
Chapter 1
Tableaus and Dual Tableaus

Melvin Fitting

Abstract
In a sense, tableaus and dual tableaus are the same thing, just as tableaus and

sequent calculi are the same thing. There are mathematical ideas, and there are pre-
sentations of them. For applications, representing linear operators as matrices is
wonderfully helpful, but for proving results about linear operators a more abstract
approach is simpler and clearer. The form of mathematical structures matters psy-
chologically for people, though perhaps it matters little to the god of mathematics
who kept Paul Erdős’s book of proofs. Tableaus work towards an obvious contra-
diction, dual tableaus work towards an obvious truth. Which is best? Who asks the
question? That determines the answer. Here we examine the basics of tableaus and
dual tableaus and their connections, looking only at the most fundamental of logics.
That should be enough to make the general ideas plain.

“I’ll tell you all my ideas about Looking-glass House. First, there’s the room you can see
through the glass—that’s just the same as our drawing room, only the things go the other
way. I can see all of it when I get upon a chair—all but the bit behind the fireplace. . . . Well
then, the books are something like our books, only the words go the wrong way; I know
that, because I’ve held up one of our books to the glass, and then they hold up one in the
other room. . . . But oh, Kitty! now we come to the passage. You can just see a little peep of
the passage in Looking-glass House, if you leave the door of our drawing-room wide open:
and it’s very like our passage as far as you can see, only you know it may be quite different
on beyond. Oh, Kitty! how nice it would be if we could only get through into Looking-glass
House! I’m sure it’s got, oh! such beautiful things in it!”

Excerpts From: Lewis Carroll. Through the Looking-Glass.
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1.1 Introduction

The tableau proof format is highly malleable. Machinery can be added or subtracted
to produce versions suitable for a range of logics. Indeed, even the spelling of the
name varies: the standard plural is ”tableaux” but I have always preferred ”tableaus.”
It’s a minor point, but I will follow my preferences here (notice to copy editor). What
is common to all tableau systems is that proofs somehow involve trees, and proof
steps move from formulas to subformulas, thus reducing formula complexity. At
one time I would have said that tableau systems are always refutation systems, but
dual tableaus are a prominent counter-example to this. It is the job of the present
paper to explain something of tableaus and dual tableaus and their relationships to
each other. It will be seen that while connections are very close, differences stem
from varying intuitions of how one determines what it is that makes a formula true
under all pertinent circumstances. But, you will see.

The sequent calculus, for both classical and intuitionistic logic, was introduced
in (Gentzen 1935). While its primary function was meant to be theoretical, it was
also employed for proof discovery by making use of it upside down. For instance, in
(Wang 1960) it was made the basis of a very early automated theorem prover using
this upside down idea. Beth, with independent semantical motivation, introduced a
two column tree proof method in (Beth 1955, 1956, 1959), essentially making the
upside down version of the sequent calculus into a thing in itself, under the name
semantic tableaus. Beth’s machinery was rather awkward in practice, and was sim-
plified to its modern version in (Smullyan 1968) which has been highly influential.
Essentially the same mechanism was also presented in (Lis 1960), though this paper
did not become generally known until much later.

Dual tableaus originated in (Rasiowa and Sikorski 1960), were used in (Binkley
and Clark 1967), were extended to some modal logics in (Snyder 1971), and under-
went further development largely due to Ewa Orlowska and her students. A recent
and detailed presentation can be found in (Orłowska and Golińska-Pilarek 2011).
Dual tableaus are, quite literally, dual to tableaus as they are customarily presented.
Proofs can be translated back and forth between tableaus and dual tableaus. So one
could develop in detail everything needed of a formal presentation for just one of
tableaus or dual tableaus, and extract a treatment of the other system by translation.
But psychology plays an important role in the creation/discovery of mathematics.
Tableaus are refutation systems, while dual tableaus more directly search for for-
ward proofs. This difference changes how one thinks about what one is doing, and
hence what one is doing in fact. Our machinery shapes the things we make when we
wield the tools.

Dual tableaus have found a major application in the treatment of logics formu-
lated using relational algebras. This is a topic that will not be considered here. We
concentrate on the tableau/dual tableau machinery itself, looking at classical and
intuitionistic propositional logic. Other logics could easily be added to the mix, but
once the basic ideas are understood additional examples should be developed by the
reader. It’s how one truly understands. We do not pick either tableau or dual tableau
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as primary, but present both in parallel. Rather than using proof-theoretic methods,
we rely exclusively on semantical machinery. This can give us equivalence with
axiomatic systems, for instance, but proofs are not central here. Proof theoretical
machinery is important and useful, but semantics is sometimes clearer and simpler,
especially as a first exposure to material. See (Dawson and Goré 2017) for closely
related semantic based work, formalizing the meta-theory of the dual tableau calcu-
lus for intuitionistic logic presented in Section 1.3.1 using HOL.

1.2 Classical Propositional Logic and the Basic Ideas

Formulas are built up from a countable list of propositional letters using the con-
nectives ∧, ∨, ⊃, and ¬. Of course not all are needed, but this will change when we
come to intuitionistic logic, so we might as well have them now. Also in proofs we
use signed formulas: if X is a formula, T X and F X are signed formulas which, in-
formally say that X is true, or false respectively. Signs are not necessary classically.
Instead of F X we could use ¬X , and T X can simply be X itself. But again things
change when we come to intuitionistic logic, and signs do no harm now.

We have just encountered a subtle but important point. When we said that T X
could be read informally as asserting that X is true, there was an ambiguity. Were we
talking about true under some interpretation of propositional letters, or under every
interpretation? Tableaus assume we are talking about some interpretation, which
leads to satisfiability being basic. Dual tableaus assume we are talking about every
interpretation, which makes tautology-hood basic. This is the essential conceptual
distinction between tableaus and dual tableaus. A standard tableau proof system is
a refutation system. To show X must be a tautology, begin by supposing it is not.
Then F X must be possible. Derive a contradiction. Hence X no matter what. On the
other hand a dual tableau is a kind of search for a proof. We want T X no matter
what. What would we need for this, then what would we need for that, and so on,
until we reach something we obviously have.

We used the word “interpretation” above, but that was informal. More prop-
erly, we call an assignment of truth values, true and false, to propositional letters
a boolean valuation. A boolean valuation extends uniquely to a mapping from all
propositional formulas to truth values in the usual way, and we make no distinction
between a valuation as a mapping on propositional letters and on all formulas. We
do extend boolean valuations to signed formulas: T X is true under a boolean val-
uation if X is true, and F X is true if X is false. We will talk about satisfiability of
a set of signed formulas, meaning its members all map to true under some boolean
valuation. This is a simple extension of satisfiability for sets of unsigned formulas.

We begin by presenting the dual tableau rules, and then a tableau counterpart.
Finally we discuss soundness and completeness for the two proof systems.
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1.2.1 Classical Propositional Dual Tableaus

We do not use the standard notation for dual tableaus, but rather a straightforward
alternative that helps bring out similarity of ideas between tableaus and the dual ver-
sion. Customarily a dual tableau is a tree of sets of formulas, but instead we present
a dual tableau as a tree of signed formulas. In Section 1.2.5 we briefly discuss the
more common presentation of classical dual tableaus, and we use it extensively
when we come to intuitionistic logic.

Figure 1.1 shows a schematic form of the dual tableau rules for classical propo-
sitional logic. Here is the intuition. Suppose we want to verify that X ∧Y is true
under every boolean valuation. Then we must produce verifications for both X and
Y . Hence the rule: from T X ∧Y divide into two cases, one with T X and one with
T Y . Similarly to refute (verify the negation of) X ∧Y it is enough to refute either
X or Y . Hence the rule: from F X ∧Y we remain in a single case, but we list both
F X and F Y , either of which is sufficient to work with. The other rules have similar
motivations.

T ¬X
F X

F¬X
T X

F X ∧Y
F X
F Y

T X ∨Y
T X
T Y

T X ⊃ Y
F X
T Y

T X ∧Y
T X | T Y

F X ∨Y
F X | F Y

F X ⊃ Y
T X | F Y

Fig. 1.1 Classical Propositional Dual Tableau Rules

A dual tableau proof of formula X begins with T X ; we want to find what is
needed to verify X under every boolean valuation. Dual tableau proofs have a tree
structure, and so we start with a tree consisting of only a root node labeled T X .
Trees are “grown” by thinking of the various cases in Figure 1.1 as branch extension
rules. These are of two types. One type is non-branching: if a certain signed formula
occurs on a branch, the branch can be extended with some new signed formulas. The
other type of rule is branching, in which the end of a branch forks and a new signed
formula is added to the end of each fork. It is customary to display both tableaus
and dual tableaus as branching downward. Taking our discussion of rule motivation
above into account, we see that branching should be thought of conjunctively—each
branch is a task, and the tasks associated with every branch must be accomplished.
Each branch individually should be thought of disjunctively; success with any item
on a branch is sufficient for that branch.

Suppose T X∨Y occurs on a branch, that is, we would like a verification of X∨Y .
We add T X and T Y to the branch—a verification of either X or Y would suffice.
Intuitively it would be redundant to do this a second time, and similarly for the other
rules. Here is some simple machinery to handle this issue.
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Definition 1 (Inactive and Active). On a dual tableau branch:

1. F X ∧Y is inactive if both F X and F Y are present;
2. T X ∨Y is inactive if both T X and T Y are present;
3. T X ⊃ Y is inactive if both F X and T Y are present;
4. T X ∧Y is inactive if one of T X or T Y are present;
5. F X ∨Y is inactive if one of F X or F Y are present;
6. F X ⊃ Y is inactive if one of T X or F Y are present;
7. T ¬X is inactive if F X is present;
8. F¬X is inactive if T X is present.

If a signed formula is not inactive on a dual tableau branch, it is active on that
branch. We say a dual tableau meets a single use restriction if rules are only applied
to active signed formulas on a branch.

Dual tableaus are sound and complete with or without a single use restriction,
but a single use restriction is better for proof search. Indeed, it easily gives us de-
cidability, since we will either conclude our proof search successfully or run out of
things to do. The order of branch extension rule applications is non-deterministic.
All applicable rules can be applied in any order, though since we pay attention to
single-use restrictions, after a rule is applied to a signed formula occurrence on a
branch, the signed formula is not subject to further rule applications on that branch.

Fig. 1.2 Classical Propositional Dual Tableau

Figure 1.2 shows a dual tableau construction, for the signed propositional for-
mula T (P ⊃ (Q ∨ R)) ⊃ ((P ⊃ ¬Q) ⊃ (P ⊃ R)). Think of 1 as the goal—we
want a verification of (P ⊃ (Q∨R)) ⊃ ((P ⊃ ¬Q) ⊃ (P ⊃ R)). Semantically we
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need that under any boolean valuation, either P ⊃ (Q ∨ R) should be false or
(P ⊃ ¬Q) ⊃ (P ⊃ R) should be true and hence goal 1 is replaced with (the set
of) goals 2 and 3. In a similar way 3 is replaced with 4 and 5, and 5 is replaced with
6 and 7. At this point we have 2, 4, 6, and 7 as active goals. We must show every
boolean valuation satisfies one of them. Notice the use of non-determinism by the
way. We have not applied rules in the “obvious” order, to 1, then to 2, then to 3,
and so on. Instead we have singled out those rule applications that did not induce
branching, simply to avoid repeating work on each branch that could be done just
once, before branching occurs. If we succeed, success is all that matters. In fact,
most provable formulas will have many dual tableau proofs, generally of various
sizes.

Now to continue, we apply a rule to 4. To refute P ⊃ ¬Q, we must verify P
and refute ¬Q. Hence goal 4 gets replaced with two goals, 8 and 9. Notice that we
can stop work on the left-most branch. It contains both F P and T P and under any
boolean valuation we must have one of these. We continue work on the right branch.

Trivially 9 is replaced with 10. Then 2 is replaced with 11 and 12. As before, we
can stop work on the branch ending with 11 because it contains both F P and T P.

Finally 12 is replaced with 13 and 14. The branch ending with 13 is a “success”
because of 10 and 13, and so is the branch ending with 14 because of 7 and 14. The
initial problem has been reduced to trivial verification.

Definition 2. A dual tableau branch is closed (or axiomatic) if it contains both T X
and F X for some X . A dual tableau is closed if every branch is closed. And a
classical propositional dual tableau proof for a formula X is a closed tableau with
T X at the root, constructed using the rules in Figure 1.1. A dual tableau is atomically
closed if every branch is closed because it contains a propositional letter with both
T and F signs.

We will show soundness in Section 1.2.3 with no restrictions, so adding single
use and atomic closure requirements also gives us sound systems. We will show
completeness in Section 1.2.4 with both single use and atomic closure restrictions
so removing them also gives us complete proof systems.

1.2.2 Classical Propositional Tableaus

As we noted in Section 1.1, a tableau proof system is actually a refutation system.
To prove a formula X one shows the assumption that X could be false under some
boolean valuation leads to a contradiction. Then, a tableau to show that a proposi-
tional formula X is a tautology begins with F X , and this is the root of a tableau
proof tree.

Next, the tree is expanded using tableau branch extension rules. As with dual
tableaus there are two types, non-branching and branching. Figure 1.3 gives the
classical propositional tableau branch extension rules. It should be noted that the
rules are the same as in Figure 1.1, but with the signs reversed.
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T ¬X
F X

F¬X
T X

T X ∧Y
T X
T Y

F X ∨Y
F X
F Y

F X ⊃ Y
T X
F Y

F X ∧Y
F X | F Y

T X ∨Y
T X | T Y

T X ⊃ Y
F X | T Y

Fig. 1.3 Classical Propositional Tableau Rules

Just as with dual tableaus, the order of rule application is non-deterministic, and
we have a single use principle. But the informal motivation becomes the mirror
image of that for dual tableaus. Now branching is thought of disjunctively, while
signed formulas on the same branch are thought of conjunctively. Instead of being
true under all boolean valuations, we want truth under some boolean valuation—
satisfiability. For instance, the tableau rule for T X ∧Y informally tells us that if
some boolean valuation assigns truth values to a set of formulas in a way that makes
X ∧Y true, it will make both X and Y true. The corresponding rule with F tells us
that if a boolean valuation makes X ∧Y false, it will make one of X or Y false (or
possibly both, of course).

Figure 1.4 shows a tableau construction, for the signed propositional formula
F (P⊃ (Q∨R))⊃ ((P⊃¬Q)⊃ (P⊃ R)). Unlike with dual tableaus, don’t think of
1 as the goal, but as something we want to show impossible. If no boolean valuation
can make (P⊃ (Q∨R))⊃ ((P⊃ ¬Q)⊃ (P⊃ R)) false, it must be a tautology.

Fig. 1.4 Classical Propositional Tableau
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If some boolean valuation falsifies (P ⊃ (Q∨R)) ⊃ ((P ⊃ ¬Q) ⊃ (P ⊃ R)), it
must make P ⊃ (Q∨R) true and (P ⊃ ¬Q) ⊃ (P ⊃ R) false so 1 is replaced with
2 and 3 (recall, branches are now understood conjunctively). In a similar way 3 is
replaced with 4 and 5, and 5 is replaced with 6 and 7. We now are left with 2, 4,
6, and 7 active—the set of these four must be satisfiable provided (P⊃ (Q∨R))⊃
((P⊃ ¬Q)⊃ (P⊃ R)) can be falsified.

We apply a rule to 4. If P ⊃ ¬Q is true, either P is false or ¬Q is true. So if
we replace 4 with 8 on the left branch and with 9 on the right branch, the signed
formulas on one of these branches must be a satisfiable set. The left branch cannot
be satisfiable because it contains both 6 and 8.

Continuing with the right branch, 9 is replaced with 10 and 2 is replaced with 11
and 12. The branch ending with 11 cannot be satisfied because it contains both 6 and
11. Next 12 is replaced with 13 and 14. The branch ending with 13 is not satisfiable
because of 10 and 13, and neither is the branch ending with 14 because of 7 and 14.

If (P⊃ (Q∨R))⊃ ((P⊃¬Q)⊃ (P⊃R)) could be falsified, some tableau branch
would be satisfiable. None are. The formula cannot be falsified, and hence must be
a tautology.

Here is all this, made official.

Definition 3. A tableau branch is (atomically) closed if it contains both T X and F X
for some (atomic) X . A tableau is (atomically) closed if every branch is (atomically)
closed. A classical propositional tableau proof for a formula X is a closed tableau
with F X at the root, constructed using the rules in Figure 1.3.

Informal readings of the dual tableau and tableau construction process have mo-
tivations that are something like mirror images. Then it should come as no surprise
that the dual tableau proof in Figure 1.2 and the tableau proof in Figure 1.4 are
identical except that T ’s and F’s have been exchanged!

1.2.3 Soundness

Given the mirror image motivations relating tableaus and dual tableaus, one should
not be astonished to find that a soundness argument for one system (tableaus) is root
downward, while for the other (dual tableaus) it is leaf upward. We begin with dual
tableaus.

Associate a formula with each dual tableau as follows. First for signed formu-
las: with T X we associate X , and with F X we associate ¬X . Next, for dual tableau
branches: to each branch we associate the disjunction of the formulas associated
with the signed formulas on the branch. And finally, for dual tableaus themselves:
to each dual tableau we associate the conjunction of the formulas associated with the
branches. This simply formalizes the informal reading of dual tableaus that we have
used all along. There is some ambiguity here, however. Disjunction and conjunction
are binary operations, while we have talked about disjunctions and conjunctions of
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an arbitrary number of formulas. But both operations are commutative and associa-
tive semantically, so we can simply ignore these finer points.

Example 1. Here is a dual tableau. It is not closed, and not all applicable rules have
been applied.

The formula associated with this dual tableau is the following, ignoring details of
parenthesizing disjunctions.

[((X ∧Y )⊃ (Y ∧X))∨¬(X ∧Y )∨ (Y ∧X)∨Y ]

∧
[((X ∧Y )⊃ (Y ∧X))∨¬(X ∧Y )∨ (Y ∧X)∨X ]

Now there is a kind of reverse induction step. We leave it to you to show that if
dual tableau T2 results from the application of a single branch extension rule to dual
tableau T1, then if the formula associated with T2 is a tautology, so is the formula
associated with T1. An inspection of the rules in Figure 1.1 and a little thought
should convince you of this.

Since X ∨¬X is a tautology, the formula associated with a closed dual tableau
branch must be a tautology, and hence the same is true of the formula associated
with a closed dual tableau.

If X has a a dual tableau proof, there must be a sequence of tableaus T1, T2, . . . ,
Tn, where T1 consists of just a root node labeled T X , each Tk+1 is the result of
applying a single dual tableau branch extension rule to its predecessor Tk, and with
Tn closed.. The formula associated with Tn is a tautology, hence so is the formula
associaed with Tn−1, and so on backward, until we conclude that the formula asso-
ciated with T1 is a tautology. But this is just X itself. Thus a formula having a dual
tableau proof is a tautology—soundness.

Since the soundness proof for dual tableaus showed tautology-hood was pre-
served going up the branches of a dual tableau, it should be expected that the proof
for tableaus proceeds by showing satisfiability is preserved going down the branches
of a tableau.

Recall that for tableaus, branching is a kind of disjunction, while single branches
act conjunctively. Then, call a tableau branch satisfiable if the set of signed formulas
on it is satisfiable, and call a tableau satisfiable if one of its branches is satisfiable.
We leave it to the reader to show: if a tableau rule, from Figure 1.3, is applied to a
satisfiable tableau, the result is another satisfiable tableau.

Now, suppose X has a tableau proof, but is not a tautology—we derive a contra-
diction. Since X is not a tautology, some boolean valuation falsifies X , and hence
{F X} is a satisfiable set. This means the tableau proof begins with a satisfiable
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tableau. Then every subsequent tableau must also be satisfiable. Since X has a
tableau proof, a closed tableau can be constructed, starting with F X , and this must
be satisfiable, which is obviously impossible since each branch contains a direct
contradiction.

1.2.4 Completeness

A standard way of proving completeness for both tableaus and dual tableaus is to
show that from a systematic but failed attempt to construct a proof one can extract
enough information to create a counter-model. This not only gives completeness, but
provides a decision procedure (in the propositional case). We follow an alternative
route here since it is quicker, easier to describe, and generalizes well to non-classical
logics. It follows a pattern familiar from axiom system completeness proofs, where
one works with maximally consistent sets of formulas. There are some variations on
the usual theme, however. First, while an appropriate version of consistency can be
introduced for tableaus, not surprisingly for dual tableaus we need a dual version.
We call this being non-tautologous. And second, when working with axiomatics
one shows what is often called a truth lemma—belonging to a maximally consistent
set is equivalent to being true under some boolean valuation. When working with
tableaus or dual tableaus we can only show half of this equivalence, though this is
still enough for the purpose.

As is our general pattern here, we begin with dual tableaus. Up to now a dual
tableau construction began with a single signed formula, T X , where X is the formula
we are trying to prove. We now allow a dual tableau to start with a finite set S of
signed formulas. The members of S are used as labels for a root node, it’s only
child, the only child of that, and so on. The order does not matter. We refer to a
dual tableau beginning in this way as a dual tableau for S. Using this terminology,
a dual tableau proof of X is a closed dual tableau for {T X}. Note that if we start a
dual tableau with a set of signed formulas, some of these may be inactive at the start
(Definition 1) because their consequences may already be in the set.

Definition 4. We call a set S of signed formulas, possibly infinite, tautologous if
there is a closed dual tableau for some finite subset of S (Definition 2). Assume that
a single-use restriction is imposed, and branch closure must be atomic. We call S
non-tautologous if it is not tautologous.

If a set is tautologous, trivially so is every extension, so dually if a set is non-
tautologous, so is every non-empty subset. The familiar Lindenbaum construction
shows that every axiomatically consistent set of formulas extends to a maximal such
set. This carries over to dual tableaus quite directly.

Theorem 1 (after Lindenbaum). If S is a non-tautologous set of signed formulas,
S extends to a maximal non-tautologous set. That is, there is an extension of S that
is non-tautologous with no proper non-tautologous extension.
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Proof. Standard Sketch.
Suppose S is non-tautologous. Enumerate all signed formulas: Z1, Z2, . . . . Define
a sequence of sets as follows. S0 = S. Then set Sn+1 = Sn ∪ {Zn} if that is non-
tautologous, and otherwise Sn+1 = Sn. S∞ = S0 ∪ S1 ∪ S2 ∪ . . .. It is straightforward
to show S∞ is maximally non-tautologous.

Now assume M is a maximally non-tautologous set of signed formulas. Let’s
look at the dual tableau rules for ∧ from Figure 1.1 and see what they tell us about
M. We claim the following.

1. If F X ∧Y ∈M then both F X ∈M and F Y ∈M.
2. If T X ∧Y ∈M then (at least) one of T X ∈M or T Y ∈M.

We show item 1; item 2 is handled similarly. Suppose F X ∧Y ∈M but F X 6∈M
or F Y 6∈M. We derive a contradiction, namely that M is tautologous.

If F X 6∈ M, since M is maximal then M ∪{F X} is tautologous, and hence so
is M∪{F X ,F Y}. Similarly if F Y 6∈M. So by our assumptions, M∪{F X ,F Y} is
tautologous, and hence there is a finite subset M0 of M such that there is a closed
dual tableau T for M0∪{F X ,F Y}. It may be that F X ∧Y ∈M0, but if not we can
add it since M0∪{F X ∧Y}will still be a subset of M, and we will still have a closed
tableau for M0 ∪{F X ∧Y}∪{F X ,F Y}. From now on, we assume F X ∧Y ∈M0.
Note that with F X ∧Y ∈M0, in constructing a closed tableau for M0∪{F X ,F Y},
F X ∧Y is inactive at the start.

Now we construct a dual tableau just for M0 itself, as follows. Begin with the
members of M0. Note that F X and F Y are not in M0 since they are not in M,
and hence F X ∧Y is active at this point. As the first rule application in the new
dual tableau, use F X ∧Y to add F X and F Y to the branch. At this point, F X ∧Y
becomes inactive, so it is no longer subject to any rule application. And since we
require atomic closure, F X ∧Y cannot contribute to branch closure. In effect, it can
play no further role in our dual tableau construction. It is as if we have M0 without
F X∧Y , but with F X and F Y to work with. Now continue the construction by doing
exactly what was done in the dual tableau T for M0 ∪{F X ,F Y}. Of course this
produces a closed dual tableau, thus showing that M0, and hence M is tautologous,
our contradiction.

There are similar conditions for ∨, ¬, and⊃ whose statement and proof we leave
to the reader.

Now completeness is easy. First, an informal argument. Suppose Z does not have
a dual tableau proof—there is no closed tableau for T Z. Then {T Z} is a non-
tautologous set and so can be extended to a maximally non-tautologous set M by
Theorem 1. In effect, M tells us what would be needed for Z to be true, so if we do
the opposite of what M says, we will have a way in which Z would be false, and
we can do this because M does not close off all possibilities—it is non-tautologous
after all.

To turn this into a formal argument we begin with the following.
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Theorem 2 (Truth Lemma). Let M be a maximally non-tautologous set. Let v be
the boolean valuation such that, for each propositional letter P, v(P) is true just
when F P ∈M. Then for each formula X:

• If T X ∈M then X is false under v.
• If F X ∈M then X is true under v.

Proof. The verification of this involves lots of cases. Here are two of them. We leave
the rest to the reader.

First a base case for the induction. Suppose P is atomic and T P ∈ M. Then
F P 6∈M since M is non-tautologous. By definition, v assigns false to P.

Next, one of the induction steps. Suppose F X ∧Y ∈M and the result is known
for formulas of lower degree. As we showed earlier, since M is maximally non-
tautologous, F X ∈M and F Y ∈M. By the induction hypothesis, X and Y are both
true under v, hence so is X ∧Y .

We now have completeness as follows. Suppose that formula Z has no dual
tableau proof. Then {T Z} is non-tautologous; extend to a maximal non-tautologous
set M by Theorem 1. Create a boolean valuation v by setting each propositional let-
ter P to be true under v exactly when F P is in M. Then we appeal to Theorem 2.
T Z ∈ M so Z is false under v, and hence Z is not a tautology. Equivalently, any
tautology must have a dual tableau proof.

We have shown completeness for dual tableaus. A completeness argument for
tableaus along these lines is well-known, and we just sketch it. Call a set S of signed
formulas consistent if no tableau for any finite subset of S closes. Every consistent
set can be extended to a maximally consistent set, along the lines of Theorem 1.
Just as maximally non-tautologous sets respect the dual tableau rules, maximally
consistent sets respect the tableau rules. For instance, if M is maximally consistent,
and T X ∧Y ∈M, then both T X ∈M and T Y ∈M. Any maximally consistent set M
can be used to create a boolean valuation by doing what M says at the atomic level,
rather than doing the opposite as we did with maximally non-tautologous sets. Such
a boolean valuation will satisfy the entire of M. From this, completeness follows
immediately. We leave the details to you (of course).

Notice that the completeness arguments for dual tableaus and for tableaus are
essentially the same thing, but with one being the mirror image of the other. The
difference is conceptual. With tableaus we begin with F X and we search for a way
X could be false. A failed proof gives us such a way. With dual tableaus, beginning
with T X , we are searching for what we need to guarantee the truth of X , and a failed
proof convinces us there is no such guarantee.

1.2.5 What Dual Tableaus “Really” Look Like

Tableaus are customarily presented as trees with (signed) formulas as node labels.
In order to emphasize relationships between the two systems, we have presented
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dual tableaus the same way, but this is not how dual tableaus are usually shown.
In our version a dual tableau is a kind of dynamic object. At various stages in its
construction some signed formulas are active, some are inactive, and this changes
as branches grow. In the customary presentation of dual tableaus, sets of (signed)
formulas appear as node labels. These sets contain just the formulas that are active
at the corresponding stage of a dual tableau construction as we have shown it. Thus
a dual tableau in its usual formulation is a static object, summing up the dynamic
history of a dual tableau construction in our sense.

Figure 1.5 shows a dual tableau in its customary form. Sets appear as node labels,
but enclosing curly brackets are commonly omitted, as we have done here. The
proofs in Figures 1.2 and 1.5 are the same except for the change in display style. A
few moments comparison should make the connections clear.

Fig. 1.5 A Dual Tableau As It Usually Appears

We should note that there is a similar presentation for tableaus, using sets of for-
mulas instead of single formulas. These are the block tableaus of (Smullyan 1968,
Chapter XI §1), where a connection with the work in (Hintikka 1955) is also pointed
out. Ultimately, the connection between dual tableaus, tableaus, and sequent calculi
is both close and complex. At least a portion of the history can be found in (Anellis
1990).

1.3 Intuitionistic Logic

Intuitionistic tableau systems are well-known. Dual tableaus for propositional in-
tuitionistic logic are in the literature, (Orłowska and Golińska-Pilarek 2011, Chap-
ter 8) for instance, but this dual tableau formulation makes essential use of a rela-
tional formulation of logic. Here we strip that away, presenting a simple, basic dual
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tableau intuitionistic proof system. We try to provide plausible motivation based
on the Brouwer, Heyting, Kolmogorov (BHK) interpretation of intutionistic logic,
and perhaps this will be enough to convince the reader that the system succeeds,
even before seeing soundness and completeness proofs. We have discussed at some
length the way in which classical dual tableaus are dual to tableaus. We feel the point
has been made, and now we omit the details of a tableau version entirely, leaving a
formulation to the reader.

1.3.1 Intuitionistic Dual Tableaus

When working with classical logic, Boolean truth is central. For an intuitionist, true
is replaced with proved. But proved using what machinery? And by who, David
Hilbert or the person on the street? Here a certain amount of idealization is ap-
propriate. Assume the prover is a competent constructively oriented mathematician
who does not make mistakes, working in some standard area of mathematics. And it
is not just what has been proved that matters, but what could be proved if the mathe-
matician worked long enough and cleverly enough. Loosely, there is what has been
done, and there is what could be done in the future, or at least in a possible future,
since the mathematician might choose to pursue research in any one of a number of
directions.

With classical logic we used signed formulas, following the informal idea that
T X says formula X is true and F X says it is false. For intuitionistic logic we can
informally understand T X to say that X is proved, but F X needs more discussion.
It could be understood to say that X is refuted, or that X is not proved. Classically
either a formula X is true or it is false so we always have one of T X or F X , and
this gave us a simple syntactical reason for closing dual tableau branches. We would
like a similar dichotomy intuitionistically—branches close when they contain T X
and F X . Understanding F X informally as saying that X is refuted will not work.
There are many mathematical assertions that are neither provable nor refutable. But
understanding F X informally as saying that X has not been proved will fill our
needs. For each mathematical assertion, at any stage of mathematical work, either it
has been proved or it hasn’t. We always have one of T X or F X with F understood as
unproved. Refuted more properly corresponds to ¬X being proved, expressed now
by T ¬X . If X is refuted, X is unproved (assuming our mathematics is consistent), so
T ¬X informally entails F X , but not conversely. This is a basic difference between
intuitionistic and classical machinery—classically ¬X can be used in place of F X
so that signs can be dropped. They cannot be dropped for intuitionistic logic.

Initially we represented classical dual tableaus as trees of signed formulas. We
noted in Section 1.2.5 that this is not how they appear in the literature, and for
intuitionistic logic it is more convenient to do things as we did in Section 1.2.5,
because in intuitionistic dual tableaus signed formulas both come and go. We show
intuitionistic dual tableaus as sets of signed formulas, a context. Think of a context
as representing a stage in the researches of our idealized mathematician. It changes
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as work goes on because hitherto unproved things may become proved. Using sets
records context statically, instead of dynamically, the way our original presentation
of classical dual tableaus did.

Some notational conventions. If S is a set of signed formulas and Z is a single
signed formula, instead of writing S∪{Z} we will simply write S,Z to indicate the
result of adding Z to S. As we did in Section 1.2.5, we will omit enclosing curly
brackets when displaying sets in intuitionistic dual tableaus.

An intuitionistic dual tableau for X begins with the set consisting of T X . Unlike
in the classical case this does not represent the goal of making X true no matter what,
but instead of analyizing what it would take for our idealized mathematican to find
a proof for X . At this starting point formal dual tableau appearances are the same as
classical, though intuitions differ. We then proceed to expand the initial dual tableau
tree, so we must formulate appropriate rules. In fact, there is more than one way that
rules for intuitionistic logic can be created. It is common to trace things back to the
work of Gentzen. Here we rely on the informal BHK understanding of intuitionistic
principles, and these lead us to a tableau or dual tableau version that traces to (Beth
1959), and first appeared as a signed tableau system in (Fitting 1969). At this point
the differing versions of intuitionistic dual tableau and tableau formulations are a
matter of taste, but for proof-theoretical work the differences can be crucial.

Dual tableau rules represent backward searches. For example, the classical rule
for F∧ in Figure 1.1 tells us that for X ∧Y to be false it is sufficient that either X
or Y be false. (Indeed, it is necessary and sufficient.) Thus the problem of showing
falsehood for a classical conjunction can be replaced by the problem of showing
falsehood for one of the conjuncts. Intuitionistically, a proof of X ∧Y consists of a
proof of both X and Y . Then F X ∧Y , informally that the conjunction is unproved,
can be replaced with F X ,F Y read disjunctively, one of X or Y is unproved. Simi-
larly for T X ∧Y , where branching is understood conjunctively. This motivates the
intuitionistic dual tableau rules for F∧ and T ∧ shown in Figure 1.6. They look like
the classical rules, but do not have the same motivation or intuitive reading.

Following the BHK interpretation, an intuitionistic proof of a disjunction is a
proof of one of the disjuncts. This is quite different than in classical logic, where
one trivially has a proof of X ∨¬X , but might not have a proof of either X or of
¬X . Reading T as intuitionistically proved, we still have that T X ∨Y should behave
like T X , T Y , and this motivates the T ∨ rule in Figure 1.6. The rule F∨ is similarly
understood.

If we find a proof of X , represented by T X , we cannot have a proof of ¬X too,
thus F¬X . Informally, the disjunctive set S∪{F¬X ,T X} entails S∪{F¬X}, and
trivially conversely too. Of course the simpler S∪{T X} also entails S∪{F¬X},
but in general it represents a stronger situation—the two sets are not equivalent. The
F¬ rule shown in Figure 1.6, then, simply amounts to replacing a situation by an
equivalent. Similar considerations motivate the F ⊃ rule. So far there are no formal
rule differences between classical and intuitionistic.

Now we come to the two key cases, T ⊃ and T ¬. We examine T ⊃ in detail—the
negation case is similar and is not discussed. The BHK understanding of implication
is that we have a proof of X ⊃Y provided we have an algorithm that can convert any
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proof of X into a proof of Y . We build on this to informally answer the question: what
would be sufficient to ensure we must be in the situation represented by S,T X ⊃
Y ? Our strategy for understanding is to reason backward. If S,T X ⊃ Y were not
the case, what would follow? Ruling that consequence out would be sufficient to
guarantee we must have S,T X ⊃ Y . First, some useful notation.

Definition 5. Let S be a set of signed formulas.

1. ST = {T X | T X ∈ S}
2. SF = {F X | F X ∈ S}
3. S◦ = {X | T X or F X is in S}

Now, suppose S,T X ⊃ Y were not the case, or equivalently, we do not have
ST ,SF ,T X ⊃ Y . Since ST ,SF ,T X ⊃ Y is understood disjunctively, if it were not
the case then intuitively: we would not have proofs for any member of (ST )◦, we
would have proofs for all the members of (SF)◦, and we would not have a proof of
X ⊃Y . Using the BHK understanding of implication, since we don’t have a proof of
X ⊃ Y , we lack a way of converting any discovered proof of X into one for Y . Then
we cannot rule out the possibility of a future stage of our mathematical research at
which we have found a proof of X but lack a proof of Y . Since we have proofs of
the members of (SF)◦ now, those proofs remain with us, and so members of (SF)◦

will still be provable formulas at any future stage of our mathematical research.
But, while at the present we do not have proofs for the members of (ST )◦, we must
allow for the possibility that future research will find proofs for some of them, and
thus there is nothing definite to be said about the status of members of (ST )◦ in the
future. To summarize, if we do not have ST ,SF ,T X ⊃ Y now, we must allow for
a possible future in which we have a proof of X , but we do not have a proof of
Y , all members of (SF)◦ have proofs, and nothing is certain about the status of the
members of (ST )◦. Briefly, there is a possible future in which we can be certain we
do not have SF ,F X ,T Y .

Turning this around, we have argued informally that if at some later stage of our
mathematical research we have SF ,F X ,T Y , this suffices to ensure that we presently
have S,T X ⊃Y . This is the informal content of the rule for T ⊃ in Figure 1.6. Notice
that in this rule, context shift is critical. Intuitively we have moved from one stage
of mathematical research to a possible future stage. In this shift some information
is lost—members of ST vanish. Very informally, information about what we do not
know might not be preserved.

A dual tableau branch is closed if it has a node S,T P,F P. Formally this looks
like classical closure, but the informal meaning is different. It represents a situation
in which P is either proved or not proved, and this always is the case. As we did
classically, we will require atomic closure—P must be atomic.

A version of our classical single use restrictions can still be imposed, along with
the accompanying notions of active and inactive. Definition 1 carries over directly,
except that talk of dual tableau branches is replaced with talk of sets of signed
formulas. For instance, item 1 from that definition becomes: F X ∧Y is inactive in
set S if both F X and F Y are present in S. We assume the reader can adjust the other
conditions as well.
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S,F X ∧Y
S,F X ∧Y,F X ,F Y

S,T X ∨Y
S,T X ∨Y,T X ,T Y

S,F X ∨Y
S,F X ∨Y,F X | S,F X ∨Y,F Y

S,T X ∧Y
S,T X ∧Y,T X | S,T X ∧Y,T Y

S,F X ⊃ Y
S,F X ⊃ Y,T X | S,F X ⊃ Y,F Y

S,F¬X
S,F¬X ,T X

S,T X ⊃ Y
SF ,F X ,T Y

S,T ¬X
SF ,F X

Fig. 1.6 Intuitionistic Propositional Dual Tableau Rules

Figure 1.7 displays an example of a proof following the intuitionistic dual tableau
rules, with single-use applications throughout. The example is abbreviated—In or-
der to keep clutter down, we do not show signed formula occurrences that are inac-
tive. Numbers have been added to aid discussion. Reasons are as follows: 2 is from
1 by T ⊃, 3 is from 2 by F∧, 4 is from 3 by F¬, 5 is from 4 by T ¬. Notice that in
this last step, T B has dropped out. Continuing, 6 and 7 are from 5 by F∨, 8 is from
6 by F¬, and 9 is from 7 also by F¬. Both branches are closed.

Fig. 1.7 An Intuitionistic Dual Tableau Example

1.3.2 Soundness

We show soundness relative to standard possible world intuitionistic models, with-
out single-use assumptions. It follows that we also have soundness with single-use
assumptions present. Here is the well-known definition of the semantics.

Definition 6 (Intuitionistic Model). M = 〈G ,R,
〉 is a Kripke propositional in-
tuitionistic model provided:
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1. G is a non-empty set (of states).
2. R is a reflexive, transitive relation on G .
3. 
 is a relation between possible worlds and propositional letters meeting the

condition: if Γ 
 P and Γ R∆ then ∆ 
 P.

The truth-at-a-state relation 
 in a model M = 〈G ,R,
〉 extends to all formulas
using the following conditions. For each Γ ∈ G :

4. Γ 
 X ∧Y if and only if Γ 
 X and Γ 
 Y ,
5. Γ 
 X ∨Y if and only if Γ 
 X or Γ 
 Y ,
6. Γ 
 X ⊃ Y if and only if for every ∆ ∈ G with Γ R∆ , ∆ 6
 X or ∆ 
 Y ,
7. Γ 
 ¬X if and only if for every ∆ ∈ G with Γ R∆ , ∆ 6
 X .

A formula X is valid in a model if it evaluates to true at all states, that is, Γ 
 X
for all Γ ∈ G . X is valid if it is valid in every model.

Our goal is to show that if X has a proof using intuitionistic dual tableaus, then X
is valid as just defined. We adapt the soundness argument for classical dual tableaus
from Section 1.2.3. There we associated a formula with each classical dual tableau.
We can do a similar thing now, but remember that while classically F X and ¬X can
be identified, this is decidedly not so intuitionistically. Suppose we have an intu-
itionistic dual tableau branch with the set {F A,F B,T C,T D} as a node label. Such
a set is understood disjunctively, and can be read now as telling us that either C is
provable or D is provable or A is not provable or B is not provable. We can reformu-
late this as: if both A and B are provable, then one of C or D is provable. Given the
BHK understanding of intuitionistic implication (and disjunction), this corresponds
to (A∧B)⊃ (C∨D), and this is what we will use as our formula counterpart. There
are still a few open translation cases, but they have standard treatments. We translate
{F A,F B} as (A∧B)⊃⊥ and {T C,T D} as>⊃ (C∨D), where⊥ is absurdity and
holds at no possible world of a Kripke intuitionistic model, while > holds at every
world. Then with the usual understanding that the conjunction of the empty set is
> and the disjunction of the empty set is ⊥, the formula counterpart of a set S of
signed formulas is simply

∧
(SF)◦ ⊃

∨
(ST )◦.

Now the central item in showing soundness is to show that, for each dual tableau
rule, if the formula counterpart(s) of the set(s) below the line are intuionistically
valid, this is also the case for the formula counterpart of the set above the line. There
are a number of cases with the ones for ∧ and ∨ quite straightforward. We discuss
the two implication cases in more detail—the negation cases are similar. One of the
implication cases has peculiarities that distinguish it from its classical counterpart,
and the reasons are centered in soundness issues.

First consider the F ⊃ case. What must be shown is that intuitionistic validity of
[
∧
(SF)◦∧ (X ⊃Y )]⊃ [

∨
(ST )◦∨X ] and of [

∧
(SF)◦∧ (X ⊃Y )∧Y ]⊃

∧
(ST )◦] entail

that of [
∧
(SF)◦ ∧ (X ⊃ Y )] ⊃

∨
(ST )◦]. This is the case, though verification takes

some work and we omit it.
Next consider first the T ⊃ case. It must be shown that validity of the formula

counterpart of SF ,F X ,T Y entails validity of the counterpart of S,T X ⊃ Y , that is,
intuitionistic validity of [

∧
(SF)◦∧X ]⊃ Y entails that of

∧
(SF)◦ ⊃ [

∨
(ST )◦∨ (X ⊃
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Y )]. This is so, and has a rather simple proof that we omit. On the other hand,
the classical form of the rule would have an occurrence of S below the line, not
SF . For this one would need to show that intuitionistic validity of [

∧
(SF)◦ ∧X ] ⊃

[
∨
(ST )◦∨Y ] entails that of

∧
(SF)◦ ⊃ [

∨
(ST )◦∨ (X ⊃ Y )], and this is not the case.

The restriction to F-signed formulas in the rule is essential.
The final node on a closed branch of a dual intuitionistic tableau will be of the

form S,T P,F P. The formula counterpart of this is [
∧
(SF)◦ ∧P] ⊃ [

∨
(ST )◦ ∨P],

and this is obviously intuitionistically valid. By the results sketched above, having
an intuitionistically valid formula counterpart is a property that is propagated up
branches. It follows that the formula counterpart of the top dual tableau node is
intuitionistically valid. A dual tableau proof of X begins with the set containing
only T X , and this has a formula counterpart>⊃ X , which must be valid, and hence
also X is valid. Summarizing, if X has an intuitionistic dual tableau proof, X is
intuitionistically valid.

As an illustrative example, suppose we take the dual tableau shown in Figure 1.7,
turn it over, and replace each displayed set by its formula counterpart. Properly
speaking, inactive signed formulas should also be taken into account—they were
omitted in the dual tableau display. We still omit them since it makes no essential
difference, but aids in reading. The result is shown in Figure 1.8. Now work from
top to bottom in Figure 1.8. It is easy to check that 8 and 9 are valid. It is also easy
to check that 6 is valid, using the fact that 8 is, that 7 is valid because 9 is, that 5 is
valid because both 6 and 7 are, and so on. Finally, 1 is valid, which trivially implies
that (A∧¬B)⊃ ¬(¬A∨B) also is.

Fig. 1.8 An Intuitionistic Forward Proof Outline

We note that with a little more work we can replace the use of validity in the
example above by provability in any standard intuitionistic axiom system. More
generally, an axiomatic intuitionistic proof can be extracted from any intuitionistic
dual tableau proof, The motivation for dual tableaus, that they amount to a search
procedure for a proof, is thus justified in the intuitionistic case.
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1.3.3 Completeness

We show completeness of the Intuitionistic Propositional Dual Tableau Rules from
Figure 1.6, with a single-use assumptions imposed. It follows that we also have com-
pleteness without them. Some of the machinery of the classical completeness proof
from Section 1.2.4 can be carried over, some of the machinery is new. Definition 4
identified something we called tautologous. Of course this would be bad terminol-
ogy now, so we replace it by I-tautologous, where the I stands for ‘intuitionistic’.

Definition 7. We call a set S of signed formulas, possibly infinite, I-tautologous if
there is a closed intuitionistic dual tableau for some finite subset of S, where branch
closure must be atomic. We call S non-I-tautologous if it is not I-tautologous.

Much of what was said in Section 1.2.4 about non-tautologous sets for classical
dual tableaus carries over to non-I-tautologous sets for intuitionistic dual tableaus,
with essentially no changes in proofs. The primary item is that Theorem 1, Linden-
baum’s Lemma, continues to apply, so a non-I-tautologous set extends to a maximal
one. We also showed the following, where M is a maximally non-tautologous set.

1. If F X ∧Y ∈M then both F X ∈M and F Y ∈M.
2. If T X ∧Y ∈M then one of T X ∈M or T Y ∈M.

These continue to hold if M is a maximally non-I-tautologous set, and with no essen-
tial change in argument. Classically it was noted that similar results held involving
other connectives. For the intuitionistic dual tableau system this is so for ∨, but for
¬ and ⊃ two of the cases are missing. Briefly, those cases where the intuitionistic
rules have the same form as the classical rules give us the same conditions on maxi-
mality both classically and intuitionistically. Thus we have items 1–6 for M being a
maximal non-I-tautologous set.

3. If F X ∨Y ∈M then one of F X ∈M or F Y ∈M.
4. If T X ∨Y ∈M then both T X ∈M and T Y ∈M.
5. If F¬X ∈M then T X ∈M.
6. If F X ⊃ Y ∈M then one of T X ∈M or F Y ∈M.

Now we construct an intuitionistic canonical model M = 〈G ,R,
〉, as follows.
G is the collection of all maximally non-I-tautologous sets. For Γ ,∆ ∈ G , set Γ R∆

if Γ F ⊆ ∆ . And for each atomic formula P, set Γ 
 P if F P ∈ Γ . This determines
M , and a version of the Truth Lemma, Theorem 2, can be shown.

Theorem 3 (Intuitionistic Truth Lemma). In canonical model M = 〈G ,R,
〉,
for each Γ ∈ G and for each formula X:

• If T X ∈ Γ then Γ 6
 X.
• If F X ∈ Γ then Γ 
 X.

Most of the cases are direct analogs of classical ones. We only consider the im-
plication cases in detail. Let M = 〈G ,R,
〉 be the canonical model and Γ ∈ G .
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Assume the Theorem holds for formulas simpler than X ⊃ Y . We have two cases to
examine. Let Γ be an arbitrary member of G .

Assume F X ⊃ Y ∈ Γ .
Let ∆ be an arbitrary member of G with Γ R∆ . Then Γ F ⊆ ∆ , so F X ⊃ Y ∈ ∆ .

By item 6 above, we have one of T X ∈ ∆ or F Y ∈ ∆ . By the induction hypothesis,
we have one of ∆ 6
 X or ∆ 
 Y . Since ∆ was arbitrary, Γ 
 X ⊃ Y .

Now suppose T X ⊃ Y ∈ Γ .
We first show that Γ F ,F X ,T Y is non-I-tautologous. Well, suppose not. Then

there is a finite subset of it having a closed intuitionistic dual tableau, and without
loss of generality we can assume it contains F X and T Y , so this subset has the
form M0,F X ,T Y where M0 ⊆Γ F . But then there is also a closed intuitionistic dual
tableau for M0,T X ⊃ Y , because we can start with M0,T X ⊃ Y , apply the T ⊃
rule getting M0,T X ⊃ Y,F X ,T Y (leaving T X ⊃ Y inactive), and then continue
with steps copied from the closed dual tableau for M0,F X ,T Y . Since M0 ⊆ Γ and
T X ⊃ Y ∈ Γ , it follows that Γ is I-tautologous, which is false since Γ ∈ G .

We have established that Γ F ,F X ,T Y is non-I-tautologous. Then it extends to a
maximal such set, ∆ . Then ∆ ∈ G , and Γ R∆ since Γ F ⊆ ∆ . Since F X ,T Y ∈ ∆ , by
the induction hypothesis ∆ 
 X and ∆ 6
 Y . It follows that Γ 6
 X ⊃ Y .

Now completeness follows in the familiar way. If X has no intuitionistic dual
tableau proof, there is no closed dual tableau for T X so the set {T X} is non-I-
tautologous. This set extends to a maximal such set, Γ , which will be a possible
world in the canonical model, and at it X will fail.

1.3.4 Intuitionistic Tableaus

An intuitionistic tableau proof system is now easy to formulate. Begin with the dual
tableau rules from Section 1.3.1 but reverse the roles of the signs T and F . The
resulting tableau system has been discussed in the literature, back as far as (Fitting
1969), again in (Fitting 1983), and in a somewhat different form in (Waaler and
Wallen 1999). We leave it to the reader to carry out the details. It is a good way of
ensuring understanding.

1.3.5 Logical Consequence

We have only talked about provability, classical and intuitionistic. The machinery
makes it simple to bring consequence, or deduction from premises, into the picture,
and here we briefly sketch how, concentrating on intuitionistic dual tableaus.

Suppose M is a set of formulas (not signed formulas) and X is a single formula.
We proceed informally for now; think of M `I X as meaning we can construct a
proof of X provided we are supplied with proofs of the members of M. Using dual
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tableaus, we should be able to produce a closed tableau for T X , somehow bring-
ing members of M into the tableau. The Premise Rule that does this is given in
Figure 1.9.

S
S,F Y

where Y is any member of M

Fig. 1.9 Intuitionistic Propositional Dual Tableau Premise Rule

Motivating this dual tableau rule Premise Rule is really quite simple. We follow
the ideas of Section 1.3.1, using the BHK ideas informally. Recall that for intuition-
istic dual tableaus T X represents that X must be proved (or in the present setting,
that it must be derived from a set M), and F X represents that X should not have been
derived. We start a tableau with T X with the idea that we want to establish we have
sufficient conditions for X to have a derivation from M. In a derivation from a set
M, the informal idea is that we will be supplied with proofs of members of M, from
the outside so to speak. Then if Y ∈M, Y has a proof, so F Y informally is simply
false. Since sets are understood disjunctively in dual tableaus, S and S,F Y represent
equivalent problems, so the Premise Rule simply replaces one task by another that
is equivalent to it.

Figure 1.10 shows a small example of a dual tableau using the rule of Figure 1.9.
It shows that ¬¬X `I ¬¬(X ∨Y ). In it, 2 is from 1 by T ¬, 3 is by the Premise Rule,
4 is from 3 by F¬, 5 is from 4 by T ¬, 6 is from 5 by F¬, 7 is from 6 by T ∨. The
dual tableau is now closed.

T ¬¬(X ∨Y ) 1.
F¬(X ∨Y ) 2.

F¬(X ∨Y ),F¬¬X 3.
F¬(X ∨Y ),F¬¬X ,T ¬X 4.
F¬(X ∨Y ),F¬¬X ,F X 5.

F¬(X ∨Y ),F¬¬X ,F X ,T X ∨Y 6.
F¬(X ∨Y ),F¬¬X ,F X ,T X ∨Y,T X ,T Y 7.

Fig. 1.10 Dual Tableau Deduction Example

All this so far has been informal and intuitive. Formally, M `I X is defined to
mean that in any intuitionistic model M = 〈G ,R,
〉 and for any Γ ∈ G , if Γ 
 M
then Γ 
 X , where Γ 
 M means Γ 
 Y for every Y ∈ M. Soundness and com-
pleteness results can be proved by an easy adaptation of the work in Sections 1.3.2
and 1.3.3; we leave this to the reader. Not surprisingly, the Premise Rule adapts
to intuitionistic tableaus by switching signs: one can add T Y to the end of any in-
tuitionistic tableau branch for any premise Y . And all the machinery carries over
directly to classical logic as well.
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1.4 Conclusion

We have examined tableaus and dual tableaus for classical propositional logic in
detail. For intuitionistic propositional logic we looked at dual tableaus, but largely
skipped over tableaus. We could do this because the general pattern should have
become clear. Tableau systems and dual tableau systems are, well, dual. There are
many kinds of tableau systems in the literature for modal logics. Some are similar to
the one we dualized for intuitionistic logic—formulas disappear from branches as
well as appear. These are called destructive systems. Other modal tableau systems
bring in extra machinery such as prefixes. All these have dual tableau counterparts,
whose formulation should not be difficult. Similarly the labeled sequent calculus
has dual tableau relatives. Indeed, one of the referees of the present paper suggested
there should be some similarity between the labeled dual tableaus of (Orłowska and
Golińska-Pilarek 2011) and the labeled sequent calculi found in (Negri 2005). A
pertinent reference for comparing a variety of styles of labeled sequent calculi is
(Indrzejczak 2010). But fundamentally, essentially all the variety of tableau mech-
anisms can be adapted to dual tableau formulations. Quantification too presents no
difficulties. In (Orłowska and Golińska-Pilarek 2011) dual tableaus are employed
for a relational formulation of many logics, and they play a central role. We have
stopped very much short of an exhaustive examination, presenting basic ideas only.

It should be clear that tableaus and dual tableaus, and sequent calculi too, can
all be seen as strongly equivalent. Systems of one kind can be reworked to become
systems of another. The fundamental point is not the logic, but the psychologic.
Tableaus are refutation systems—if we did not have what we wanted, it would even-
tually lead to a clear contradiction. Dual tableaus are searches for positive results—
we want this, what would get it for us, what would get us that, and eventually we
reach the obvious. Just as some logicians are more comfortable with sequents and
others with tableaus, the same is the case with tableaus and dual tableaus. The psy-
chology of mathematical proof discovery and proof presentation is important, and
yet remains somehow a very individual thing.
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