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Abstract

We present non-clausal resolution systems for propositional modal logics whose Kripke mod-
els do not involve symmetry, and for first order versions whose Kripke models do not involve
constant domains. We give systems for K, T , K4 and S4; other logics are also possible. Our
systems do not require preliminary reduction to a normal form and, in the first order case,
intermingle resolution steps with Skolemization steps.

1 Introduction

One of the attractive features of non-classical logics is that they provide magnifying glasses for the
closer examination of techniques developed for the classical case. An obvious example of such a
technique is that of reduction to normal form — clause form, generally. Most non-classical logics
have no simple notion of a normal form, or maybe none at all, so one is forced to consider just
what the reduction to normal form was intended to accomplish. This is a good question even in
the classical case. A logic like propositional S5 has a reasonable normal form — one can convert
a formula into an equivalent version with no nested modalities. But this does not extend to the
first order setting, so one is forced to reconsider the role of quantifiers and their relationships with
the propositional connectives. In short, things that are taken for granted classically can not be in
non-classical settings. Thus we have a kind of ready-made laboratory for the deeper investigation
of familiar techniques that we may have thought were fully understood.

A case in point is the basic notion of resolution itself. Classically there are several variations
that go under the general heading of resolution, but there is an obvious family resemblance. It is
clear they are all versions of the same idea. But when it comes to extending resolution techniques
∗The author wishes to thank the referee of an earlier draft of this paper for helpful comments, and for catching a

fundamental error.
†Research partly supported by NSF Grant CCR-8702307 and PSC-CUNY Grant 6-67295.

1



2 Melvin Fitting

to various modal logics it turns out there are several competing ways of doing so, they have little
resemblance to each other, and one can argue about which deserves the title resolution. See [18]
for the kinds of issues involved. So far several distinct versions of resolution for modal logics have
been proposed. [21] presents a system in which explicit notation is introduced to denote possible
worlds. This is related to the tableau systems of [7] and some of those in [9] (see also [24]). Most
competing systems do not use this device though. See [1], [2], [14], [6], [5], [3], [17], [19] and [20].

The idea of context is explicit or implicit in various systems proposed for modal logics. In a
Kripke model a modal operator corresponds to a shift from one possible world to another. Different
parts of a formula can be within the scopes of different modal operators, and so may not be
applicable to the same worlds. Occurrences of the same literal may not mean the same thing
in different contexts — within different nestings of modal operators. One solution has been to
introduce notation for context, via prefixes or world paths, as mentioned above. This is not the
approach we take here. We noted some time ago, in the framework of tableaux systems, that for
certain modal logics only one context at a time needed to be considered, and when one shifted to a
new context details about the old one could be forgotten. Logics amenable to such treatment tend
to be those whose Kripke models do not involve symmetry — models that do not permit going
back to earlier worlds, hence those for which earlier contexts will not come back to haunt us.

We call resolution systems of the sort presented here destructive because they loose information
during a context shift. They are suitable for logics like K and S4 and are not suitable for S5, whose
models require symmetry. In first order versions they are suitable for varying domain logics but not
for constant domain ones (i.e. no Barcan formula). With constant domain models, whatever exists
in any world exists here, so destruction of information during a context shift can be dangerous. Of
course this is too loose a comment to have any real force. But the fact is, constant domain logics
seem not treatable by methods like ours; varying domain logics are fairly straightforward.

The destructive resolution systems presented here are non-clausal, or rather the steps that clas-
sically would amount to a reduction to clause form can be intermingled with resolution applications.
This is how we deal with the non-existence of simple clause forms in modal logics. Also we have
had to add a special rule to cover disjunctions, one that is provably eliminable in the classical
case. The added rule uses a higher type of object than a clause set. In this respect it is somewhat
similar to the Splitting Rule, used in the Davis-Putnam theorem proving technique in classical logic
[4], a rule not needed in classical resolution systems. We feel that this rule does not represent a
pecularity of modal logic, but rather its absence of classical. Finally, the first order version of our
system intermingles the steps of Skolemization with those of resolution, another technique that is
possible, but not necessary classically.

Our resolution system is based on an intuitionistic system in [10], and is strongly influenced by
tableau systems presented in [9] and implemented in [11]. We feel it has an advantage of simplicity
over most of the systems already in the literature — that is, it is easier to understand. This is
not a fundamental issue when it comes to automation, however, since a less intelligible system
may be more efficient. We strongly urge a multiplicity of approaches, and the full investigation
of all. Someday someone will begin the work of comparison, and then some lines will perhaps be
abandoned. Until then, let us not be short on resolution.
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Figure 1: The α and β cases.

α α1 α2 β β1 β2

X ∧ Y X Y ¬(X ∧ Y ) ¬X ¬Y
¬(X ∨ Y ) ¬X ¬Y X ∨ Y X Y
¬(X ⊃ Y ) X ¬Y X ⊃ Y ¬X Y

Figure 2: The ν and π cases.

ν ν0 π π0

X X ¬ X ¬X
¬♦X ¬X ♦X X

2 Propositional Syntax

We write P , Q, . . . for propositional variables, X, X1, . . . , for arbitrary formulas. We will be
using the uniform notation of [22], extended to the modal case as in [9] and [11]. Doing so adds
no complexity, and gives us the ability to treat many propositional connectives simultaneously.
Consequently we take as primitive ¬, ∧, ∨, ⊃, and ♦. (Other binary connectives could be added
to the list if desired, the uniform notation mechanism, as formulated in [22], can deal with anything
except ≡ and 6≡.) Formulas whose major connective is binary, and negations of such formulas, are
divided into two categories: conjunctives, or α formulas, and disjunctives, or β formulas. For each
α formula two components, α1 and α2 are defined. Similarly for each β formula, β1 and β2 are
defined. The cases and their definitions are shown in Figure 1. The intuition here is that a formula
of type α is true if and only if both corresponding α1 and α2 are true; β is true if and only if β1 or
β2 is true.

In a similar way the modal cases are divided up into ν formulas (those that are necessary) and
π formulas (those that are possible). Each has a single component, denoted ν0 and π0 respectively.
These are given in Figure 2. Here the intuition requires minimal knowledge of Kripke models to
present — we assume such knowledge. To say a formula of type ν is true at a possible world is to
say ν0 is true at every world accessible from that world; to say π is true is to say π0 is true at some
accessible world.

Finally we introduce special notation for generalized disjunctions and conjunctions. We will
treat [X1, X2, . . . , Xn] as synonymous with X1 ∨ X2 ∨ . . . ∨ Xn (parenthesized somehow), and
〈X1, X2, . . . , Xn〉 as synonymous with X1 ∧X2 ∧ . . .∧Xn. As usual, [ ] is identified with false, and
〈〉 with true.

If X1, X2, . . . , Xn are formulas, we will refer to [X1, X2, . . . , Xn] as a clause, though this is not
strictly correct since the Xi are not required to be literals. Likewise if each Ci is a clause, we will
refer to 〈C1, C2, . . . , Cn〉 as a clause list. Finally, there is one more level we will need: if L1, L2, . . . ,
Ln are clause lists, we call [L1, L2, . . . , Ln] a block. Blocks are not needed in classical resolution,
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though they were implicitly present in the Davis-Putnam method, [4], and are used explicitly in
the discussion of it in [12].

3 Classical Propositional Resolution

For comparison purposes we begin with a classical system, formulated using the uniform notation
presented above. The system does not require a previous reduction to clause form — the reduction
steps are built in. This will be of more importance when we come to the modal case later on,
though it is dispensable here. Also, blocks are present, though they play no role here. They will
become significant when we introduce modal rules in the next section.

We begin with some terminology that will be useful to us. We call a clause list containing the
empty clause closed, and a block closed if every clause list in it is closed.. We call a block closable
if a closed block can be derived from it using rules of derivation to be given below. As usual with
resolution, this is a refutation system; we say X is a theorem if the block [〈[¬X]〉] is closable. In the
classical system, blocks never contain more than one clause list, and so the block mechanism can be
tacitly ignored for the present. Note that the rules below are of two kinds. Some are replacement
rules; a formula, or a clause is removed and one or more new ones are added in its place. Others
are addition rules; clauses are added, but none are removed. Now, the rules for deriving one block
from another are as follows.

Propositional Reduction Rules

Double Negation An occurrence of a formula ¬¬Z may be replaced by an occurrence of Z.
Schematically,

¬¬Z
Z

Conjunction If an α formula occurs in a clause C, the clause C may be replaced by two
clauses, C1 and C2, which are like C except that C1 contains α1 in place of α and C2

contains α2 in place of α. Schematically,

[A1, . . . , An, α]
[A1, . . . , An, α1], [A1, . . . , An, α2]

Disjunction An occurrence of a β formula may be replaced by the two formulas β1 and β2.
Schematically,

β

β1, β2

Resolution Rule If a clause list contains two clauses C1 and C2 where C1 contains Z and C2

contains ¬Z then the clause C may be added to the clause list, where C contains the members
of C1 except for occurrences of Z and the members of C2 except for occurrences of ¬Z.
Schematically,

[Z,X1, . . . , Xk], [¬Z, Y1, . . . , Ym]
[X1, . . . , Xk, Y1, . . . , Ym], [Z,X1, . . . , Xk], [¬Z, Y1, . . . , Ym]
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Example. The following is a proof, in this system, of (P ∧Q) ⊃ ¬(¬P ∨ ¬Q). We omit reasons
for the steps.

1. [〈[¬((P ∧Q) ⊃ ¬(¬P ∨ ¬Q))]〉]

2. [〈[P ∧Q], [¬¬(¬P ∨ ¬Q)]〉]

3. [〈[P ∧Q], [¬P ∨ ¬Q]〉]

4. [〈[P ], [Q], [¬P ∨ ¬Q]〉]

5. [〈[P ], [Q], [¬P,¬Q]〉]

6. [〈[¬Q], [P ], [Q], [¬P,¬Q]〉]

7. [〈[ ], [¬Q], [P ], [Q], [¬P,¬Q]〉]

A few observations are in order. First, the system is essentially non-deterministic. It is sound
no matter in what order the rules are applied. Second, the system is complete, and remains so if
the restriction is imposed that all Reduction Rules must be applied before any Resolution Rules.
In fact this is essentially the conventional version of resolution, because use of the Reduction Rules
until no more applications are possible results in a conversion to clause form. But we have not
imposed such a requirement, thus allowing a version of non-clausal resolution.

Finally we introduce an additional rule that is sound but is not needed for completeness in the
classical case — it is an admissible rule. When we come to the modal version this rule is no longer a
derivable one, and must be taken as primitive. As we remarked earlier, it is similar to the Splitting
Rule in the Davis-Putnam method, which preceded the introduction of resolution ([4], [16]). We
call it a Special Case Rule. Unlike the rules above, it does not operate on formulas or clauses, but
on clause lists. It is here that block structures are needed.

Definition 3.1 We say C1, C2 is a partition of the clause C if C1 and C2 are disjoint and the
members of C1 together with those of C2 are exactly the members of C.

Special Case Rule If a clause list L contains a clause C, and C1, C2 is a partition of C, then L
can be replaced by two clause lists, L1 and L2, where L1 is like L except that it contains C1

in place of C, and L2 is like L but with C2 in place of C. Schematically,

〈[X1, . . . , Xn, Y1, . . . , Yk], C1, . . . , Cm〉
〈[X1, . . . , Xn], C1, . . . , Cm〉, 〈[Y1, . . . , Yk], C1, . . . , Cm〉

4 Propositional Modal Logic — K

We assume Kripke models are familiar. K is the logic determined by the class of all normal
propositional models with no restrictions imposed on the accessibility relation. Axiomatically it is
characterized by taking all tautologies and all formulas of the form (A ⊃ B) ⊃ ( A ⊃ B) as
axioms and modus ponens and necessitation as rules of inference.
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Definition 4.1 For each clause C we define two related clauses as follows. C] consists of all
formulas ν0 such that ν is in C. C[ consists of all formulas π0 such that π is in C.

Example. If C = [ (X ∧ Y ),¬ A,♦(B ⊃ C),¬C] then C] = [X ∧ Y ] and C[ = [¬A,B ⊃ C].

The basic facts about these operations are easy to state. If a clause C consists entirely of ν
formulas and C is true at a possible world of a Kripke model, C] is true at every accessible world.
If C consists entirely of π formulas and C is true at a possible world, C[ is true at some accessible
world.

The resolution system we propose includes all the rules of Section 3, including the Special Case
Rule, together with one more Reduction Rule. This additional rule is peculiar in that it acts
‘globally’ throughout a clause list, rather than ‘locally’.

K–π Rule Suppose L is a clause list containing a clause C consisting entirely of π formulas. Then
L may be replaced by the clause list L∗ containing the following clauses: C[ and, for each
clause S in L consisting entirely of ν formulas, the clause S].

Example. By this rule the clause list 〈[P ], [ Q,R], [ P,¬♦Q], [¬ R,♦S]〉 may be replaced by
〈[P,¬Q], [¬R,S]〉. Here C = [¬ R,♦S].

The intuition here is simple. Suppose we have a clause list L containing a clause C consisting
entirely of π formulas. Let L∗ be derived from L by the K–π Rule. Finally suppose L is satisfiable,
that is, there is some Kripke model and some world Γ of it at which L is true. Since C is true at
Γ, as we observed above, there is a world ∆, accessible from Γ, at which C[ is true. Also for every
clause S of L consisting entirely of ν formulas, S] will be true at every world accessible from Γ, in
particular at ∆. Thus L∗ is also satisfiable, but at the world ∆ instead of at the world Γ. In effect,
we have established the soundness of the K–π rule.

Application of the K–π Rule involves a ‘leap’ from one world to another — a context shift.
It is a forgetful leap — information is lost. Formulas are removed or modified, and so we call
our resolution system destructive. In fact, every rule except the K–π rule turns a block into an
equivalent block, but the K–π rule need not do so. It is because of this destructive aspect that
symmetric logics, like S5, can not be treated by this kind of tableau. In symmetric logics we can
return to an earlier world, and we need a mechanism for remembering what we knew when we were
there last. For this purpose prefixes (as in [7] and [9]) or world paths (as in [21]) are used.

Example. The following is a proof, in this K system, of ( P ∧ Q) ⊃ (P ∧Q).

1. [〈[¬(( P ∧ Q) ⊃ (P ∧Q)]〉]

2. [〈[ P ∧ Q], [¬ (P ∧Q)]〉]

3. [〈[ P ], [ Q], [¬ (P ∧Q)]〉]

4. [〈[P ], [Q], [¬(P ∧Q)]〉]

5. [〈[P ], [Q], [¬P,¬Q]〉]
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6. [〈[¬Q], [P ], [Q], [¬P,¬Q]〉]

7. [〈[ ], [¬Q], [P ], [Q], [¬P,¬Q]〉]

Here 4) is from 3) by the K − π Rule.

There are two somewhat hidden branch structures inherent in destructive resolution. The
simplest concerns the explicitly modal rule. Suppose we have the clause list 〈[ P ], [♦¬P ], [♦Q]〉.
The K–π Rule can be applied to this in two different, and incompatible ways. If we apply it to
the clause [♦Q] the clause list turns into 〈[P ], [Q]〉 which can not lead to a closed clause list. On
the other hand, if we use the clause [♦¬P ] we get the clause list 〈[P ], [¬P ]〉, and this does allow
us to derive the empty clause. Such a lack of confluence does not come up in the classical case. A
deterministic implementation of this theorem prover will be required to remember branch points
like this and be ready to backtrack if a closed clause list is not found. [15] and [23] have shown that
propositional modal logics are inherently more complex than classical logic, so some such problem
must be expected. On the other hand, this kind of branching is amenable to parallel treatment.
Rather than choosing a clause to work with, a process can be started for each. These can proceed
independently of each other, and if either produces a closed block, we have a proof. The issue is
much like that of or parallelism in parallel logic programming.

The other kind of branch point involves the Special Case Rule, and here things are more
complicated. If we have a block containing several clause lists, once again parallel treatment is
possible; a process can be started for each clause list, and each must produce the empty clause
for us to have a proof. In the propositional case this is straightforward, since clause lists are
essentially independent of each other. More precisely, the only rule that involves any interaction is
the Resolution Rule itself, and this is at the clause level, within clause lists. But, when we come to
the first-order case we will see that what is done with one clause list in a block can have an effect
on other clause lists — in effect, communication is involved. There is a strong similarity with and
parallelism in logic programming.

The Special Case Rule can not be eliminated. It is not hard to see that the K valid formula
( P ∨ Q) ⊃ (¬♦¬P ∨¬♦¬Q) is not provable without using it. This is in sharp contrast with the
classical case, in which the rule is sound, but not needed for completeness. Useful restrictions on
the applicability of the Special Case Rule would be most welcome.

Soundness of the resolution system for K is established in the usual way, except that Kripke
models must be used. Call a block B satisfiable if there is some Kripke model and some possible
world of it at which B is true. A closed block is not satisfiable. Also each of the rules proposed
above preserves satisfiability. Then a proof of X demonstrates that the initial block [〈[¬X]〉] was
not satisfiable, and it follows that X is true at all worlds of all Kripke models.

The easiest way to demonstrate completeness is to use the Model Existence Theorem for K ([8],
[9]). Actually, we need a slightly strengthened version; we state it and sketch the proof.

Definition 4.2 Let C be a collection of sets of formulas. C is a weak K consistency property if it
meets the following conditions for each S ∈ C:

1. S does not contain any literal and its complement;
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2. ¬¬Z ∈ S =⇒ S0 ∪ {Z} ∈ C, where S0 is S without ¬¬Z;

3. α ∈ S =⇒ S0 ∪ {α1, α2} ∈ C, where S0 is S without α;

4. β ∈ S =⇒ S0 ∪ {β1} ∈ C or S0 ∪ {β2} ∈ C, where S0 is S without β;

5. π ∈ S =⇒ S] ∪ {π0} ∈ C.

The definition of K consistency property in [9] is similar to this, except that in items 2), 3) and
4), S appears in place of S0.

Definition 4.3 Call a set U upward saturated provided:

1. Z ∈ U =⇒ ¬¬Z ∈ U ;

2. α1, α2 ∈ U =⇒ α ∈ U ;

3. β1 ∈ U or β2 ∈ U =⇒ β ∈ U .

The upward saturation of S, denoted Su is the smallest upward saturated set extending S.

If C is a weak K consistency property, and we set C∗ to be the collection of subsets of Su for all
S ∈ C, Cu is a K consistency property extending C. This takes a little checking, which we leave to
you. But as an easy consequence, if S is a member of a weak K consistency property, S will also
be a member of a K consistency property, and hence satisfiable in some K model, by the K Model
Existence Theorem.

Suppose we call a finite set {X1, . . . , Xn} of formulas consistent if the block [〈[X1], . . . , [Xn]〉] is
not closable. It is easy to verify that this is a weak K consistency property. Most of the conditions
are straightforward — the Special Case Rule is directly involved in checking the β condition. If X
is not provable, the block [〈[¬X]〉] is not closable, and so the set {¬X} is consistent. Then using the
Model Existence Theorem for K, this set is satisfiable, and hence X is not K valid. Incidentally, this
argument establishes the stronger fact that if X is provable, it has a proof in which all applications
of the Resolution Rule are at the literal level. Further, one can restrict applications of the Special
Case Rule to the splitting of two-element clauses into two singleton clauses.

Alternately, if one does not wish to use the Model Existence Theorem, one can prove completness
as follows. Above we defined consistency for finite sets. Now call an infinite set consistent if every
finite subset is. Then one can show a version of Lindenbaum’s Lemma: every consistent set is
extendable to a maximal consistent one. Now construct a Kripke model by taking the possible
worlds to be the maximal consistent sets of formulas, and imitating the usual completeness proof
for axiomatically formulated versions of K. In effect, one re-traces the argument for the Model
Existence Theorem by doing so, however.

5 Other Propositional Modal Logics

Several modal logics have resolution systems similar to the one presented for K. In this section we
briefly sketch systems for T , K4 and S4. The style of resolution system we have chosen does not
lend itself directly to S5, or generally to any logic whose Kripke models must be symmetric. We
have some brief comments on how to treat S5 later on, though.
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T–ν Rule If a clause list contains a clause C with an occurrence of a formula ν then another clause
may be added to the clause list that is like C except that it contains occurrences of ν0 where
C has ν. Schematically,

[ν,A1, . . . , An]
[ν0, A1, . . . , An], [ν,A1, . . . , An]

Adding the T–ν Rule to the K system of Section 4 yields a sound and complete system for propo-
sitional T .

For K4 we keep the classical rules of Section 3 but we substitute the following for the K–π
Rule. (The difference between this and the K–π Rule is that clauses S] are added, but clauses S
are not removed.)

K4–π Rule Suppose L is a clause list containing a clause C consisting entirely of π formulas.
Then L may be replaced by the clause list L∗ consisting of the following clauses: C[ and, for
each clause S in L consisting entirely of ν formulas, the clauses S and S].

The motivation for this rule is the same as it was for the K–π rule; conceptually it involves
a context shift or “jump” from one possible world to another. But in K4 models, involving tran-
sitivity, the information that can be passed from one world to another is more elaborate than in
K models. In particular, if X is true at a world of a transitive model, X will also be true at
all accessible worlds. So again, if S consists entirely of ν formulas and S is true at a world of a
transitive model, S] will be true at any accessible world.

Finally for S4 two different versions are possible. Most simply, just use the classical propositional
rules, the T–ν Rule and the K4–π Rule. Alternately, instead of the K4–π Rule one can use the
following.

S4–π Rule Suppose L is a clause list containing a clause C consisting entirely of π formulas. Then
L may be replaced by the clause list L∗ consisting of the following clauses: C[, and each clause
S in L that consists entirely of ν formulas.

Example. The following is a proof, in the second S4 system, of (A ⊃ B) ⊃ (♦A ⊃ ♦B).

1. [〈[¬( (A ⊃ B) ⊃ (♦A ⊃ ♦B))]〉]

2. [〈[ (A ⊃ B)], [¬ (♦A ⊃ ♦B)]〉]

3. [〈[ (A ⊃ B)], [¬(♦A ⊃ ♦B)]〉]

4. [〈[ (A ⊃ B)], [♦A], [¬♦B]〉]

5. [〈[ (A ⊃ B)], [A], [¬♦B]〉]

6. [〈[A ⊃ B], [ (A ⊃ B)], [A], [¬♦B]〉]

7. [〈[¬B], [A ⊃ B], [ (A ⊃ B)], [A], [¬♦B]〉]
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8. [〈[¬B], [¬A,B], [ (A ⊃ B)], [A], [¬♦B]〉]

9. [〈[¬A], [¬B], [¬A,B], [ (A ⊃ B)], [A], [¬♦B]〉]

10. [〈[ ], [¬A], [¬B], [¬A,B], [ (A ⊃ B)], [A], [¬♦B]〉]

Here 3) is from 2) and 5) is from 4) by the S4–π Rule; and 6) is from 5) and 7) is from 6) by the
T–ν Rule.

It is easy to see that one can obtain the effect of an application of the K4–π Rule by applications
of the S4–π Rule and the T–ν Rule. So completeness of the version with theK4–π Rule immediately
gives completeness of both versions. As in Section 4, completeness can be shown using appropriate
Model Existence Theorems ([8], [9]), or directly. Details are not difficult, and are omitted here.

A different approach to T , K4 and S4 is possible. In [11] we gave tableau systems for these
logics directly, and also showed how they could be embedded into K, so that only a K system
needed to be implemented. A similar thing is possible here. Once again we omit details.

Finally a word about S5. One way of dealing with the propositional version is to cheat. It is
well-known that, in the propositional case, every formula is equivalent in S5 to a formula with no
nested modal operators (a formula of modal degree one). There is an algorithm for doing such a
conversion in [9] for instance. Also it is the case that propositional S5 and propositional S4 have
the same valid formulas of modal degree one (again there is a proof in [9]). So to verify a formula
in propositional S5, convert it into a formula of modal degree one and use an S4 theorem prover.

6 First Order Modal Logics

First order modal logics come in several varieties. Constant symbols can be rigid, naming the
same thing in each world, or non-rigid (also known as flexible). Quantifier domains associated with
possible worlds can be entirely arbitrary, or they can be the same from world to world, or they can
meet a so-called monotonicity condition: if world ∆ is accessible from world Γ then the domain
associated with Γ is a subset of the one associated with ∆. The propositional resolution system
we have been considering does not lend itself to ‘constant domain’ or ‘arbitrary domain’ logics,
but only to those meeting the monotonicity condition. Likewise non-rigid symbols do not seem
treatable. (The issue of non-rigid designators is an important one, about which a certain amount
of confusion exists in the literature; see [13] for a fuller discussion.)

From now on we assume we have a first-order modal language formulated in the standard
way. In Kripke models for this language we assume domains meet the monotonicity condition,
and constant symbols are rigid. With these restrictions, we consider first-order versions of the
propositional logics investigated earlier. We are informal about syntax matters. The main point
is that we take both quantifiers as primitive, and we continue the system of uniform notation as
in [22]. Quantified formulas and their negations are divided into universals, or γ formulas, and
existentials, or δ formulas. For each such formula, and for each term t, a t instance is defined.
These notions are given in Figure 3.

With modal logics one can not Skolemize ahead of time. Essentially this is because quantifiers
and modal operators don’t generally commute. The solution that we adopt for this problem is the
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Figure 3: The γ and δ cases.

γ γ(t) δ δ(t)
∀(x)Φ Φ{x/t} ¬∀(x)Φ ¬Φ{x/t}
¬∃(x)Φ ¬Φ{x/t} ∃(x)Φ Φ{x/t}

same one we used in [10] and [11]: we intermingle Skolemizing with resolution. Roughly, we only
carry out a part of the Skolemization process when we hit a quantifier in the course of a proof. Of
course this is an option for classical logic too, but in the modal case it is forced on us. Now, the
quantifier rules we want are simply these.

Quantifier Reduction Rules

Universal If a γ formula occurs in a clause C then a new clause C ′ may be added, where C ′

is like C except that in place of γ, C ′ contains γ(x), where x is a previously unused free
variable. Schematically,

[γ,A1, . . . , An]
[γ(x), A1, . . . , An], [γ,A1, . . . , An]

Existential An occurrence of a δ formula in a clause may be replaced by the formula
δ(f(x1, . . . , xn)), where f is a previously unused function symbol (a Skolem function
symbol) and x1, . . . , xn are all the free variables that have been introduced so far by the
Universal Reduction Rule. Schematically,

δ

δ(f(x1, . . . , xn))

Finally, the presence of free variables must be taken into account. The most generous way of
doing this is to add a Substitution Rule. For a substitution σ we use the notation Bσ, where B is
a block, to denote the result of applying σ to every formula in B. We say σ is free for a formula Φ
provided, for each variable x in the domain of σ, xσ is free for x in Φ. Finally, we say σ is free for
a block provided it is free for every formula in it.

Substitution Rule A block B may be replaced by a block Bσ provided σ is free for B.

Adding these rules to any of the propositional systems considered earlier gives a first order
version for which soundness is not hard to establish. We remark again that Kripke models with
varying (but monotonic) domains are appropriate here.

Of course the Substitution Rule is problematic when it comes to implementation, because the
choice of substitution to apply is left open. In fact, the systems are complete if applications of the
Substitution Rule are restricted to most general (free) substitutions that enable a Resolution Rule
application, and thus unification can be used in the usual way, combined with Resolution. Note,
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however, that substitutions must be applied to the entire block. Thus if we compute a most general
unifier σ whose application will allow us to resolve two clauses in one clause list in a block, all other
clause lists will be affected as well. This means that we can not try to produce closed clause lists
from the various clause lists in a block in an independent way; communication is necessary.

Reduction Rule applications are analogous to the steps involved in the classical reduction to
clause form. And we still have completeness if all applications of the Resolution Rule are restricted
to the literal level. If one takes advantage of this, freeness of substitutions is guaranteed, because
the only variables present at the literal level will be free variables introduced by the Universal Rule,
and these were all new, hence most general unifiers can not interact badly with quantifiers.

Completeness, with the restrictions discussed above, can be shown using appropriate first order
consistency properties [9] together with a straightforward generalization of the Lifting Lemma.

Example. The following is a proof in the first order S4 system of ♦(∃x)(P (x) ⊃ (∀y)P (y))

1. [〈[¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

2. [〈[¬(∃x)(P (x) ⊃ (∀y)P (y))], [¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

3. [〈[¬(P (v1) ⊃ (∀y)P (y))], [¬(∃x)(P (x) ⊃ (∀y)P (y))], [¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

4. [〈[P (v1)], [¬ (∀y)P (y))], [¬(∃x)(P (x) ⊃ (∀y)P (y))], [¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

5. [〈[¬(∀y)P (y)], [¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

6. [〈[¬P (f(v1))], [¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

7. [〈[¬(∃x)(P (x) ⊃ (∀y)P (y))], [¬P (f(v1))], [¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

8. [〈[¬(P (v2) ⊃ (∀y)P (y))], [¬(∃x)(P (x) ⊃ (∀y)P (y))], [¬P (f(v1))],
[¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

9. [〈[P (v2)], [¬ (∀y)P (y))], [¬(∃x)(P (x) ⊃ (∀y)P (y))], [¬P (f(v1))],
[¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

10. [〈[ ], [P (f(v1))], [¬ (∀y)P (y))], [¬(∃x)(P (x) ⊃ (∀y)P (y))], [¬P (f(v1))],
[¬♦(∃x)(P (x) ⊃ (∀y)P (y))]〉]

In this 3) is from 2) by the Universal Rule; 6) is from 5) by the Existential Rule; 8) is from 7) by
the Universal Rule; and 10) is from 9) by Substitution and Resolution.

The reader may wish to attempt a proof in the first-order system for K of

(∀x)(∀y)(∀z)( P (x, y) ∨ Q(y, z)) ⊃ ((∃x)(∃y)¬♦¬P (x, y) ∨ (∃y)(∃z)¬♦¬Q(y, z))

which is a theorem, and also of the non-theorem

(∀x)(∀y)(∀z)( P (x, y) ∨ Q(y, z)) ⊃ ((∀x)(∀y)¬♦¬P (x, y) ∨ (∀y)(∀z)¬♦¬Q(y, z)).
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7 Conclusion

We have given, in detail, destructive resolution systems for four normal modal logics. Other normal
logics, such as D are easily treatable this way. Small changes allow the treatment of several regular,
but non-normal logics, such as C. Then interpretation into these logics allows the treatment of the
quasi-regular logics S2 and S3. Finally one can also treat logics of knowledge, thought of as modal
logics with many modal operators.

It is by design that the systems here bear a strong resemblance to the tableau based systems of
[11]. There is a kind of duality between tableau systems and these resolution systems. Resolution
has been extensively investigated in classical logic, while tableaux have been more or less neglected.
Perhaps with the rich field of non-classical logics to work with, the relative merits and disadvantages
of the two approaches can be better assessed.
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