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§ 1. Introduction

Elementary formal systems, as defined in [4], provide an elegant approach to re-
cursion theory. In this paper we show how, by a simple modification, they may like-
wise serve for hyperarithmetic theory. Out of this work we derive a curious model-
theoretic characterization of both the II] sets and the r.e. sets.

As defined in [4], elementary formal systems deal with concatenation of words over
a finite alphabet. Actually, it is possible to construct elementary formal systems to
deal directly “with any mathematical structure. We find it convenient here, though
not necessary, to work with elementary formal systems that act on numbers rather
than words. In § 2 we define the system we will be using, but we observe now that
what we do can easily be modified to apply to elementary formal systems as defined
originally. We plan a more systematic discussion of this in a later paper.

§ 2. Elementary formal systems
We define the variation of [4] that we will be using.

We suppose available an unlimited supply of k-place predicate symbols for each
k > 0. The other two symbols of our alphabet are an arrow and a comma. We will be
using axiom schemas, so we have no variables in the language itself.

Let @ be the set of natural numbers (including 0). By an atomic formula we mean
an expression of the form Pw,, ..., v where »;,..., v, €w and P is a k-place pred-
icate symbol. For convenience we may write Pv for Py, .. ., v, sometimes. We also
define a pseudo-atomic formula to be anything of the form Pz, . .., 2, where each ; is
in w or is a variable. Pseudo atomic formulas are expressions of the metalanguage only.

The notion of formula is defined recursively by:

1) an atomic formula is a formula.

2) If X and Y are formulas, so is X — Y.

Formulas are to be thought of as being associated to the right. Thus 4 - B - 0 —» D
should be read as if it were 4 — (B - (C - D)) and thought of as saying 4, B and C
together imply D.

The metalinguistical notion of pseudo- }‘ormula is defined in the obvious way. And
an snstance of a pseudo- formula is defined to be the result of replacing all variables
by numbers.

By the conclusion of a (pseudo) formula we mean the final (pseudo) atomic part
of it. Thus, if 4 is (pseudo) atomic, 4 is the conclusion of both X — A4 and of 4 itself.

We assume a two-place relation symbol, say S, has been set aside to represent the
successor relation on w. But we will often write y = 2* instead of Sz, y, to make read-
ing easier. Let 8* consist of all atomic formulas of the form Sz, y where ¥ is the suc-
cessor of z.

We say a pseudo-formula X is allowable if S, the successor predicate symbol, does
not oceur in the conclusion of X. /
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Let % be a finite set of pseudo-formulas, each allowable. By a derivation from U we
mean a finite sequence of formulas such that each term of the sequence either: 1) is
a member of S*, or 2) is an mstance of some member of U, or 3) comes from two earlier
terms by the rule

X X->7Y
(MP) —

Y

If there is such a derivation ending with X, we say X is derivable from 9.

In this way U determines a simple deductive system, called an elementary formal
system. We call the members of ¥ the axiom schemas for the elementary formal system
they determine.

Let P be a k-place predicate symbol, and P < w*. We say P represents P in the
elementary formal system determined by U if

v e P iff Pv is derivable from .

We say P is representable using the axiom schemas % if there is some predicate symbol
which represents  in the elementary formal system determined by . Finally, P is
representable if it is representable using some finite set of axiom schemas U.

The following has a straightforward demonstration.

Theorem. A relation R on w is representable iff R is recursively enumerable (in any
standard sense).

provided X is atomie.

§ 3. w-elementary formal systems

We add an infinite-premise rule of derivation to the machinery of elementary formal
gystems as just described.

First, modify the alphabet by adding the additional symbol V. Now an atomic
formula is a string Pz, . . ., 2; where P is k-place and each x; either is in @, or is V.
(Similarly modify the notion of pseudo-atomic formula.) Formulas are built up as
before, but from the enlarged class of atomic formulas. Otherwise no syntactical changes
are made; instance still means numerical instance, for example.

Intuitively, Pv, V, w is to mean P, n, w holds for each number n. Now we give rules
governing the formal use of V. This can be done in two different but equivalent ways.

Version 1. We make the restriction that ¥ may not occur in the conclusion of any
axiom schema. And we add the following rule of derivation.

w-rule. If Py, V, w is atomic, then

Py, n,w for each n ew
Po,V,w

Version 2. This time no restriction is placed on the form of axiom schemas. But
we add two new rules of derivation, the w-rule as in version 1, and also the

Inverse w-rule. If Po,V, w is atomic, then
Pv, Y, w
— for each new.
Py, n, w

The notion of an w-elementary formal system is formulated analogously to the notions
in § 2, but derivations are now well-ordered (possibly) infinite sequences, allowing
(version 1 or version 2) of the above rules. Call a relation R w-r.e. if it is representable
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in some w-elementary formal system. Call R w-recursive if R and its complement are
both w-r.e. In the next two sections we show

Theorem A. Using either version, for any relation R on w:

1) R is w-re. iff R is IIt, 2) R is w-recursive iff R is hyperarithmetic.

§ 4. Kleene’s O:

We show 9, the set of Kleene’s ordinal notations, is w-r.e., and obtain half of the-
orem A as a consequence. We take © as formulated in [1].

We need the following fact from ordinary recursion theory. Let f; be the partial
recursive one-place function with (function) index ¢. Let U be the three-place relation
defined by Uz, 2,y < 1) = 9.
Then U is r.e. We also need the following useful fact: any relation which is r.e. is
w-r.e. using the same axiom schemas.

Now we introduce the axiom schemas for ©. We do this in groups, first explaining
what each new predicate symbol is to represent.

Begin with axiom schemas for the r.e. relations U, multiplication and exponentiation.
For reading ease we write y = x -z instead of the relation form Mz, y, 2, say, and
similarly for exponentiation. Now

. Dz, y:< z is in the domain of f,

Uy, z,w - Dz, y;
Rz, y :<>x is in the range of j,

Uy, w,z - Rz, y;
Tx <> f, is total

DV, x - Tx,
<,: the ordering of Kleene’s O

1<,2, 1<, yo2=22>5y<,2
{more axioms for <, presently];

G’”:y:@ fy(n) <o.fy('"’ + 1)
Uy,n,z—>k=nt—> Uy, k,w—>sz<,w— Gn,vy;
Ty > GV, y > Rz,y>a=5>b=3a—z<,b;

. X< Y =Y <02 & <,2;
O: Kleene’s O .
r<,y—>0x; =<,y 0y.

It is not hard to see that, using either version, O does represent O in the w-element-
ary formal system with the above axiom schemas. Thus

Lemma 4.1. Klesne’s O is w-r.e. (using either version). ,

Lemma 4.2. If Q £, P, and P is w-r.e. then Q is also w-r.e. (using either version).

Proof. If @ £, P, then for some one-one recursive f, & € ¢ <> f(x) € P. Now the
relation y = f(x) is r.e. So, for axioms for @, simply take:

axioms for P, axioms for y = f(x), y = f(z) > Py - Q.

Theorem. Under either version, every II} relation is w-r.e.

Proof. Kleene’s O is a complete I} set ([2], pg. 397), hence if i is any II] relation,
R <, O. The result follows by lemmas 4.1 and 4.2.
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§ 5. Models

We introduce the notion of a model for an w-elementary formal system, out of which
will come the other half of theorem A. The idea is essentially that of R-definability
in [3].

Let o be a set of axiom schemas, involving, besides the successor predicate symbol,
the predicate symbols P, ..., P,. A model structure for % is a k-tuple (By, ..., B>
where, if P; is n-place then ; € o™

Next we define the notion of truth in a model structure (for formulas involving only
successor, Py, ..., P;). First, for atomic formulas.

a) y = at is true in (P, ..., P if, in fact, y is the successor of 2.
b) Suppose P; is n-place, and v € ™. Then Pw is true in (By, ..., By if ve P;.
¢) Pw,V,wis true in {Ry, ..., Ppy if Piv, n, wis true in By, . . ., Py for each n e w.

For non-atomic formulas, call X; - X, - ... »> X, true in {$,, ..., Br) (where
X,,X,,..., X, are atomic) if one of X;, ..., X, is not true, or X, is true.

We say (iBl, ..., B> is a model for U if it is a model structure for ?I and each in-
stance of a member of A is true in By, ..., Br).

Lemma 5.1. If {By, ..., By is a model for A then any formula derivable (under
either version) in the w-elementary formal system with axiom schemas U s lrue in

<;'B1’ MR S‘Bk>

Proof. By transfinite induction on proof length.

Lemma 5.2. Let P,v be an atomic formula not derivable from U. Then there is a model
{B1, ..., B for A in which Pw is not true (under either version).

Proof. Suppose P; is n-place. Set P; = {v € w?| Pjv is derivable from }.

Now it can be checked that (%, ..., Br> is a model for ¥ in which P;v is not true.
The above two lemmas give us ,

Theorem 5.3. Let Pyv be an atomic formula. Then, under either version, P is de-
rivable from U iff Pw is true in every model for .

Lemma 5.4. That (B, ..., By 3 @ model for U is arithmetic in Py, ..., By.

Proof. We content ourselves with an illustrative example. Say & = 2, and U con-
gists of the two schemas :

. y=a"-> Pz, y,3, PzV,3> P4,
Then an appropriate formula is
PPy, Ba) = (V2) (V9) [y = 2% > Pu(e, v, 3)] A (Va) [(V2) By(e 2, 3) > By, 4
Lemma 5.5. That Pv is true in every model for U is IT;.

Proof. Let (P, ..., i) be the formula of lemma 5.4 saying (B, ..., By is a
model for %. Then, use the formula (Y%,) ... (YBx) [@(Fy, - .., B) > Buv].

Lemma 5.5 and theorem 5.3 immediately give
Theorem. Under either version, every w-r.e. relation is IT5.

We have now established theorem A part 1. Part 2 is immediate since R is hyper-
arithmetic iff % and its complement are IT}.
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§ 6. Definability Results

~ Let L be the first order language containing: a constant symbol for each number,
a relation symbol for the successor relation, and other relation symbols.
Let X be a formula of L. By a standard model for X we mean a model in which

1) the domain is c,

2) the successor relation symbol is interpreted by the successor relation,
3) each number constant is interpreted by the corresponding number,
4) every instance of X is true.

For convenience, since standard models are all we will be considering, let us use
the numbers themselves as the constant symbols of L, and for the relation symbols
we will use those of elementary formal systems.

Let X be a formula of L and P be an n-place relation symbol. By (X, P) we mean
" {vew| Py is true in every standard model for X}.

We say a relation ® on w is characterizable if, for some X and some P, ® = (X, P).

Theorem B. '

1) The characterizable relations are exactly the w-r.e. (or II}) relations.

2) The relations characterizable using formulas of L with no quantifiers are exactly
the r.e. relations.

Proof of part 1. Suppose R is w-r.e. Then R is representable in some w-elemen-
tary formal system, say (to give a familiar example) by P,, using the axiom schemas 9,
where 9l consists of

y=xt—>Puxy3, Ple3—>P2x,

Then take X to be the formula of L:
[y = ot o Pz, y, 3] A [(Vw) Pz, w, 3 o Pyx, 4].

It is easy to see the standard models for X are just the models for U as defined in § 5.
It follows that R = (X, P,).

Conversely, suppose R = (X, P) for some X and some P. Then -
veR iff Py is true in all standard models for X.
But the proofs of lemmas 5.4 and 5.5 can easily be modified to show this is a I} notion.

This completes the proof of part 1.

Remark. Actually a stronger result has been shown: The w-r.e. relations are char-
acterizable using formulas of L of a certain standard form, namely, conjunctions of
formulas of the form (X, A XyA...A X, ;) 5 X, where X, is atomic and each of
X,,..., Xy, is either atomic, or atomic with some universal quantifiers prefixed.
Formulas of this form arise naturally out of w-elementary formal systems using ver-.
sion 1. This result can be further strengthened, to restrict the variety of predicate
symbols used, but we do not pursue this here.

Proof of part 2. If R is r.e., it is representable. in some elementary formal system,
say by P, using axiom schemas 9. Now proceed just as in the proof of part 1. Since
the symbol V is not used in %, the resulting formula X, such that R = (X, P), will
be quantifier free.
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Conversely, suppose f = (X, P) where X has no quantifiers. Let X; be the set of
instances of X, together with all true instances of the successor relation.

Auxillary Lemma. Writing & to denote the consequence relation of propositional
logic: Py is true in all standard models for X iff X;t+ Po.

Assuming the truth of this lemma, we complete the proof of part 2.

Let A° be the Godel number of the formula A (under some standard Godel number-
ing), and let XJ = {4°| 4 € X;}. X} is easily seen to be r.e., hence C = {A°| X, + A4}
is r.e. It follows that {v | (Pv)® € C} is also r.e. But {v | (Pr)° € C} = {v| X/ } Pv} =R
by the lemma.

. Proof of auxillary lemma. If X;F A, A is true in any model for X;. But a
standard model for X is also a model for X;, hence if X; I Pv, Py is true in any stand-
ard model for X.

Conversely, suppose not X; F Pv. Then X;u {~Puv} is consistent. Extend it to a
maximal consistent set M. Define a model by:

setting domain = w,

interpreting the successor relation symbol to be the successor relation,
interpreting P; by {v| Pv € M},

interpreting each number constant as that number.

In this model, all members of M are true. So all of X; is true in it. It follows that it
is a standard model for X, and in it, Py is not true.

Remark. Again, a stronger result has actually been established. The r.e. relations
are characterizable using quantifier free formulas which are conjunctions of formulas
of the form

(XyA...AX, ) o X,, where each X; is atomic.

‘This is essentially the result of [3].
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