J. LOGIC PROGRAMMING 1985:2:111-118 111

A DETERMINISTIC PROLOG FIXPOINT SEMANTICS*

MELVIN FITTING

> A fixpoint semantics for PROLOG is presented that takes into account
PROLOG’s deterministic control structure as well as its logic features. It is
applied to prove the correctness of a prime-number program based on the
sieve of Eratosthenes, a program whose behavior depends critically on the
sequential nature of PROLOG. q

1. INTRODUCTION:

PROLOG is the best-known of the logic programming languages. But it still shares
an important feature with imperative languages: the order in which things are done
is determined by the order in which statements are written. PROLOG is imple-
mented in a deterministic way that causes conditions to be checked from left to
right, and axioms to be tried from top down. As a consequence, the following two
PROLOG procedures behave quite differently when queried with « even(2).:

even(0).

even(X) « diff(X, 2,Y)&even(Y).
and

even(X) « diff(X, 2, Y)&even(Y).

even(0).

The first succeeds with the query, while the second gets stuck in an infinite
computation.

PROLOG has been provided with an elegant, simple fixpoint semantics [4],
essentially deriving from first-order model theory. But it only applies to PROLOG as

Melvin Fitting, Department of Mathematics and Computer Science, Herbert H. Lehman College,
Bedford Park Boulevard West, Bronx, New York 10468.
*The research for this paper was partially supported by NSF grant MCS83-04959.

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1985
52 Vanderbilt Ave., New York, NY 10017 0743-1066 /85 /$03.30

112

MELVIN FITTING

a “pure” nondeterministic logic programming language. It does not take control,
implicitly specified by statement order, into account. As a consequence, both
programs above would be assigned the same semantical meaning. In practice,
however, issues of control are often vital. In the example above it means the
difference between output and no output.

What we propose here is a fixpoint semantics for PROLOG that is sensitive to
control as well as to logic. Not only will relations have instances, but those instances
will be “discovered” in a particular order, which must be taken into account. The
result is a semantics that has much in common with a deterministic imperative
language semantics. We note that Francez et al. [1] have also found it useful to bring -
“conventional” methods into the PROLOG context, to prove program termination.
On the other hand, if we choose to ignore issues of order, the semantics presented
here essentially reverts to that of [4].

In the example above, choice of statement order had a blunt consequence: output
or no output. The following is a more subtle example, and we follow it through this
paper. The issue now is right answer or wrong answer. Of course one can argue that
if the response can be changed from right to wrong by a change in control only, we
simply have a badly written logic program. We do not argue with that. We do,
however, have a correctly written PROLOG program, with a precise behavior which
we wish to characterize. We want a semantics for PROLOG as it is.

We refer to the following program as SIEVE throughout this paper:

prime(7, 2).
prime(N, X) « diff(N, I, I)&pass(I, X).
pass(1, 3).
pass(1, X) « pass(1,Y)&sum(Y, 2, X).
pass(N, X) « prime(N, P)&diff(N, 1,1)&
pass(I, X)¬divide(P, X).
notdivide(B, 4) < quot(4, B, C)&prod(B,C, D)&ne(D, A).

The intention is: for a positive integer n, the X’s for which pass(n, X) are the
Xs left undeleted in the nth pass of the sieve of Eratothsenes, and prime(n, P) is to
mean P is the nth prime number. In fact, when given the initial goal <« prime(n, P),
for a particular integer n, the SIEVE program will determine the nth prime as its
value for P, provided PROLOG has been given its standard deterministic imple-
mentation. A pure logic-programming-based semantics is not adequate to account
for the behavior of SIEVE. Indeed, it will allow both prime(2, 3) and prime(3, 3) to be
part of the “meaning” of prime. We leave it to the reader to verify this.

The semantics we present, starting in the next section, is still a fixpoint semantics,
though on a more complex space than that used in [4]. To illustrate its uses, we apply
it to proving the behavior of sIEvE. We do not consider any of the control- or
logic-altering PROLOG features like cut or addition and deletion of axioms.

REMARK. The SIEVE program above is hopelessly inefficient and is not intended to be
a paradigm of how to determine primes using PROLOG.

A DETERMINISTIC PROLOG FIXPOINT SEMANTICS 113

2. WHAT WE ASSUME

We assume a general familiarity with PROLOG; we present no detailed syntax, nor
any discussion of unification, backtracking, or meeting a goal. We use one nonstan-
dard piece of terminology. Suppose we query a PROLOG program by setting it an
initial goal. It responds with a value. We reject the value and ask again, setting it a
new goal, like the original one, but with the extra condition: not the first value.
When we get a response, we reject it and ask again, and so on. We call this a
repeated query; the response is a sequence of outputs. When necessary for emphasis,
we will refer to a conventional initial goal setting as a simple query.

For example, the reader should be able to predict the output of the following
when <« b(X) is set as a repeated query:

a(l).
a(7).
b(0).
b(X) « diff(X, 1,Y)&a(Y). (1)

The output will be 0,2, 8, in that order. It is the same response we would get if we
added the clause

print « b(X)&write(X) &fail.

and we set the initial goal <« print.

By a goal set we mean, simply, a set of goals, not necessarily finite. We do not
distinguish between two goal sets that -differ only by a variable renaming. For
example, {prime(N, P),pass(N, X)} and {prime(M, Z),pass(N, X)} are goal sets
we will identify. .

If G is a goal, by a G-sequence we mean a finite or infinite sequence of tuples that
can serve as “values” for G. We also allow L, undefined, as a G-sequence. For
example, if G is the goal prime(2, X), the following are G-sequences: L ; () (empty
sequence); ((2,3),(2,3),(2,5)); and {(2,3),(2,4),(2,5),...).

For two G-sequences s, and s, we set s, <s, if 5; is an initial segment (not
necessarily proper) of s,, orif 5, is L.

If C is a goal set, then a C-state function, or just C-state, is a function f mapping
each member G of C to a G-sequence f(G). For example, let C be the goal set given
above, and let f be the function such that f(prime(N, P)) is the sequence

((1,2),(2,3),(3,5),...,(n,'p,),...),
where p, is the nth prime, and f(pass(N, X)) is the sequence
((1,3),(1,5),(1,7),....,(1,2n+ 1),...). -

Suppose P is a PROLOG program, C is a goal set, and f is a C-state. We say f
is a P-model provided, for each G € C, f(G) is the sequence of values resulting from
a repeated query of P with G. For example, let P be the program (1) given above,
let C be the goal set {a(X), b(X)}, and let f be the function

fla(X))=(1,7),
f(b(X))=0,2,8).
Then f is a P-model.

114

MELVIN FITTING

Note that P-models depend on the goal set C as well as on P; what constitutes a
model is sensitive to what questions we intend to ask. However, for a given C there
is only one P-model.

Let C be a fixed goal set for the time being. By |C| we mean the set of all
C-states. We define an ordering on |C]| as follows. For f, g € C, f< g provided as
sequences, f(G)< g(G) for each G€ C. By C-space we mean (IC}, < ¢)- For
convenience we call f a member of C-space if f € |C|. Also we leave the subscript off
<, as the set C in question can usually be determined from context.

It is easy to check that a C-space is always a partially ordered set with a unique
smallest element, which we also denote L . Further, the inf of any nonempty subset
always exists. On the other hand, we do not have closure under sup, so a C-space is
not a complete lattice. We do have the following useful weaker alternative, however,
whose verification we leave to the reader. Call a nonempty subset S of |C| directed
if for any f, g € S there is some h € S with f<h and g <h. Then, every C-space is
closed under the taking of sups of directed sets. In particular, if f, f5,... is a chain
in |C}, that is, if f,<f,< ---, then it is a directed set and so will have a sup, or
limit. :
Suppose ® is a mapping on |C|. Then ® is monotone provided f<g implies
®(f) < ®(g). A classic result of Knaster [2] and Tarski [3] says that monotone maps
on complete lattices always have smallest (and largest) fixed points. We observed
above that a C-space is not a complete lattice, but we still have enough machinery to
establish a fixed-point result. We state it and present the proof.

Theorem. Let ® be a monotone map on C-spa—lce. Then ® has a smallest fixed point,
denoted p®. In fact, if ®(f)<f then p® <f.

PROOF. Let L be { f€|C||®(f)<f}. If we had a complete lattice, there would be
a largest member T €|C|. Trivially ®(T)<T, so L would be nonempty. Then
inf(L) would exist, and the traditional Tarski argument would establish that it is the
smallest fixed point of ®, and meets our other condition. But we do not have a
complete lattice; in particular there is no largest member, so this argument breaks
down. Still, if we establish that L is nonempty, everything else goes through. That
can be done, but by a more complicated argument.

Let U be { f€|C||f<®(f)}. |C| has a smallest member L, and certainly
L <f(L), so U is not empty. Let fi, f,,... be a chain in U. The chain has a limit,
say g, in |C|. For each i, f,<g, so f,< ®(f;) < ®(g). It follows that g < ®(g), s0
g € U. Thus U is closed under chain limits. Using Zorn’s lemma, U has a maximal
member, say m. Since m € U, m < ®(m). By monotonicity, ®(m) < ®(®(m)), so
®(m)e U. If m+ ®(m), then ®(m) would dominate a maximal member of U,
which is impossible. Hence ®(m)=m, and ® has at least one fixed point, and so L
is not empty. O

Given a PROLOG program P and a goal space C, our task essentially is to
identify which member of C-space is the model for P. Anticipating the next section,
it will turn out to be the least fixed point of a monotone function on C-space that is
associated with P in a straightforward way.

A DETERMINISTIC PROLOG FIXPOINT SEMANTICS 115

3. STATE MAPPINGS

Suppose P is a PROLOG program. Some of the identifiers appearing in P may be
among the built-ins of the language, with known behavior. Others may be of our
creation, but we may have established their behavior earlier. We refer to these kinds
of identifiers as background identifiers. We are not concerned with them; they are
known quantities.

To each identifier of P that is not a background one, we associate two distinct
new identifiers in the following simple way. With the identifier ident we associate the
identifiers inident and outident. Finally, we associate with the program P a new
program P? as follows. Each nonbackground identifier ident in a P clause is
replaced by outident on the head ends of arrows, and by inident on the body sides of
arrows, to give us program PY.

For example, in the SIEVE program from Section 1, we can take diff, sum, prod,
quot, ne, and notdivide as background identifiers. Then SIEVE’ is the program

outprime(/, 2).
outprime(N, X) « diff(N, 1, I)&inpass(I, X).
outpass(/, 3).
outpass(/, X) < inpass(/, Y)&sum(Y, 2, X).
outpass(N, X) « inprime(N, P)&diff(N, 1,1)&
inpass(/, X)¬divide(P, X).
notdivide(B, 4) « quot(A4, B, C)&prod(B,C, D)&ne(D, 4).

Notice that P? will involve no recursions (except possibly on background
identifiers). Not surprisingly, the intent of the present semantics is to account for the
behavior of recursive programs provided the behavior of nonrecursive programs is
understood.

Let C be a goal set. We call C P-closed provided, if we choose any member of C,
say G, and we issue to P? the repeated query <« outG, in the course of program
execution any further goal to be proved (other than those involving background
identifiers) will be of the form in H, where H € C.

For example, the goal set {prime(N, P), pass(N, X)} is not SIEVE-closed, because
if we issue the goal <« cutpass(N, X) and reject the first response, which will be
outpass(1,3), then the goal <« inpass(1,Y) will arise, and pass(1,Y) is not in the
goal set. On the other hand, the goal set {prime(l, P),
prime(2, P),...,pass(1, X),pass(2, X),...} is SIEVE-closed, as can be easily verified.

Now let P be a fixed PROLOG program and let C be a goal set that is P-closed.
We associate with P a mapping ®, on C-space. Let f€|C|; ®,(f) is to be the state
function specified as follows. Let G be a goal in C. Then (®,(f)NG) is the
G-sequence whose terms are the result of issuing the repeated query « outG to the
program PY but with the understanding that, if a call on, say, inH is generated,
values are supplied using the sequence f(H), beginning with the first term, and
moving to successive terms if backtracking comes up.

116

MELVIN FITTING

For example, let P be the program
even(X) « diff(X, 2,Y)&even(Y).
even(0).

and let C be the goal set {even(X)}, which is P-closed. Suppose we have state
functions given by f(even(X))= (1,3); g(even(X))=(); h(even(X))= L. Then
(®p(f)Neven(X)) = (3,5,0); (Pp(g))even(X)) = (0); (®p(h))even(X))= 1.
(Thus L must be the smallest fixed point of ®,.)

As a more elaborate example, let C be the goal set {prime(l, P),
prime(2, P),...,pass(1, X),pass(2, X),...}. Let f be the state given by

f(prime(Z, P))=((1,2)),

f(prime(n, P))=1 if n>1,
f(pass(1, X)) ={(1,3),(1,5),(1,7),...),
f(pass(n, X))=1 if n>1.

Then ®@,.,;(f)= g, where
g(prime(1, P)) =((1,2)),
g(prime(2, P)) =((2,3),(2,5),(2,7),...),
g(prime(n, P))=1 if n>2,
g(pass(1, X)) =((1,3),(1,5),(1,7),.-.),
g(pass(n, X)) =1 if n>1.

It is easy to see that ®, will always be a monotone map on C-space, and so will
have a smallest fixed point. In fact, it will be a P-model.

It is also the case that ®, is continuous. That is, if f;, f,,... is a chain in C-space,
then ®,(lim f;) = lim®,(f;). Essentially the reason is that any item of P output
that went into ®,(lim f;) is the result of a successful computation, which terminated
in a finite time and hence used only a finite amount of the information contained in
lim f,, and that information must already be available in some member of the chain

fis f2,--. . It follows that we can approximate to the least fixed point of ®, in the
familiar way by considering the chain f, f,,..., where
=41,

fn+1 = QIJ(fn)'
Finally, we state the main result, and briefly sketch a proof.

Theorem. Let P be a PROLOG program and let C be a P-closed goal set. The least
fixed point of ®p is a P-model.

SKETCH OF PROOF.

Part 1. Let me€ C be the P-model. If one issues a repeated query « outG to
®,(m), it is not hard to see that the sequence of responses will be the same

A DETERMINISTIC PROLOG FIXPOINT SEMANTICS 117

ones that arise when issuing the repeated query « G to m. Then ®,(m)=m,
so ud, <m.

Part 2. Suppose (induction hypothesis) that for any repeated query in C that P
will answer in fewer than k computational steps, the response (which by
definition is embodied in the model m) agrees with u®,. Now issue a query Q
that requires k computational steps to answer. After an appropriate axiom has
been selected and its head unified with, we are left with several subgoals,
responses to which will require fewer than k& computational steps. Making use
of the induction hypothesis, P’s response to Q will be the same as the
response of ®,(u®,) to Q. But since p®, is a fixed point, P’s response to Q
will agree with u®,. It follows by induction that m < p®,. O

4. THE sieve EXAMPLE CONCLUDED

Once again let C be the goal set {prime(l, P), prime(2, P),..., pass(1, X),
pass(2, X),...}, and let m be the C-state specified as follows:

m(pass(1, X))={((1,3),(1,5),(1,7),(1,9),...),
m(pass(2, X)) =((2,5),(2,7),(2,11),(2,13),...),

and in general, m(pass(n, X)) is the sequence {(n, a,),(n, a,),...), where a;, a,,...
is the sequence of numbers left after the nth pass of the sieve of Eratothsenes.
Further, -

m(prime(1, P)) =((1, 2)),
and for n>1,
m(prime(n, P))=((n,a,):i=1,2,...),

where m(pass(n — 1, X))=((n—1,a,):i=1,2,...).

We show m = pu®, ., which will establish that a simple query of SIEVE with
« prime(n, P) will get us the nth prime as the value of P.

First we argue that @, (m) < m. But this is straightforward. Let g=®,,.,.(m)
for convenience, and consider g(pass(n, X)), where n > 1, as an example. If we give
SIEVE? the repeated query « outpass(n, X), using m as input, then since n > 1, the
fifth clause of SIEVE? will be involved and we will have essentially

outpass(n, X) < inprime(n, P)&inpass(n — 1, X)¬divide(P, X).

By construction, m(prime(n, P)) must begin with (n, p,), where p, is the nth prime.
Repeatedly issuing the query « outpass(n, X) will cause backtracking only as far as
inpass(n — 1, X), and by definition m(pass(n — 1, X)) involves the sequence remain-
ing after pass n — 1 of the prime sieve. Then it follows easily that the sequence of
responses to our repeated query <« outpass(n, X) must be that sequence with
multiples of p, removed; but this is exactly the sequence corresponding to the nth
pass of the prime sieve. That is, the value of g(pass(n, X)) must be m(pass(n, X)).

118 MELVIN FITTING

Other cases are similar. We thus have @, .(m)=m, and so p®,... < m.
Define states s, and ¢, as follows:

s, (prime(n, P)) = {m(prime(n, P)), I<n<k,

L, n>k,
sk(pass(n’X))={m(pass(n,x)), ISnSk,

ls n>k,

t,(prime(n, P) = {m(prune(n,P)), I<sn<k+l,
J-’ n>k+1,
m(pass(n, X)), 1s<n<k,

t (pass(n, X)) =

k(p ()) {-L’ n>k.

It is trivial that s,,¢,, 5,,1,,...is a chain, with m as its limit. Further, examination
of the program sIEVE? shows that &, .(s,) =1, and B, .(¢,)=s,,, Finally a
straightforward induction argument shows that s, < f, where f is any fixed point of
®,,v:- It follows using monotonicity that s, <f and ¢, < f for each i and any fixed
point f. Then m < u®, ..

5. CONCLUSION

There are two more points we wish to make. First, we did not have much to say
about the behavior of PROLOG on nonrecursive programs. We assumed that
understood, and only considered the effects of recursion. Consequently, our fixpoint
analysis will still apply if PROLOG’s method of goal selection is subjected to
“reasonably straightforward” modification. We do not elaborate on this.

Our second point is that not much modification is necessary to apply a similar
treatment to PROLOG implemented in a truly nondeterministic manner. Redefine
the state function so that f(G), say, is not a sequence of tuples, but a set of tuples.
Redefine the order relation < . so that f < . g means, for each G € C, f(G)C g(G).
Essentially, no other changes are necessary. Mathematically things are nicer because
we now have a complete lattice. The resulting semantics should be compared with
that in [4]. They are essentially the same.

.

REFERENCES

1. Francez, N., Grumberg, O., Katz, S., and Pnueli, A., Proving termination of PROLOG
programs. Logic of Programs, Springer Lecture Notes, Springer, New York, 1985, pp.
89-105.

2. Knaster, B., Un théoréme sur les fonctions d’ensembles, Ann. Soc. Polon. Math. 6:133-134
(1928).

3. Tarski, A, A Lattice-theoretical Fixpoint Theorem and Its Applications, Pacific J. Math.
5:285-309 (1955).)

4. Van Emden, M. and Kowalski, R., The Semantics of Predicate Logic as a Programming
Language, J. Assoc. Comput. Mach. 23:733-742 (1976).

