ is the least
fixed point of the program P ′, which is the result of applying the Gelfond-Lifschitz transformation
to P with respect to S. Then the set S′ and the valuation Ψ′P(v) will also correspond. We leave it
to you to check this.

Definition 8.5 A stable valuation for program P is a fixed point of Ψ′P .

Note, then, that for the bilattice FOUR, a stable valuation that is exact corresponds to a two-
valued stable set in the sense of [17], and a stable valuation that is consistent but not necessarily
exact corresponds to a stationary set in the sense of Przymusinski.

9 Results

In this section results are presented. Proofs are omitted here, but can be found in the Appendix. An
examination of the proofs will show that almost without exception they are simple algebraic con-
sequences of the elementary properties of bilattices, and of the monotonicity or anti-monotonicity
of operators. For the rest of this section, B is a fixed bilattice of truth values, which we assume is
infinitely distributive, satisfying the interlacing laws, finitary and infinitary, and with a negation
and a conflation that commute. Also P is a program, meeting the conditions of Definition 5.1. As
in the previous section, ΨP is the extended immediate consequence operator for program P, and
Ψ′P is its derived operator.

Theorem 9.1 The operator Ψ′P is monotonic in the ≤k ordering, and anti-monotonic in the ≤t
ordering.

Since the derived operator is monotonic in the ≤k direction, and B is a complete lattice under
this ordering, the Knaster-Tarski Theorem ([26]) applies.

Theorem 9.2 The operator Ψ′P has a smallest fixed point, denoted skP , and a greatest fixed point,
denoted SkP , under the ≤k ordering.
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This means every program has at least one stable valuation, a fundamental result of [24]. In
fact, the least stable valuation skP has been singled out before as playing a special role. We will
say more about it below. The greatest stable valuation, SkP , has been ignored, essentially because
consistency was required of logic programs. Once various degrees of inconsistency are allowed, the
essential symmetry of the situation becomes apparent. There is both a least and a greatest stable
valuation, in the ≤k sense.

Although stable valuations exist, we have not yet established in what sense they are models for
the program. We give a definition of model that is, in fact, rather strong.

Definition 9.3 A valuation v is a model for the program P provided, for each pure ground atom
A, if A← B in P∗, v(A) = v(B), and otherwise v(A) = false.

Now the role of the immediate consequence operator, ΦP , is clear. Obviously v is a model of P
if and only if v is a fixed point of ΦP . Then the result of [17], that stable sets are models, has a
full generalization.

Theorem 9.4 Every stable valuation is a model. That is, every fixed point of Ψ′P is also a fixed
point of ΦP .

The behavior of Ψ′P with respect to the ≤k ordering is thus rather straightforward. With respect
to the ≤t ordering, however, things are more complicated, since the operator is anti-monotonic in
this direction. As it happens, there is a straightforward modification of the Knaster-Tarski theorem
that deals with this. It seems to have first appeared in [32], where it was used as the basis of an
interesting Theory of Truth. It lies behind the alternating fixpoint approach to the well-founded
model, as presented in [29]. It was also used in [2] to show the existence of stable classes.

Theorem 9.5 Suppose f is anti-monotonic on the complete lattice L. Then there are two members
of L, µ and ν, such that:

1. µ and ν are the least and the greatest fixed points of f2;

2. f oscillates between µ and ν in the sense that f(µ) = ν and f(ν) = µ;

3. if x and y are also points of L between which f oscillates, x and y lie between µ and ν.

Now, Ψ′P is anti-monotonic under ≤t, so by the theorem above, it has two extreme oscillation
points in this ordering.

Definition 9.6 The extreme oscillation points of Ψ′P are denoted stP and StP , with stP ≤t StP .

The valuations stP and StP need not themselves be stable. But two stable valuations are easily
derivable from them.

Theorem 9.7 The valuations stP ⊗ StP and stP ⊕ StP are both fixed points of Ψ′P , and hence are
stable models.

The model stP ⊗ StP plays a special role in several ways. For conventional programs, using the
bilattice FOUR, it is the well-founded model [30, 31], following the construction of [29]. If we think
of stP and StP as under and over estimates for a model, the well-founded model, stP ⊗ StP , is the
most the estimates agree on — their consensus. The model stP ⊕StP has not been considered before
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in the literature, primarily because inconsistent truth values have been ruled out. It is, however,
a natural dual to the well-founded model, accepting everything either of the extreme oscillation
points of Ψ′P have to contribute.

An important connection was established between well-founded semantics and stable semantics
in [24, 22], for conventional programs. Essentially it says that the well-founded model is the
‘simplest’ stable model, where the ordering used is essentially ≤k of FOUR. That result not only
generalizes to bilattices, but dualizes as well.

Theorem 9.8 The extremal fixed points of Ψ′P under ≤k are related to the extremal oscillation
points under ≤t as follows:

1. skP = stP ⊗ StP ;

2. SkP = stP ⊕ StP .

Thus the distribution of the family of stable models is neatly bounded. All stable models
are between skP and SkP in the ≤k ordering, with these as least and greatest stable models in this
ordering. All stable models are between stP and StP in the ≤t ordering, with these points themselves
not necessarily included. This is summarized in Figure 2.

Figure 2: Stable models in the space of valuations

Rather remarkably, the result presented in Theorem 9.8 has a counterpart, relating the extremal
points of the stability operator the other way around.

Theorem 9.9

1. stP = skP ∧ SkP ;

2. StP = skP ∨ SkP .
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The two Theorems 9.8 and 9.9 should be compared with Theorem 7.7 of [12]. Finally, it was
shown in [30, 31] that if a conventional program has a two-valued (classical) well-founded model,
it is also the unique stable model. The analog for bilattices of a classical model is a model that is
exact in the space of valuations. Then, with a restriction on programs added, the result extends
directly.

Definition 9.10 We call a program P consistent if no program body contains the operator ⊕, and
the only members of B that occur in program bodies are consistent ones.

Conventional logic programs are obviously consistent ones. Part of the justification for the termi-
nology is contained in the following.

Theorem 9.11 If P is a consistent program, stP and StP are consistent in the space of valuations.

Now the Gelfond, Lifschitz result extends to the following.

Corollary 9.12 Suppose P is a consistent program, and the (well-founded) model skP = stP ⊗ StP
is exact. Then it is the unique stable model.

10 Examples

We give a few small examples to illustrate the results of the previous section. The first two concern
the bilattice FOUR and conventional logic programs.

Example 10.1 Using the bilattice FOUR, consider the logic program:

A ← ¬B
B ← ¬A

This has four stable models. Two of them are skP and SkP , the least and greatest in the ≤k ordering.
The model skP is the well-founded model. Neither of these is exact. In addition there are two more
stable models, both exact (we denote them v and w). Finally, stP and StP exist as valuations, though
neither is a model. These are given in the following table.

stP StP skP SkP v w

A false true ⊥ > true false
B false true ⊥ > false true

The relative positions of these valuations in the space of all valuations is shown in Figure 3. Note
that v and w are incomparable in both orderings.

Example 10.2 Again we use the bilattice FOUR. The program is:

B ← ¬A
C ← ¬B ∨D
D ← ¬D

For this program, the extremal valuations are shown in the following table.
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Figure 3: Distribution of valuations

stP StP skP SkP

A false false false false
B true true true true
C false true ⊥ >
D false true ⊥ >

The stable model SkP is not consistent in the space of valuations. Even so, it does not degenerate
to triviality. Under it, C and D are overdefined, but A and B still have useful values. Allowing
inconsistencies does not have to mean surrendering to chaos.

Example 10.3 For this rather different example we use a bilattice based on the unit interval:
take B = L ¯ L where L is [0, 1] with the usual ordering. For this bilattice additional operations
besides the usual ones can be introduced, to some profit. We are interested in what we will call
attenuation operators. Specifically, for each r ∈ [0, 1] we introduce a mapping Ar : B × B → B
where Ar(〈x, y〉) = 〈rx, 1 − r(1 − y)〉. It is simple to check that each attenuation operator maps
exact values to exact values, consistent values to consistent values, and is monotonic under both
≤t and ≤k.

When writing programs we can allow the syntactic use of Ar, treating it the same way we do
negation. We extend valuations to attenuation operators in the obvious way: v(Arϕ) = Ar(v(ϕ)).
Now, assume the Herbrand base consists of {a, f(a), f(f(a)), . . .} and consider the following pro-
gram, P.

P (f(x))← A0.9(P (x))

In [27] van Emden introduced a logic programming language with the unit interval as its set
of truth values. What we are considering now is a generalization of that. Numerical factors were
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associated with each clause, in the van Emden paper. These correspond to the attenuation operators
introduced above. More precisely, if we only apply attenuation operators to entire clause bodies,
only allow exact members of B in clause bodies, and restrict logical operators to ∧, ∨ and ∃, the
system is essentially that of van Emden.

The program P has an attenuation operator in a clause body, something that was not mentioned
in Section 9. However, we observed above that attenuation operators are monotone in both bilattice
orderings. It is a simple task to check that, as a consequence, almost every proof in the Appendix
continues to be valid even if attenuation operators are present. The exceptions are Theorem 9.11
and Corollary 9.12 which use the notion of a consistent program, a notion that needs re-defining
when attenuation operators are present. Thus the entire machinery of stable and well-founded
models applies. In fact, the program P is rather well-behaved. A direct calculation shows that
the smallest and greatest stable models in the ≤k ordering coincide, and are exact. Hence the
well-founded model is the unique stable model. It is not, however, the only model. The least and
greatest fixed points of ΦP are different. Along with the well-founded model, they are partly given
in the following table, under the names µP and νP .

skP = SkP µP νP

P (a) 〈0, 1〉 〈0, 0〉 〈1, 1〉
P (f(a)) 〈0.9, 0.1〉 〈0, 0.1〉 〈0.9, 1〉
P (f2(a)) 〈0.09, 0.91〉 〈0.09, 0.1〉 〈0.9, 0.91〉
P (f3(a)) 〈0.819, 0.181〉 〈0.09, 0.181〉 〈0.819, 0.91〉
P (f4(a)) 〈0.1629, 0.8371〉 〈0.1629, 0.181〉 〈0.819, 0.8371〉

Notice that the largest (non-stable) model, νP , is not consistent in the space of valuations. Still, it
displays considerable structure. The values it assigns to ground atoms are uniformly not consistent
in B, but as n increases the value assigned to P (fn(a)) grows ‘less inconsistent.’ Incidentally, in all
cases, as n increases the value assigned to P (fn(a)) approaches 〈0.4736 . . . , 0.5263 . . .〉 as a limit.
This value is exact.

11 Conclusion

Stable models, and in particular the well-founded model, have received much attention in the
literature recently. There is a general feeling that this approach comes closer to capturing the
meaning of logic programs than other attempts. We have seen that the family of stable models
has some remarkably simple bounds, bounds that are closely inter-related. This adds to their
interest. But there is still much to be done. For instance, how does this work extend to disjunctive
logic programs? In addition there are general structural questions: we have established bounds
on the family of stable models; is there more structure to be discovered? The fixed points of a
monotone operator in a complete lattice form another complete lattice. The derived operator Ψ′P
is monotonic under ≤k and its fixed points are the stable models. What additional information is
given by knowing the stable models constitute a complete lattice themselves?

We have broadened the usual context of logic programming semantics by insisting that incon-
sistent truth values be allowed, and be taken seriously. We feel this is fundamental. Inconsistencies
in information are facts of life; we often believe that different inconsistencies really are different.
It should be possible to model this feeling in the semantics. We hope others will follow up on this
point.
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Finally, we have worked with the general family of bilattices, rather than confining things to the
setting of conventional logic programming. This adds no complexity to the proofs in the Appendix.
Instead it helps makes clear the rather simple assumptions on which the stable model semantics
rests. Among the variety of bilattices, there are many of intrinsic interest. We would like to see
program languages developed and experimented with that use other bilattices, in the sense that
conventional logic programming uses FOUR. There may be useful things here.

Appendix — Proofs

Proofs of the results presented in Section 9 are collected together here. It should quickly become
apparent that these are all algebraic consequences of elementary properties of bilattices and the
stability operator. We begin by assuming enough properties of the underlying bilattice so that
things are well-behaved.

Assumption For this section, B is an infinitely distributive bilattice, satisfying the interlacing
laws, finitary and infinitary, and with a negation and a conflation that commute.

Lemma Let v1, v2, w1, w2 ∈ V(B) and let A be a ground formula with all negations at the literal
level. Then:

1. if v1 ≤k v2 then v1(A) ≤k v2(A);

2. if A does not contain ¬ and if v1 ≤t v2 then v1(A) ≤t v2(A);

3. if v1 ≤k v2 and w1 ≤k w2 then v14w1 ≤k v24w2;

4. if v1 ≤t v2 and w2 ≤t w1 then v14w1 ≤t v24w2.

Proof The Lemma holds if A is atomic by definition of the orderings in V(B), Definition 7.1. It
extends to literals using the definition of negation, Definition 3.5, and Definition 8.1. Then the
extension to more complex formulas is by a straightforward induction on the degree of A, using the
interlacing conditions, Definition 3.4.

Proposition In the space of valuations:

1. the operator ΦP (Definition 7.2) is monotonic under ≤k;

2. the operator ΨP (Definition 8.2) is monotonic in both arguments under ≤k, and under the
ordering ≤t it is monotonic in its first argument and anti-monotonic in its second.

Proof Suppose v1 ≤k v2 and let A be a pure ground atom; we want to show ΦP(v1)(A) ≤k
ΦP(v2)(A). If A does not occur as the head of any member of P∗, trivially ΦP(v1)(A) = ΦP(v2)(A),
since both are false, so the result is immediate. Otherwise, if A ← B ∈ P∗, ΦP(v1)(A) = v1(B),
and similarly for v2, so we need that v1(B) ≤k v2(B), and this is the case by part 1 of the previous
Lemma. This establishes Item 1. Item 2 is by a similar argument, using parts 3 and 4 of the
Lemma.

This Proposition is central for virtually all of what follows. Now, before we continue we take a
moment to recall the two usual proofs of the Knaster-Tarski Theorem.
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Suppose L is a complete lattice and f is monotone on L. The Knaster-Tarski Theorem says,
among other things, that f has a smallest fixed point, s. There are two ways of ‘constructing’ this
fixed point, and each leads to a technique for proving things about it.

In one approach, the least fixed point of f is shown to be
∧{x ∈ L | f(x) ≤ x}. It follows that

if f(x) ≤ x, then s ≤ x. This is a convenient way of showing upper bounds on s, and we use it in
the proof immediately following.

In the other standard approach one produces a (generally transfinite) sequence of members of
L as follows. f0 is set to be the least member of L. For an ordinal α, fα+1 is set to be f(fα).
And for a limit ordinal λ, fλ is set to be

∨
α<λ fα. This sequence is increasing. The limit of the

sequence,
∨
α fα, is the least fixed point of f , and the fixed point is attained at some first ordinal,

the closure ordinal of f . This yields another method of proof: by transfinite induction. If it can be
shown that each member of the fα sequence has some property, then the least fixed point, s, also
has that property. We use this technique also in the proof below.

Theorem 9.1 The operator Ψ′P is anti-monotonic in the ≤t ordering, but is monotonic in the ≤k
ordering.

Proof Suppose v1 ≤t v2. By the previous Proposition, ΨP is anti-monotonic in its second argu-
ment, so

ΨP(Ψ′P(v1), v2) ≤t ΨP(Ψ′P(v1), v1).

Since Ψ′P(v1) is a fixed point of (λx)ΨP(x, v1), this yields:

ΨP(Ψ′P(v1), v2) ≤t Ψ′P(v1).

Since Ψ′P(v2) is the least fixed point of (λx)ΨP(x, v2) under ≤t, it follows from one of the proofs of
the Knaster-Tarski Theorem that

Ψ′P(v2) ≤t Ψ′P(v1).

This establishes the first part of the Theorem.

Now suppose v1 ≤k v2. We will show Ψ′P(v1) ≤k Ψ′P(v2). To this end we define two transfinite
sequences of valuations, aα and bα, as follows. a0 = b0 is the always false valuation, the least in the
≤t ordering. aα+1 = ΨP(aα, v1) and bα+1 = ΨP(bα, v2). Finally, for a limit ordinal λ, aλ =

∨
α<λ aα

and bλ =
∨
α<λ bα. Both sequences are increasing in the ≤t ordering since Ψ′P is monotone in its

first argument. The aα sequence has Ψ′P(v1) as its limit, while the bα sequence has Ψ′P(v2) as its
limit, so to prove the second assertion of the theorem it is enough to establish that aα ≤k bα for
every ordinal α.

If α = 0, aα and bα are the same; this case is trivial.
Suppose aα ≤k bα. Then aα+1 = ΨP(aα, v1) ≤k ΨP(bα, v2) = bα+1, using the monotonicity of

ΨP in both arguments, under ≤k.
Finally, suppose aα ≤k bα for every α < λ. It follows that

∨
α<λ aα ≤k

∨
α<λ bα, using the fact

that V(B) satisfies the infinitary interlacing conditions.

With this theorem shown, the existence of a smallest fixed point skP , and a biggest fixed point
SkP , for Ψ′P , under the ≤k ordering, follows immediately from the Knaster-Tarski Theorem. Thus
we have established

Theorem 9.2 The operator Ψ′P has a smallest fixed point, denoted skP , and a greatest fixed point,
denoted SkP , under the ≤k ordering.



22 Melvin Fitting

The next result is now shown by a simple calculation.

Theorem 9.4 Every stable valuation is a model. That is, every fixed point of Ψ′P is also a fixed
point of ΦP .

Proof Suppose s is a fixed point of Ψ′P . Then

ΦP(s) = ΨP(s, s) = ΨP(Ψ′P(s), s) = Ψ′P(s) = s.

We omit the proof of Theorem 9.5, which essentially amounts to applying the Knaster-Tarski
argument to the monotonic operator f2. Using the Theorem, however, the existence of the two
extreme oscillation points stP and StP follows immediately. Before continuing with results from
Section 9, we need a Proposition, and a few Lemmas leading up to it.

Lemma In a distributive bilattice, x = (x ∧ ⊥)⊕ (x ∨ ⊥), and also false⊗ true = ⊥.

Proof
(x ∧ ⊥)⊕ (x ∨ ⊥) = [x⊕ (x ∨ ⊥)] ∧ [⊥⊕ (x ∨ ⊥)]

= [(x⊕ x) ∨ (x⊕⊥)] ∧ [(⊥⊕ x) ∨ (⊥⊕⊥)]
= [x ∨ x] ∧ [x ∨ ⊥]
= x ∧ (x ∨ ⊥)
= x

For the second part, false ≤t ⊥ since false is the smallest member of the bilattice under the ≤t
ordering. Then using the interlacing conditions, which hold in any distributive bilattice,

false⊗ true ≤t ⊥⊗ true = ⊥.

Similarly ⊥ ≤t true, so
⊥ = false⊗⊥ ≤t false⊗ true.

Incidentally, there are three more equations like false⊗ true = ⊥ that hold in distributive bilattices:
false⊕ true = >; ⊥ ∧> = false; and ⊥ ∨> = true. These have similar proofs, but we do not need
them here.

Lemma In a distributive bilattice, if a ≤t b ≤t c then:

1. (a ∧ ⊥)⊗ (c ∨ ⊥) ≤k ⊥;

2. (a ∨ ⊥)⊗ c ≤k b;

3. (a ∧ ⊥)⊗ (c ∧ ⊥) ≤k b.

Proof Since ⊥ ≤k false, by the interlacing conditions, a ∧ ⊥ ≤k a ∧ false = false. Similarly
c ∨ ⊥ ≤k true. Then, again by the interlacing conditions, (a ∧ ⊥)⊗ (c ∨ ⊥) ≤k false⊗ true. In any
distributive bilattice, false⊗ true = ⊥. This establishes part 1.

Next, using the hypothesis, and interlacing, (a ∨ ⊥)⊗ c ≤k (a ∨ b)⊗ c = b⊗ c ≤k b.
Finally, (a ∧ ⊥)⊗ (c ∧ ⊥) ≤k (a ∧ ⊥)⊗ (c ∧ b) = (a ∧ ⊥)⊗ b ≤k b.
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Finally, the result we chiefly need.

Proposition In a distributive bilattice, if a ≤t b ≤t c then a⊗ c ≤k b.

Proof Using the Lemmas above, and interlacing,

a⊗ c = [(a ∧ ⊥)⊕ (a ∨ ⊥)]⊗ c
= [(a ∧ ⊥)⊗ c]⊕ [(a ∨ ⊥)⊗ c]
≤k [(a ∧ ⊥)⊗ c]⊕ b
= [(a ∧ ⊥)⊗ ((c ∧ ⊥)⊕ (c ∨ ⊥))]⊕ b
= [(a ∧ ⊥)⊗ (c ∧ ⊥)]⊕ [(a ∧ ⊥)⊗ (c ∨ ⊥)]⊕ b
≤k b⊕⊥⊕ b
= b

Remark The Proposition above is really one of four related results. Using a similar proof, and
appropriate versions of the Lemmas preceding, the following can also be shown.

• if a ≤t b ≤t c then b ≤k a⊕ c;

• if a ≤k b ≤k c then a ∧ c ≤t b;

• if a ≤k b ≤k c then b ≤t a ∨ c.

We will need these items later on. Now to return to results from Section 9.

Theorem 9.7 The valuations stP ⊗ StP and stP ⊕ StP are both fixed points of Ψ′P , and hence are
stable models.

Proof Using monotonicity of Ψ′P in the ≤k ordering,

Ψ′P(stP ⊗ StP) ≤k Ψ′P(stP) = StP

Ψ′P(stP ⊗ StP) ≤k Ψ′P(StP) = stP

and it follows that
Ψ′P(stP ⊗ StP) ≤k stP ⊗ StP .

Also, stP ≤t StP , so by interlacing,

stP = stP ⊗ stP ≤t stP ⊗ StP ≤t StP ⊗ StP = StP

and then by the anti-monotonicity of Ψ′P in the ≤t ordering,

Ψ′P(StP) ≤t Ψ′P(stP ⊗ StP) ≤t Ψ′P(stP)

and so
stP ≤t Ψ′P(stP ⊗ StP) ≤t StP .

Now by the previous Proposition,

stP ⊗ StP ≤k Ψ′P(stP ⊗ StP).

This proves half the Theorem; the other half has a dual proof.
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Theorem 9.8 The extremal fixed points of Ψ′P under ≤k can be calculated from the extremal os-
cillation points under ≤t as follows:

1. skP = stP ⊗ StP ;

2. SkP = stP ⊕ StP .

Proof The valuation skP is the least fixed point of Ψ′P in the ≤k ordering. Theorem 9.7 showed
that stP ⊗ StP is a fixed point, hence

skP ≤k stP ⊗ StP .
In the other direction, stP and StP are extremal oscillation points in the ≤t ordering. But skP ,

being a fixed point, is trivially an oscillation point. Hence

stP ≤t skP ≤t StP

and it follows from the Proposition earlier that

stP ⊗ StP ≤k skP .

This is half the theorem. Once again, the other half is dual.

Next, a result about monotone mappings in general, before we return to Section 9.

Proposition If f is a monotone mapping on the complete lattice L, then f and f2 have the same
least and greatest fixed points.

Proof We show the result for least fixed points; the other half has a dual proof. Let a be the least
fixed point of f , and let b be the least fixed point of f2.

Since every fixed point of f is also a fixed point of f2, f2(a) = a. Since b is the least fixed point
of f2, b ≤ a.

If x is a fixed point of f2, so is f(x), because f2(f(x)) = f(f2(x)) = f(x). Then f(b) is a fixed
point of f2, and since b is the least fixed point of f2, b ≤ f(b). By monotonicity, f(b) ≤ f2(b), or
f(b) ≤ b. Since a is the least fixed point of f , it follows that a ≤ b.

Now we continue with results from Section 9.

Theorem 9.9

1. stP = skP ∧ SkP ;

2. StP = skP ∨ SkP .

Proof The mapping Ψ′P is monotone in the ≤k ordering, with skP and SkP as its least and greatest
fixed points in this ordering. Trivially, (Ψ′P)2 is also monotone in this ordering, and by the Propo-
sition above it has the same least and greatest fixed points. But (Ψ′P)2 is also monotone in the ≤t
ordering, with stP and StP as its least and greatest fixed points in this ordering. Now,

skP ∧ SkP ≤t skP

hence
(Ψ′P)2(skP ∧ SkP) ≤t (Ψ′P)2(skP) = skP
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and similarly
(Ψ′P)2(skP ∧ SkP) ≤t SkP

so
(Ψ′P)2(skP ∧ SkP) ≤t skP ∧ SkP .

Then since stP is the least fixed point of (Ψ′P)2 in the ≤t ordering,

stP ≤t skP ∧ SkP .

Further, since stP is a fixed point of (Ψ′P)2, and skP and SkP are the least and greatest fixed points
of this operator in the ≤k ordering,

skP ≤k stP ≤k SkP
and it follows by an earlier Remark that

skP ∧ SkP ≤t stP .

For the remaining results, recall that a member x of a bilattice with conflation is consistent if
x ≤k −x, and a consistent program is one in which program bodies do not contain ⊕, and contain
only consistent members of B.

Theorem 9.11 If P is a consistent program, stP and StP are consistent in the space of valuations.

Proof The first thing we need is that if P is a consistent program, Ψ′P maps consistent valuations
to consistent valuations. We begin with some background.

Consistent valuations are those that are consistent in the bilattice of valuations. Equivalently,
they are the valuations that map ground atoms to consistent members of B. It is shown in [12]
(Proposition 3.6) that the consistent members of a bilattice meeting the conditions we are assuming
contain false and are closed under negation and both finitary and infinitary versions of ∧, ∨, and
⊗. More can be said than this, but it is all we need here.

It follows from what was just said that if v is a consistent valuation and B is a ground formula
built up from atoms and consistent members of B, using ∧, ∨, ¬, ∃, ∀, and ⊗, then v(B) will be a
consistent member of B. It follows that if P is a consistent program, and v and w are consistent
valuations, then ΨP(v, w) is a consistent valuation.

Next, assume w is a consistent valuation. Ψ′P(w) is the least fixed point, in the ≤t ordering, of
the monotone operator (λx)ΨP(x,w). One approximates to this least fixed point via a transfinite
sequence of steps. The initial member, the always false valuation, is consistent. If stage α yields a
consistent valuation, so will stage α + 1, by the previous paragraph. And at limit ordinals we use
the sup operation, which in this case is the infinitary version of ∨, and the collection of consistent
members is closed under this operation. It follows that every member of the transfinite sequence is
consistent, and hence Ψ′P(w) is consistent. Thus Ψ′P does map consistent valuations to consistent
valuations.

The valuation stP is the least fixed point, in the ≤t ordering, of the monotone operator (Ψ′P)2.
By the preceding paragraph, if P is a consistent program, (Ψ′P)2 maps consistent valuations to
consistent valuations. Then again, every member of the transfinite sequence of approximations to
the least fixed point of it will be consistent, hence so will stP . The result about StP can be shown
by a dual argument.
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Corollary 9.12 Suppose P is a consistent program, and the well-founded model skP is exact. Then
it is the unique stable model.

Proof If P is a consistent program, stP is consistent, and so stP ≤k −stP . If skP is exact, skP =
−skP . Now, skP ≤k stP since skP = stP ⊗ StP . Then −stP ≤k −skP and it follows, under the present
assumptions, that stP ≤k skP . Hence skP = stP .

In a similar way, skP = StP . Then also, SkP = stP ⊕ StP = skP ⊕ skP = skP . Since all stable models
lie between skP and SkP , there is only one stable model.
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