
Databases and Higher Types

Melvin Fitting

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

e-mail: fitting@alpha.lehman.cuny.edu
web page: comet.lehman.cuny.edu/fitting

Abstract. Generalized databases will be examined, in which attributes
can be sets of attributes, or sets of sets of attributes, and other higher
type constructs. A precise semantics will be developed for such databases,
based on a higher type modal/intensional logic.

1 Introduction

In some ways this is an eccentric paper—there are no theorems. What I want
to do, simply stated, is present a semantics for relational databases. But the
semantics is rich, powerful, and oddly familiar, and applies to databases that
are quite general. It is a topic whose exploration I wish to recommend, rather
than a finished product I simply present.

Relational databases generally have entities of some kind as values of at-
tributes, though it is a small stretch to allow sets of entities as well. I want to
consider databases that stretch things further, allowing attributes to have as
values sets of sets of entities, and so on, but further, I also want to allow sets of
attributes, sets of sets of attributes, and so on. There are quite reasonable ex-
amples showing why one might find such things desirable, at least at low levels,
and a very simple one will be given below.

It is not enough to just allow eccentric attribute values—a semantics must
also be supplied to give them meaning. And rather than looking to some version
of classical logic, I will show that modal logic provides a very natural tool. Of
course it must be higher type modal logic, to encompass the kinds of things I have
been talking about. I will use the one presented in [3], which mildly generalizes
work of Montague [8–10] and Gallin [5].

This paper is a sequel to [2], in which a modal/intensional approach to
databases is developed in some detail at the first-order level. Once a full hi-
erarchy of types is introduced things become complex, and no more than a
sketch can be presented here. In particular, though a tableau system exists for
the modal logic I use, it will not be discussed in this paper.

It may be of interest that I did not get into this line of work from the database
side. I began with attempts to treat various classic philosophical problems as
simply as possible in a modal context—work culminating in [4]. This, in turn, led
to an interest in higher type modal logics, connected with a desire to understand
Gödel’s ontological argument, [6]. My work on this can be found in [3]. Databases

2 Melvin Fitting

came in, unnoticed, by a side door. But they are at the party, and it may be
they will have a good time.

2 A Sample Database

In order to illustrate the higher-type constructs, I’ll create a miniature database
of some complexity. I will take ground-level entities to be strings. Let’s say
the Locomobile Company1 still exists, and manufactures cars, motorcycles, and
pianos. Table 1 shows the start of a database—more attributes will be added
later.

IDNumber Item Cylinders Engine Colors Air Config

1 automobile 2 {A, B} {red, green, {no} ⊥
black}

2 automobile 4 {A} {green, black} {yes, no} ⊥
3 motorcycle 2 {C, D} {blue, black} ⊥ ⊥
4 piano ⊥ ⊥ ⊥ ⊥ {upright,

grand}

Table 1. Locomobile Sales List

Notice that in Table 1 some of the attributes have values that are ground
objects—Cylinders, say—while some are sets of ground objects—Engine types,
for instance. An entry of ⊥ indicates an attribute that is not relevant to the
particular item.

In the table above, let us say that for the 2 cylinder automobile the choice of
engine type, A or B, is not up to the buyer, since both are functionally equivalent.
But the choice of Colors, naturally, would be up to the customer. Similarly for
the 4 cylinder. But let’s say that for the motorcycle, the engine type is something
the customer chooses. Then let us have an additional attribute telling us, for each
record, which (other) attributes are customer chosen. Rather than repeating the
whole table, I’ll just give this single additional attribute in Table 2.

Notice that in Table 2, the Customer attribute has as values sets of attributes.
Finally, many of the attributes for an item can be irrelevant, as has been indi-
cated by ⊥. Rather than explicitly having an ‘undefined’ value in our semantics,
instead let us add additional attributes telling us which of the other attributes
are relevant.

Values of the Relevant0 attribute, in Table 3, are sets of attributes whose
values are ground level objects, values of Relevant1 are sets of attributes whose
values are sets of ground level objects, and values of Relevant2 are sets of
1 The actual company was founded in 1899 to manufacture steam powered cars. It

moved to luxury internal combustion automobiles in 1902, and went into receivership
in 1922. When active, they manufactured four cars a day.

Databases and Higher Types 3

IDNumber Customer

1 {Colors}
2 {Colors, Air}
3 {Engine, Colors}
4 {Configuration}

Table 2. Locomobile Customer Attribute

IDNumber Relevant0 Relevant1 Relevant2

1 {IDNumber, Item, Cylinders} {Engine, Colors, Air} {Customer}
2 {IDNumber, Item, Cylinders} {Engine, Colors, Air} {Customer}
3 {IDNumber, Item, Cylinders} {Engine, Colors} {Customer}
4 {IDNumber, Item} {Configuration} {Customer}

Table 3. Locomobile Relevancy Attribute

attributes whose values are sets of attributes whose values are sets of ground
level objects.

Finally, all this is really an instance of a relation schema, and that schema
has a few constraints which I’ve implicitly been obeying. Clearly IDNumber is
a key attribute. Also, an attribute belongs to the Relevant0, Relevant1, or
Relevant2 attribute of a record if and only if the attribute is defined for that
record, that is, has a value other than⊥. I’ll come back to the notion of constraint
later on.

3 Higher Order Modal Logic

Shifting gears abruptly (something the Locomobile did smoothly) I now present
a sketch of a higher order modal logic, taken from [3], and derived from [11] via
[5]. The machinery is somewhat complex, and space here is limited. See [3] for a
fuller discussion of underlying ideas.

I’ll start with the notion of types. The key feature here is that there are both
intensional and extensional types.

Definition 1. The notion of a type, extensional and intensional, is given as
follows.

1. 0 is an extensional type.
2. If t1, . . . , tn are types, extensional or intensional, 〈t1, . . . , tn〉 is an exten-

sional type.
3. If t is an extensional type, ↑t is an intensional type.

A type is an intensional or an extensional type.

4 Melvin Fitting

As usual, 0 is the type of ground-level objects, unanalyzed “things.” The
type 〈t1, . . . , tn〉 is for n-ary relations in the conventional sense, where the com-
ponents are of types t1, . . . , tn respectively. The type ↑t is the unfamiliar piece
of machinery—it will be used as the type of an intensional object which, in a
particular context, determines an extensional object of type t. All this will be
clearer once models have been presented.

For each type t I’ll assume there are infinitely many variable symbols of that
type. I’ll also assume there is a set C constant symbols, containing at least an
equality symbol =〈t,t〉 for each type t. I denote the higher-order language built
up from C by L(C). I’ll indicate types, when necessary, by superscripts, as I did
with equality above.

In formulating a higher order logic one can use comprehension axioms, or one
can use explicit term formation machinery, in effect building comprehension into
the language. I’ll follow the later course, but this means terms cannot be defined
first, and then formulas. Instead they must be defined in a mutual recursion.
Most of the items below are straightforward, but a few need comment. First,
concerning the term formation machinery mentioned above, predicate abstrac-
tion, it should be noted that 〈λα1, . . . , αn.Φ〉 is taken to be a term of intensional
type. Its meaning can vary from world to world, simply because the behavior
of the formula Φ changes from world to world. Second, there is a new piece of
machinery, ↓, mapping intensional terms to extensional ones. Think of it as the
“extension of” operator—at a possible world it supplies the extension there for
an intensional term.

Definition 2. Terms and formulas of L(C) are defined as follows.

1. A constant symbol or variable of L(C) of type t is a term of L(C) of type
t. If it is a constant symbol, it has no free variable occurrences. If it is a
variable, it has one free variable occurrence, itself.

2. If Φ is a formula of L(C) and α1, . . . , αn is a sequence of distinct variables
of types t1, . . . , tn respectively, then 〈λα1, . . . , αn.Φ〉 is a term of L(C) of
the intensional type ↑〈t1, . . . , tn〉. It is called a predicate abstract, and its
free variable occurrences are the free variable occurrences of Φ, except for
occurrences of the variables α1, . . . , αn.

3. If τ is a term of L(C) of type ↑t then ↓τ is a term of type t. It has the same
free variable occurrences that τ has.

4. If τ is a term of either type 〈t1, . . . , tn〉 or type ↑〈t1, . . . , tn〉, and τ1, . . . , τn
is a sequence of terms of types t1, . . . , tn respectively, then τ(τ1, . . . , τn) is
a formula (atomic) of L(C). The free variable occurrences in it are the free
variable occurrences of τ , τ1, . . . , τn.

5. If Φ is a formula of L(C) so is ¬Φ. The free variable occurrences of ¬Φ are
those of Φ.

6. If Φ and Ψ are formulas of L(C) so is (Φ∧ Ψ). The free variable occurrences
of (Φ ∧ Ψ) are those of Φ together with those of Ψ .

7. If Φ is a formula of L(C) and α is a variable then (∀α)Φ is a formula of L(C).
The free variable occurrences of (∀α)Φ are those of Φ, except for occurrences
of α.

Databases and Higher Types 5

8. If Φ is a formula of L(C) so is 2Φ. The free variable occurrences of 2Φ are
those of Φ.

Other connectives, quantifiers, and modal operators have the usual definitions.
The next thing is semantics. Actually, the only modal logic I’ll need will be

S5, for which the accessibility relation, R, is an equivalence relation, but it does
no harm to present the general case now. Note that the ground-level domain,
D, is not world dependent—in effect, type-0 quantification is possibilist and not
actualist.

Definition 3. An augmented Kripke frame is a structure 〈G,R,D〉 where G
is a non-empty set (of possible worlds), R is a binary relation on G (called
accessibility) and D is a non-empty set, the (ground-level) domain.

Next I say what the objects of each type are, relative to a choice of ground-
level domain and set of possible worlds. In classical higher order logic, Henkin
models are standard. In these, rather than having all objects of higher types,
one has “enough” of them. It is well-known that a restriction to “true” higher
order classical models gives a semantics that is not axiomatizable, while Henkin
models provide an axiomatizable version. A similar thing happens here, but the
definition of the modal analog of Henkin models is fairly complex, because saying
what it means to have “enough” objects requires serious effort. I will just give
the “true” model version—the Henkin generalization can be found in [3]. But I
also note that, in applications to databases, ground level domains will often be
finite.

Definition 4. Let G be a non-empty set (of possible worlds) and let D be a non-
empty set (the ground-level domain). For each type t, the collection [[t,D,G]] , of
objects of type t with respect to D and G, is defined as follows (P is the powerset
operator).

1. [[0,D,G]] = D.
2. [[〈t1, . . . , tn〉,D,G]] = P([[t1,D,G]] × · · · × [[tn,D,G]]).
3. [[↑t,D,G]] = [[t,D,G]]G .

O is an object of type t if O ∈ [[t,D,G]] . O is an intensional or extensional object
according to whether its type is intensional or extensional.

Now the terminology should be a little clearer. If O is extensional, it is a
relation in the conventional sense. If O is intensional, it is a mapping that assigns
an object to each possible world, that is, its designation can vary from state to
state. Next we move to models, and remember, these are “true” models, and not
a Henkin version. Much of this looks quite technical, but it reflects reasonable
intuitions and, in fact, an intuitive understanding will be sufficient for this paper.

Definition 5. A model for the language L(C) is a structure M = 〈G,R,D, I〉,
where 〈G,R,D〉 is an augmented frame and I is an interpretation, which meets
the following conditions.

6 Melvin Fitting

1. If A is a constant symbol of type t, I(A) is an object of type t.
2. If =〈t,t〉 is an equality constant symbol, I(=〈t,t〉) is the equality relation on

[[t,D,G]] .

Definition 6. A mapping v is a valuation in the model M = 〈G,R,D, I〉 if v
assigns to each variable α of type t some object of type t, that is, v(α) ∈ [[t,D,G]] .
An α variant of v is a valuation that agrees with v on all variables except α.
Similarly for α1, . . . , αn variant.

Finally, designation of a term, and truth of a formula, are defined by a si-
multaneous recursion.

Definition 7. Let M = 〈G,R,D, I〉 be a model, let v be a valuation in it, and
let Γ ∈ G be a possible world. A mapping (v ∗ I ∗ Γ), assigning to each term
an object that is the designation of that term at Γ is defined, and a relation
M, Γ °v Φ expressing truth of Φ at possible world Γ are characterized as follows.

1. If A is a constant symbol of L(C) then (v ∗ I ∗ Γ)(A) = I(A).
2. If α is a variable then (v ∗ I ∗ Γ)(α) = v(α).
3. If τ is a term of type ↑t then (v ∗ I ∗ Γ)(↓τ) = (v ∗ I ∗ Γ)(τ)(Γ)
4. If 〈λα1, . . . , αn.Φ〉 is a predicate abstract of L(C) of type ↑〈t1, . . . , tn〉, then

(v ∗ I ∗ Γ)(〈λα1, . . . , αn.Φ〉) is an intensional object; it is the function that
assigns to an arbitrary world ∆ the following member of [[〈t1, . . . , tn〉,D,G]] :

{〈w(α1), . . . , w(αn)〉 | w is an α1, . . . , αn variant of v and M, ∆ °w Φ}

5. For an atomic formula τ(τ1, . . . , τn),
(a) If τ is of an intensional type, M, Γ °v τ(τ1, . . . , τn) provided
〈(v ∗ I ∗ Γ)(τ1), . . . , (v ∗ I ∗ Γ)(τn)〉 ∈ (v ∗ I ∗ Γ)(τ)(Γ).

(b) If τ is of an extensional type, M, Γ °v τ(τ1, . . . , τn) provided
〈(v ∗ I ∗ Γ)(τ1), . . . , (v ∗ I ∗ Γ)(τn)〉 ∈ (v ∗ I ∗ Γ)(τ).

6. M, Γ °v ¬Φ if it is not the case that M, Γ °v Φ.
7. M, Γ °v Φ ∧ Ψ if M, Γ °v Φ and M, Γ °v Ψ .
8. M, Γ °v (∀α)Φ if M, Γ °v′ Φ for every α-variant v′ of v.
9. M, Γ °v 2Φ if M, ∆ °v Φ for all ∆ ∈ G such that ΓR∆.

4 A Modal Interpretation

So far two separate topics, databases and modal logic, have been discussed. It
is time to bring them together. I’ll show how various database concepts embed
naturally into a modal setting. Think of the database as having an informal
semantics, and the embedding into modal logic as supplying a precise, formal
version.

First of all, think of a record in a database as a possible world in a modal
model. This is not at all far-fetched—conceptually they play similar roles. When
dealing with databases, records are behind the scenes but are not first-class
objects. That is, an answer to a query might be a record number, but it will

Databases and Higher Types 7

not be a record. In a modal logic possible worlds have a similar role—they are
present in the semantics, but a modal language does not refer to them directly.

There is no reason to assume some records outrank others, whatever that
might mean, so I’ll take the accessibility relation to be the one that always
holds. This means our modal operators are those of S5.

In the little Locomobile database considered earlier, ground-level objects were
strings. I’ll carry that over to the modal setting now—the ground level domain
will consist of strings. Clearly this choice is not a critical issue.

Attributes are a key item in interpreting a database modally. Fortunately
there is a natural counterpart. An attribute assigns to each record some en-
tity of an appropriate kind. In a modal model, an interpreted constant symbol
of intensional type assigns to each possible world an object of an appropriate
type. I’ll simply provide an intensional constant symbol for each attribute, and
interpret it accordingly.

By way of illustration, let’s create a modal language and model correspond-
ing to the particular database presented in Section 2. It is an example that is
sufficiently general to get all the basic ideas across.

To specify the language, it is enough to specify the set C of constant symbols,
and their respective types. These will be ground level strings, which give us type 0
constant symbols, and various attributes, which give us intensional constant
symbols of various types. The strings from the Locomobile example are 1, 2, 3,
4, automobile, motorcycle, piano, A, B, C, D, red, green, black, blue, yes,
no, upright, grand, all of which are taken as type 0 constant symbols. The
attributes provide the following higher type constant symbols: IDNumber, Item,
and Cylinders, all of type ↑0; Engine, Colors, Air, and Config, all of type
↑〈0〉; Customer, of type ↑〈↑〈0〉〉; Relevant0, of type ↑〈↑0〉; Relevant1, of type
↑〈↑〈0〉〉; and Relevant2, of type ↑〈↑〈↑〈0〉〉〉.

Now that we have our modal language, L(C), the next job is to create a
specific modal model, corresponding to the Locomobile tables.

Let G be the set {Γ1, Γ2, Γ3, Γ4}, where the intention is that each of these
corresponds to one of the four records in the database given in Section 2. Specif-
ically, Γi corresponds to the record with an IDNumber of i. As noted above, I’ll
use an S5 logic, so R simply holds between any two members of G.

Let D be the set of strings used in the Table entries of Section 2, specifically,
{1, 2, 3, 4, automobile, motorcycle, piano, A, B, C, D, red, green, black, blue,
yes, no, upright, grand} (thus these are treated as both constant symbols of
the language and as members of the ground level domain).

Finally the interpretation I is specified. On constant symbols of type 0, I is
the identity function—such constant symbols designate themselves. For instance,
I(piano) = piano. And for the intensional constant symbols, we make them be-
have as the Locomobile tables of Section 2 specify. For instance, I(IDNumber) is
the function that maps Γ1 to I(1) = 1, Γ2 to I(2) = 2, and so on. I(Engine)
is the function that maps Γ1 to {I(A), I(B)} = {A, B}, Γ2 to {I(A)} = {A},
Γ3 to {I(C), I(D)} = {C, D}, and has some arbitrary value on Γ4. Likewise

8 Melvin Fitting

I(Relevant0) is the function that maps Γ1, Γ2 and Γ3 to {I(IDNumber), I(Item),
I(Cylinders)}, and maps Γ4 to {I(IDNumber), I(Item)}

This completes the definition of a language and a model corresponding to
the database of Section 2. I’ll call the model ML from now on.

5 Queries

Databases exist to be queried. With higher type constructs present, a care-
ful specification of behavior is needed to determine how queries behave. Modal
models take care of this very simply, since we have a precise definition of truth
available. The question is how to translate queries into the modal language. I’ll
give some natural language examples of queries for the Locomobile database,
and then I’ll provide formal versions in the modal language L(C) specified in
Section 4. For each I’ll consider how the formal version behaves in the model
ML that was constructed in Section 4. It will be seen that the formal behavior
matches intuition quite nicely.

Example 8. Query: Which items have 2 cylinders? Here and in the other exam-
ples, I’ll use an item’s IDNumber to uniquely identify it. As a first attempt at
formalizing this query, we might ask for the value of the attribute IDNumber in
worlds where the value of Cylinders is 2. In effect, the modal operators 2 and
3 act like quantifiers over possible worlds, or records. And we can ask for the
value of an attribute at a world by using the extension-of operator, ↓. This leads
us to the following type ↑〈0〉 predicate abstract, in which α is a variable of type
0, and = is the equality symbol of type 〈0, 0〉.

〈λα.3[(↓IDNumber = α) ∧ (↓Cylinders = 2)]〉 (1)

The problem with this is that the Cylinders attribute is undefined for pianos
in Table 1. In [2] I specifically allowed partially defined objects, but with a
full hierarchy of higher types available, I thought better of that approach here.
Instead I introduced “relevancy” attributes. An entry of ⊥ in a table indicates
an irrelevant attribute; no value can have a meaning for the record. In a modal
model constant symbols of intensional type are total, but values corresponding to
⊥ are entirely arbitrary, and should not be considered in queries. Consequently,
(1) must be revised to the following.

〈λα.3[(↓IDNumber = α) ∧ Relevant0(Cylinders) ∧ (↓Cylinders = 2)]〉 (2)

Since this is the first example, I’ll do it in some detail, beginning with a
verification that (2) is well-formed. For later examples, things will be more ab-
breviated.

The constant symbol IDNumber is of type ↑0, so ↓IDNumber is of type 0, by
part 3 of Definition 2. The variable α is of type 0 and = is of type 〈0, 0〉, so

Databases and Higher Types 9

= (IDNumber, α) is an atomic formula by part 4 of Definition 2. This we write
more conventionally as (↓IDNumber = α). In a similar way (↓Cylinders = 2) is an
atomic formula. Finally, Relevant0 is of type ↑〈↑0〉 and Cylinders is of type ↑0,
so Relevant0(Cylinders) is an atomic formula by part 4 of Definition 2 again. It
follows that 3[(↓IDNumber = α)∧Relevant0(Cylinders)∧(↓Cylinders = 2)] is
a formula. Then (2) is a predicate abstract of type ↑〈0〉, by part 2 of Definition 2.

Now if τ is a constant of type 0, by part 4 of Definition 2,

〈λα.3[(↓IDNumber = α) ∧
Relevant0(Cylinders) ∧ (↓Cylinders = 2)]〉(τ)

(3)

is a formula. The claim is, it is valid in the modelML if and only if τ is 1 or 3,
which is exactly what we would expect intuitively. (Valid in the model means it
is true at each world of it.) I’ll check this in some detail for 3.

Let Γ be an arbitrary world of the model, and let v be an arbitrary valuation.
I want to verify the following.

ML, Γ °v 〈λα.3[(↓IDNumber = α) ∧
Relevant0(Cylinders) ∧ (↓Cylinders = 2)]〉(3)

By part 5a of Definition 7, this is equivalent to

(v ∗ I ∗ Γ)(3) ∈ (v ∗ I ∗ Γ)(〈λα.3[(↓IDNumber = α) ∧
Relevant0(Cylinders) ∧ (↓Cylinders = 2)]〉)(Γ)

Now, (v ∗ I ∗ Γ)(3) = I(3) = 3, so by part 4 of Definition 7 we must show

ML, Γ °w 3[(↓IDNumber = α) ∧ Relevant0(Cylinders) ∧ (↓Cylinders = 2)]

where w is the α-variant of v such that w(α) = 3. And this is so because we
have the following.

ML, Γ3 °w (↓IDNumber = α) ∧ Relevant0(Cylinders) ∧ (↓Cylinders = 2)

I’ll check two of the components. To verify that

ML, Γ3 °w (↓IDNumber = α)

we need

〈(w ∗ I ∗ Γ3)(↓IDNumber), (w ∗ I ∗ Γ3)(α)〉 ∈ (w ∗ I ∗ Γ3)(=).

But (w∗I∗Γ3)(↓IDNumber) = (w∗I∗Γ3)(IDNumber)(Γ3) = I(IDNumber)(Γ3) = 3,
and (w ∗ I ∗Γ3)(α) = w(α) = 3. And equality symbols are always interpreted as
equality on extensional objects.

Finally I’ll verify that

ML, Γ3 °w Relevant0(Cylinders).

10 Melvin Fitting

This will be the case provided we have the following, by part 5a of Definition 7.

(w ∗ I ∗ Γ3)(Cylinders) ∈ (w ∗ I ∗ Γ3)(Relevant0)(Γ3)

Now, (w∗I∗Γ3)(Cylinders) = I(Cylinders), and (w∗I∗Γ3)(Relevant0)(Γ3) =
I(Relevant0)(Γ3) = {I(IDNumber), I(Item), I(Cylinders)}, and we are done.

Equation (3) has been verified in the case where τ is 1. The case where it is
3 is similar. If τ is 2, it fails because of the (↓Cylinders = 2) clause. And the
case where τ is 4 fails because of the Relevant0(Cylinders) clause.

I’ll conclude the section with a few more examples of somewhat greater com-
plexity. There will be no detailed analysis for these.

Example 9. Query: what choices does a customer have when purchasing a four-
cylinder car? This turns into the following predicate abstract, where α is of type
↑〈0〉 and β is of type 0. (I’ve omitted relevancy clauses because Item is always
relevant, and for automobile items Cylinders is always relevant. These will be
among the various constraints discussed in the next section.)

〈λα, β.3[(↓Item = automobile) ∧ (↓Cylinders = 4)
∧ Customer(α) ∧ α(β)]〉 (4)

Abbreviating (4) by τ , we have τ(τ1, τ2) is valid in ML just in case 〈τ1, τ2〉 is
one of

〈Colors, green〉
〈Colors, black〉
〈Air, yes〉
〈Air, no〉

Example 10. Query: what features can a customer choose, that are available for
more than one product? This gives us the following predicate abstract, in which
α is of type ↑〈0〉, and β, γ, and δ are of type 0.

〈λα, β.Customer(α) ∧
(∃γ)(∃δ){¬(γ = δ) ∧
3[(↑IDNumber = γ) ∧ α(β)] ∧
3[(↑IDNumber = δ) ∧ α(β)]}〉

(5)

Equation (5) validly applies, in ML, to just the following.

〈Colors, green〉
〈Colors, black〉

6 Constraints

The Locomobile example is really an instance of a database scheme. In order to
qualify as an instance, certain constraints must be met. So far, these have been

Databases and Higher Types 11

implicit, but now it is time to state them precisely. This provides additional
examples of the modal machinery at work.

I’ve been treating IDNumber as a key attribute. I now want to make this a
formal requirement. Ordinarily, to say something is a key is to say there cannot
be two records that have a common value on this attribute. In a modal setting,
this means the constant symbol IDNumber cannot be interpreted to have the
same value at two possible worlds. But possible worlds cannot be referred to
directly in our modal language. What we can say instead is that, in any model,
worlds agreeing on a value for IDNumber must agree on every attribute. Since we
have a full type theory here, this cannot be said with a single formula—we need
an infinite family of them, one for each intensional type. Consider the following
formula, where α is of type ↑t, x is of type 0 and y is of type t.

(∀α)〈λx, y.2[(x =↓IDNumber) ⊃ (y =↓α)]〉(↓IDNumber, ↓α) (6)

Requiring validity of (6) in a model is equivalent to requiring that two worlds
where IDNumber is interpreted identically are worlds that agree on values of all
intensional attributes of type ↑t. For the Locomobile example, we only need 5
instances: for types ↑0, ↑〈0〉, ↑〈↑0〉, ↑〈↑〈0〉〉, and ↑〈↑〈↑〈0〉〉〉.

Formula (6) is actually of more general interest than would appear at first
glance. In [2] I noted that such a formula is a relative rigidity expression—it
requires that all intensional objects of type ↑t be rigid relative to IDNumber.
Such requirements can be more elaborate, requiring rigidity relative to some
combination of attributes. They can also be less elaborate, requiring absolute
rigidity. As such, they relate to Kripke’s notion of rigid designator in [7], but a
further discussion would take us too far afield here.

In Example 9 I noted that Item should always be relevant. Clearly so should
IDNumber. I also noted that Cylinders should be relevant for items that were
automobiles. This means we should require validity of the following.

Relevant0(Item)
Relevant0(IDNumber)
(↓Item = automobile) ⊃ Relevant0(Cylinders)

To be precise, for a modal model to be considered as an instance of the
Locomobile scheme, the various constraints above must be valid formulas in it.

This can be turned into a proof-theoretic condition as well. Consider the
tables of Section 2 again. It is not hard to see that the first line of Table 1
corresponds to the following formula.

3[(↓IDNumber = 1) ∧ (↓Item = automobile) ∧ (↓Cylinders = 2) ∧
Engine(A) ∧ Engine(B) ∧
Colors(red) ∧ Colors(green) ∧ Colors(black) ∧
Air(no)]

12 Melvin Fitting

Similarly for the other lines, and tables. Now, to say we have presented an
instance of the Locomobile database scheme amounts to saying the constraint
formulas given earlier, combined with the various formulas derived from the
tables and representing individual records, make up a consistent set.

Consistency can, of course, be checked using a proof procedure, and the
higher type modal logic used here does have a tableau system, see [3]. But that
system is complete relative to a Henkin model version of our semantics, and is
not complete relative to the “true” semantics given in Section 3. Also, a tableau
procedure is not a decision method. I leave it as an open problem whether, for
formulas of the particular forms that arise in database applications, a decision
procedure can be extracted from the tableau method.

7 Conclusion

As promised, I have not proved any theorems. I have, however, provided a precise
modal semantics that can be applied naturally to databases containing higher
type constructs. Issues of practicability of implementation have been ignored.
Issues of decidability for fragments directly applicable to databases have been
ignored. I wanted to present the basics with the hope that others would find
the subject of sufficient interest to pursue questions like these. I hope I have
succeeded, at least a little.

References

1. S. Feferman, J. John W. Dawson, W. Goldfarb, C. Parsons, and R. N. Solovay,
editors. Kurt Gödel Collected Works, Volume III, Unpublished Essays and Lectures.
Oxford University Press, New York, 1995.

2. M. C. Fitting. Modality and databases. Forthcoming, LNCS, Tableaux 2000, 2000.
3. M. C. Fitting. Types, Tableaus, and Gödel’s God. 2000. Available on my web site:

comet.lehman.cuny.edu/fitting.
4. M. C. Fitting and R. Mendelsohn. First-Order Modal Logic. Kluwer, 1998. Paper-

back, 1999.
5. D. Gallin. Intensional and Higher-Order Modal Logic. North-Holland, 1975.
6. K. Gödel. Ontological proof. In Feferman et al. [1], pages 403–404.
7. S. Kripke. Naming and Necessity. Harvard University Press, 1980.
8. R. Montague. On the nature of certain philosophical entities. The Monist, 53:159–

194, 1960. Reprinted in [11], 148–187.
9. R. Montague. Pragmatics. pages 102–122. 1968. In Contemporary Philosophy: A

Survey, R. Klibansky editor, Florence, La Nuova Italia Editrice, 1968. Reprinted
in [11], 95–118.

10. R. Montague. Pragmatics and intensional logic. Synthèse, 22:68–94, 1970.
Reprinted in [11], 119–147.

11. R. H. Thomason, editor. Formal Philosophy, Selected Papers of Richard Montague.
Yale University Press, New Haven and London, 1974.

