
LOGIC PROGRAMMING $EMANTICS USING A COMPACT DATA ,STRUCTURE

Melvin Fitting
The Oraduate School end University Canter (CUNY), and

Herbert H. Lehman College (CUNY)
Department of Mathematics and Computer ,Science

Bedford Park Boulevard West
Bronx, New York 10468

ABSTRACT: A fixpoint semantics is given for logic programming using domain theory, with
undefined as one truth value, allowing negation, and arbitrary data structures. This generalizes
the conventional semantics, and agrees with it on 'successes' for Horn clause programs.
Consequences of requiring the data structure to be a compact topological space and the given
relations to be continuous are investigated, extending results in the last chapter of Lloyd's book.

KEYWORD8: logic programming, fixpoint, semantics, compact, Scott topology.

SI Introduction

In the last chapter of [10], based on [1], a theory of logic programming "perpetual processes"
(such as operating systems) is presented. Think of o perpetual process as computing an infinite
term via a sequence of finite approximations. But the development in [1 O] is based on two-valued
logic, which in many ways Is far from Ideal. A program like P +- P can not be thought of as
assigning either true or false as a value for P; ± (undefined) is the only thing that makes sense
because of infinite regress. A break from the two-valued position is found in [9] and [1 I]. In [4]
we argued for a semantics allowing, as a value, showing that it yielded a smooth treatment of
negation. Here we extend this to perpetual proceses. We use machinery from so-called domain
theory, thus making logic programming semantics a part of program semantics generaly. We also
generalize beyond the terms of formal logic. Commercial Prologs make available other data
structures, such as integers, finite decimals and character strings. These can be identified with
certain terms since the family of terms constitutes a "universal" data structure.
But such an identification leaves no place for typed predicates, or for issues of implementation.
Primarily, though, a restriction of theory to formal terms is entirely unnecessary. Logic
programming semantics develops as nicely as ever when applied to arbitrary data structures. But
then, what plays the role of infinite terms for a theory of perpetual processes? We show that any
compact data structure (definition in $5) wil l do quite well. Infinite terms provide one example,
but there are others, equally natural, such as infinite words, or real numbers.

I want to thank Paul Meyer for help with the topological aspects of this paper, and in particular
for supplying the lemma for Proposition 1, and its proof.

$2 The class of truth values, background

By #~/we mean the partial ordering /rue fa/se \ /
J.

247

Boo/, simple as it is, has a rich algebraic and topological life. It is a complete partial ordering
(cpo): there Is a least member', and every non-empty directed family has a supremum. It is a
domain in the sense of domain theory. Suppese A is a set and C is a partial ordering; let C A be the
family of all functions from ^ to C, with the pointwise ordering (f ~; g if f (x) ~; g(x) for every x e
A). Then C A is a partial ordering, and C A is a opo if C is. In particular, this is the case with
Boo/^. A function T:C -, C is monotone provided x ~; y implies T(x) ~; T(y), for all x,y e C.
Monotone functions on cpos always have smallest fixed points. Proofs of these and related results
may be found in [6] and [4]. Every cpo has an associated topology, the Scott topoioqy, chosen to
mesh well with the algebraic structure. We won't need the general definition here. For Boo/, the
Scott topology has as open sets the upward closed ones.. ®, { true}, [false}, { true, false}, and BooL

The truth functions we consider on Boo/ere those of Kleene's strong three-valued logic [7]. These
have played roles in philosophy [8] and in logic prcoj'amming [4] , [5]. Informally, for P ^ Q to
be true, both P and C! must be true, and for P ^ Q to be false, one of P or Q must be false; if P is
true but the truth value of Q is unknown, the truth value of P ^ CI is unknown. Formally, the
operations ^, v, -, and ::)are defined by the following tables.

I ^ true false ± v true false • :) true false • -,

false [else [else false true false ~ true true true true
± ~ false ~ true • ± true • • ±

Note that ^ is not the infimum, nor is v the supramum operation (though they are using the
ordering false < ± < true). Each truth function is monotone. For example, if p,q,r e Boo/and p ~;
q, then p ^ r ~: q ^ r. In the ._~__tt topology, each truth function is continuous in the appropriate
sense. For example, ^: Boot 2 -. Boo/is continuous, where Boo/2 has the product topology.

SupposeD issome nen-emptyset, end f:D n+l ~ BooL For each i = 1,2,..., n+ I we define an i th

existential quantifier (3if) to be a function from D n to BooL For notational convenience we give

the definition for i = 1 ; the general case is similar.

(: l l f)(x2,..., xn+ 1) =
r true l f (: lx 1 e D) Kx 1 ,x2,...,xn+ 1) = true
i false i f (Vx l s D) Kxt,x2,...,xn+ l) = false
L . otherwise

Existential quentifiers preserve monotonicity: i f f (x) ~; g(x) for every x e D n*l , then (3 i f) (x)

~; (3ig)(x) for every x e D n.

Lamina: Let D be a topological space and let Pi: on+t ~ Dn be defined by Pi(<Xl ,...,Xn+l>) =
<x I ,... ,x i_ l ,xi+ 1 ,-.. ,Xn+ l >. Then (usi ng the product topologies) Pi is an open map, and also a cL_n,~=d__
mop provided D is compact. (An open map takes open sets to open sets; similarly for closed map.)

Proof : It is straightforward that Pi is an open map, and we omit the proof. Now suppose D is

compact; we show P! is a closed map. Without loss of generality, take i to be 1 ; thus P 1: DxDn ~

D n. Let O be a closed subset of DxDn; we show tha complement of P1B is open in D n. Let c e D n -

P1B. For each y e D, <y,c> ¢ B and since B is closed, there is a basic neighborhood Uy of <y,c>

248

dlsJolnt from 6. D is compact so a flnlte set Uyl,...,Uy. of these neighborhoods covers Dx{c). P1

is an open map so each P 1 gy, is open in D n. Let V = ~ P 1Uy !,... ,P 1 gy,}. This is e neighborhood of

c. Finally, DxY ~ U(Uy I,... ,Uy.) which is disjoint from 6, hence Y is disjoint from P 16.

Proposition 1: Suppose D is e compact topological space and f:D n+! -, Bapl is continuous,
where D n*l has the product topology, and Do~! has the Scott topology. Then (3if): D n --, O ~ / i s
also continuous.

Proof: We show the inverse images of { true} and { false} under (3if) are open in D n. Let Pi:

D n*l -, D n be as above. Then (31f)-1({ true }) = Plf- l ({ t rue}) and this is open, using the

continuity of f and the fact that Pi is an open map. Also (3if)-1({ true, J.)) = Pif- l ({ true,, .L}).

Since { true, J.} ts closed in #go/, this set is closed in D n. using the continuity of f and the fact that
Pi is a closed map. Then the complemant in D n is open, but this is (3 i f) - l ({ [else }).

$3 Logic Programming, syntax

Bye data structure we mean <D; R I ,..., Rk> where D is a non-empty set, called the domain, and
R! R k are partial relations on D, called given relations (functions on D are identified with
their graphs). By oartlai relations we Informally mean relations whose truth value is allowed to
be undefined in some cases. Formally, an n-ary partial relation on O is a mapping from O n to
Do~/. The examples in this section have given partial relations that never take on the value ±, but
relations that de wil l be used in $5.

Examples:
1) Domain: L*, oll finite words over the finite alphabet L. Given relation: concatenation.
2) Domain: finite decimals. 9ivan relations: addition, multiplication.
3) Domain: oll closed terms built up from o finite list of constant and function symbols, given
relations: equality and, for each n-place function symbol f, the n+ i place relation R r such that
Rr(tl ,...,in,in+ 1) just when f (t l ,...,t n) = in+ I.

In example 1 equality can be defined from concatenation and the empty word. Similarly for
example 2, using addition and 0. Example 3 is the usual setting for logic programming theory.

Fix 8 data structure <D; R! Rk> for the time being. We describe a logic programming language
for it. As usual, we suppose available an unlimited supply of variables, and an unlimited supply of
1 -place, 2-place,... relation symbols. Once and for all, certain relation symbols, R I, R k are set
aside to represent the given relations of <D; R 1 ,..., Rk>. We call these reserved. They must be

distinct, and R i must be an n-place relation symbol i f R i is an n-place relation. Atomic formulas

are expressions of the form R(u I ,-.. ,Un) where R is a relation symbol and each u i is a variable or a
member of D. We also allow true and false as atomic formulas. Formulas are built up using the
connectives A, V, ",, :) and the existential quantifier" 3. Free variable occurrences are defined in
the usual way. We write ~,(x 1 x n) to indicate that qP is a formula with all its free variables
among xl Xn. Then by ~(t ! tn) we mean the result of substituting occurrences of t i for all

free occurrences ofx i in ~e (i = 1,2, n). Let R be an n-place relation symbol: a definition for" R

249

ls an expression of the form R(Xl ,...,Xn) '- ~P(xl ,Xn), where ~P is some formula, called the body
of the definition. A orcoram is a finite set of definitions such that: 1) no definition is for a
reserved relation symbol; 2) no relation symbol has two definitions; and 3) every non-reserved
relation symbol occurring in any definition body' itself has a definition.

$4 Logic Programming, semantics

Let <D; R 1 , Rk> be a data structure, fixed for this section. Then we have a logic programming
language for it as described in the previous section (with R1 R k as the reserved relation
symbols associated with the given partial relations R 1 Rk). Let P be a program, also fixed for
this section. We sketch a semantics for P.

Let F1, F2,..., Ft. be the relation symbols of P (including all reserved ones), where F i is n(l)

place. By interpretation space we mean/nt = D n(I) (]) l)n(2) E)... (b D n(t) where D n(i) is D x D x
... x I) with n(i) components, and ~) represents disjoint union, the union of disjoint copies. Thus
/nt has one component for each relation symbol F I, F2,.-., Ft. In a mild abuse of notation we wil l

act as if D n(i) and the corresponding component of /nt are the same, though technically the
component of//7I is an isomorphic copy of D n(i) , chosen so that no two components of /nt overlap.
If <d I ,dn(i)> e D n(i) we wil l say <d I ,...,tin(i)> is in the F I component of /nt, and assume no

misunderstanding wil l result from this. An interpretation issimplya mapping I : / n t ~ Boo/. An
interpretation I is i_n the data structure <D; R 1,..., Rk> provided, for each given relation R i, the
behavior of I on the R i component o f /n t agrees with the map R i. The family of all interpretations

in <1); R I ,..., Rk> with the pointwise ordering is a cpo because Boo/ is. Let q,(x I ,...,x n) be a
constant-free formula built up from the relation symbols F I , F2,..., F t, with free variables

x I ,...,x n, and let I be an interpretation in <i); R 1 ,..., Rk>; we define a function ~,l:l)n --, Boo/

inductively as follows. I) ~ is atomic, .say ~,(x 1 ,...,x n) is F(x 1 ,...,x n) where F is an n place

relatlonsymbol. Then, for dl.,...,dn e D, ~l(d 1 (In) is I(<dl (In>), where <dl dn> is taken

from the F component of/nt. 2) ~P is o< ̂ ,6. Then q,I = ^(o<1, ,61), where A is the function on

Boo/given in $2. Similarly for v, -~ and:). 3) ~, is (]xi)o¢ Then q,I = (3 i o<1), whare.li was also
defined in $2. Since the propesitional connectives are monotone on Boo/, and existential
quantifiers preserve monotonicity, it follows that I < J implies ~pI ~; ~J.

Now, we associate with program P an operator Tp on interpretations in <D; R 1 , . . . , Rk>. Let I be

an interpretation in <1); R i,..., Rk>; Tp(I) is the interpretation J characterized as follows. For

<d I ~(i)> in the F I component of /nt, 1) if F I is a reserved relation symbol, say R k, then

J(<dl,...,dn(i)>) ls Rkl(dl,...,dn(i)), that is, Rk(dl,...,dn(i)). 2) Otherwise, F i is e defined

relation symbol, .say lts definition in P is F i (x 1 X n (i)) *- ~P(X 1 Xn(i)). Then J(<dl (In(i)>)

is ~pl(d 1 ,...,dn(i)). Tp maps interpretations in <D; R 1 , Rk> to interpretations in <D; R 1 ,...,

Rk>, and is easily seen to be monotone. Then Tp has a smallest fixed point I in the space of
interpretations in <D; R I ,..., Rk>. We take this smallest fixed point as the semantical meaning of
program P.

There is a direct connection between this approach and the more familiar minimal model semantics
as found in [12], [2] and [10]. Suppose we use the data structure given as example 3 in $3,

250

which can be identified with the customary logic programming setting. Let P be a conventional
Horn clause program (in particular, no negations ere used). P can be converted to a program in
our sense in standard ways; call the resulting program O. Then, for each relation symbol R and
closed terms t i in, R(tt tn) is assigned the value /rue in the conventional minimal model

semantics if and only if Rl(t! ,t n) = /rue where I is the smallest fixed point of the operator TQ
defined as above. This extends to relate the failure (not finite failure) set of the conventional
semantics for P with the set mapping to [a/se using the smallest fixed point of TQ. A proof of this
can be found in [4], after noting that the semantics presented here is equivalent to the semantics of
that paper.

$5 Introducing compact data structures

For each data structure <D; R 1 ,..., Rk> and each program P a mapping Tp on interpretations has

been defined. Let IPo be the smallest Interpretation in <D; R! ,..., Rk>, behaving like the given
relations of <D; R 1 ,..., Rk> on the components of /nf corresponding to the reserved relation

symbols, identically, on all other components. Let IPn+! = Tp(IPn). Then IPo ~; IP! ~; 11)2 ~; ...

Let IP(o be the pointwise l imit of this sequence. One would like IP(o to be the least fixed point of
Tp, but this is not always the case. The problem is not due to our use of arbitrary data structures,
or of #oo/instead of the conventional two valued setting. In [2] an example is given which shows
their T operator need not reach a fixed point when "coming down from above" in o) steps. By work
In [,t], this provldes an example of a program P for which IP,,~ is not the least fixed point of Tp.

[3] makes it clear that we may have to go very much further than IPm to reach a fixed point.

Wecall adetastructure <D; R 1 ,..., Rk> compact if: 1) D has a compact topology, and 2) each

given (n-place) relation R i, thought of as a mapping from D n with the product topology, to goal
wlth the ,%art topology, is a continuous function.

In the next section we show that i f we have a compact data structure, then the least fixed point of
Tp wil l be IP~ We conclude this section with some examples of compact data structures.

Example 4: Domain D: all words, finite or infinite, over the finite alphabet L. A distance
between words is defined as follows. If w 1 and w 2 are identical, the distance between them is O.

Otherwise, the distance between them ls 1/2 n where w 1 and w 2 first differ at position n. (For
thls purpose words are taken as having the same letter at position i If both words are shorter In
length than i, and as having different letters at position i i f one word is shorter than i but the
other is not.) This distance provides us with a compact metric space, but given relations are a
little subtle. The equality relation, thought of as the function f on D 2 such that f(x,y) = true i f x
= y and f(x,y) = false i f x ,, y, is not continuous. Nor is it desirable computationelly. If x and y
are different words, that fact can be discovered. 6tertlng at the left ends and working through a
letter at a time, we must come on a position where x and y differ. Likewise, i f x and y are identical
and finite, their ldentlty can be determined since we can examine each position In each word. But
i f x and y are identical and infinite, an inspection procedure wil l never terminate. This suggests
we use the following.

true i f x : y and x and y are finite words
equel(x,y) = fa/se i f x ,, V

.L otherwise

251

Then a?ual:D 2 -, Boo/is a continuous function. Similar reasoning applies to a candidate for the
concatenation relation.

Example 5: Domain D: the real Interval [0,1] with standard distance function. Equality ls as
inappropriate here as it was in example 4. A "nearness" relation is reasonable, however.

within(x,y ,z) =
true i f l x - y l < z
[alse i f l x - y J > z
.L otherwise

This is a continuous function from D :3 to Boo/, as desired. Likewise, instead of "ordinary"
addition, we can use an "approximate" addition relation: x + y is within z of w, correcting
appropriately for the possibility of going out of the range [0, I].

Example 6: The space of finite and infinite terms made up from a finite list of constant and
function symbols, as presented in Chapter 4 of [10] is easily made into an example in our sense.

$6 Results about compact data structures

If D is a compact topological space, the product space D n, using the standard product topology,, is
compact by Tychonoff's Theorem. If D 1 D n are topological spaces, we give the disjoint union D I

• ... ~ D n a topology with basic open sets (copies of) the open sets of D i , ..., D n. In this topology a

function on D 1 • ... E)D n wil l be continuous just when it is continuous on each component

separately. And finally, D ! ~... ~ Dn is compact i f and only if each of D 1, ..., Dn is compact. For
the rest of this section, <D; R 1 ,..., Rk> is a compact data structure and P is a program in its logic

programming language. We assume the relation symbols of P are F t, F2,.-., Ft. Thent/nt = D n(I)

E)Dn(2) ~ ... ~ Dn(t) is also a compact space.

Proposition 2: Suppose the interpretation I : ~hi ~ Boo / i s a continuous function. Then so is
Tp(I)" /nt ~ Boo/.

Proof: Tp(I) will be continuous on /n t = D n(!) • D n(2) ~... $ Dn(t) i f It Is continuous on each
component. A component corresponding to a reserved relation symbol gives no trouble since the
given relations are required to be continuous. For a non-reserved relation symbol F i, say the

corresponding definition in program P is Fi(x i , . . . ,Xn(i)) , - ~ (x I ,... ,Xn(i)). The behavior of Tp(I)

on the F i component is defined to be that of ~l(x 1 ,Xn(i)). Continuity follows easily from the

continuity of I, the continuity of the propositional connectives and Proposition I.

As in the previous section, we can define an "approximation sequence" of interpretations IPo, IPl ,

IP2,.... IP 0 is continuous because it agrees with the continuous given relations of <D; R 1 ,..., Rk>

on components of In t corresponding to reserved relation symbols, and is identically • on all other
components of In t (obviously a continuous function on each component). Then each IPn must be

continuous by Proposition 2. The following extends this to IP~

252

Proposi t ion 5: Let I o ~ 11 ~ 12 ~; ... be a sequence of Interpretations, monotone under the
polntwlse ordering, And]at I = sup n I n be the (polntwlse) l lm l t If each I n ls continuous, so Is I,

Proof: The open sets in #ool are upward closed in that, i f 0 is open, e e O, and e ~ b, then b e O.
Then, for an open set 0 in Boo/, i f In(x) e 0 and n < k, then Ik(X) e 0 because of the pointwiso

ordering usedon interpretations. It re]lows that for any open set 0 in Boo/, I-1(0) = Unln-I(O)

and this is open because each I n is continuous and the open sets are closed under union.

Lamina: Let I 0 ~; 11 ~; 12 ~; ... be a monotone sequence of continuous interpretations with I as the

pointwise limit. Also]et ~(x 1 ,...,x n) be a formula with no constants (members of D), built up

from the relation symbols F 1 ,..., FL of P. Then, for each d I ,..., dn e D, there is some m such that

q,t.(dl,. . . , dn) = q,t(dl ,..., tin).

Proof: By Induction on the degree of m. If fe ls atomic the result ls immediate from the definition
of I. The propositional connective cases are straightforward. For the quantifier case, q,(x I ,... ,x n)

Is (~) 9(y,x I x ,) , the subceses where ~l(dl ,..., (in) is true or z are unproblemetlc. Suppose

now that the result is known for o, ~(x 1 ,...,x n) is (~)O(y ,x ! ,...,xn), and ~l(d 1 ,..., d n) = false

Each I k ls continuous and it follows that @,: D n* 1 ..+ Boo/ is 8 continuous function. For notational

convenience, let Hk(Y) = @,(y,dl ,...,(In). Then each H k : D --, Boo/ is also continuous. Since

~pl(dl (In) = [also, for each a e D, @(a,dl dn) = raise By the induction hypothesis, for

each a s D there is some k such that I-Ik(a) = false Since { false} is open in Boo/, Hk-l({ false})
is open in D. Then { Ho-l({false}), Hl- I({ false}), ... } is an open cover of D. Compactness

yields o finite subcover, { Ha-l({fa/se}),..., Hrn-l({fa/se}) } where m is the biggest index

oppear'ing. It follows from the pointwise ordering of the sequence I0, 11,12-- that 81-(e,d 1 ,... ,(I n)

= false for every a e D, end hence ~el-(d l ,... ,(I n) = false

Proposi t ion 4: For the compact data structure <D; R 1 , Rk> and program P, the associated

mapping Tp has IP~) as Its least fixed point.

Proof: Let F be the least fixed point of Tp. Trivial ly, IPo ~ F. If IPn ~ F, using monotonicity,

IPn+l = Tp(IP n) ~ Tp(F) = F. It follows that IP~ ~; F. Consequentty IPo~ wi l l be least i f It is a

fixed point at all. For each n, IP n ~: IP m, hence IPn+! = Tp(IP n) ~; Tp(IP(~). It follows that IPo~

Tp(IP~)). Finally to show Tp(IP~) ~; IPm it suffices to show that for each atomic formula

Fi(d! dn(i)) without variables, its truth value under Tp(IPc~) is ~; its truth value under" IP~
If Fi is reserved, the result is immediate. If F i is not reserved, there is a definition for i t in P,

say Fi(x I ,...,Xn(|)) ~- mix I ,...,Xn(i)). The truth value of Fi(d 1 ,...,dn(i)) under" Tp(IPo)) is that of

q,(d! dn(i)) under IPo By the Lemma, for some j, q,(dl,...,dn(i)) I'ms the same truth value

253

under IPo~ and IPj. Then Fi(dl dn(i)) has the same truth value under Tp(IPo~) and Tp(IPj) =

IPj+ 1. But IPj+ 1 ~ IPco, which concludes the proof.

Flnally, compact data structures of interest tend to have a domain with a dense subset of "concrete"
objects. The reels have the rationals, the family of all words has the family of finite words; the
family of all terms has the family of finite terms. We conclude with a result relating the
semantics for a compact data structure with that for a dense substructure. We use the following
notation. As usual in this section, <D; R1 Rk> is a compact data structure, P is a program
relative to this data structure, and Tp is the corresponding mapping on the interpretation space

/nL Now DO is a dense subset of D, and R1 o Rk o are the relations R 1 R k restricted to D o,

I n /o is the interpretation space, like ~hi, except that each component is a power of Do rather than

of D. Finally, "Cp is the mapping on/nt o associated with program P, using the data structure <D°;

RlO,..., RkO>, just as Tp is associated with P using <D; R1,..., Rk>. All the results about

monotonicity and fixed points from S=t apply to "cp, since no special topological assumptions were

made in S,t Finally, we defined a sequence of interpretations above, mapping I n t to Boo/.. IPo,

IP 1 ,... and a l imit IPm, using the map Tp. In exactly the same way we have a sequence of

interpretations, mapping/nt o to #oo/.. dP o, ,,IP 1 ,... and a l imit dPm, using the map z'p. 81nca

<DO; RlO,..., RkO> need not be compact, JP(o may not be the least fixed point of "cp, but it must be
the least fixed point.

Lamina: Suppose m(x 1 x n) is e formula with no constants, and I is an interpretation mapping

/ n t to doe/, whose interpretation space has a component for every relation symbol of m. Let ,I be
I restricted to /nt°. Then, for d 1 ,..., (I n e D o, ml(d t , d n) ~ ~Pl(d 1 ,..., tin), where ml treats

existential quantlflers as quantifying over D, while ~J treats them as quantifying over D o.

Proof: By induction on the degree of q~. If ~P is atomic, we have ~pl(d I ,..., d n) = ~J(d 1 ,..., dn). The

propositional cases are straightforward. Suppose ~P(Xl,...,x n) is (~)8(Y,Xl,.. . ,xn), and the

result is known for (~ If q~l(dl, d n) = z, the conclusion is immediate. If q~l(d 1 ,..., d n) = fa lse

then for each a e D, el(a, d I ,..., d n) = fals~ In particular, this happens for all a e D o. By the

induction hypothesis, eJ(a, d t tin) = false for all a ~ D o, and so ~J(dl dn) = [a l ~

Finally, suppose q~l(d t ,d n) = t / ' ~ Then for some a e D, el(a, d 1 (I n) = 1/ '~ Since el is

continuous end { true} is open, there is an open set 0 in D with a e 0 such that for all y ~ O, el(y,
d 1 ,..., d n) = trz~. Since D o is dense in D, there is some b e D o 130. Then el(h, d 1 ,..., d n) = true,

and by the induction hypothesis, eJ(b, d I ,..., d n) = true, so ~ (d 1 , (! n) = t / ' ~

Our final result says that by working with a dense subset of D we loose no positive information,
though some atomic formulas wi l l be assigned true or false which should have been L

Proposition 5: Let IP~ be the least fixed point of Tp. Then IPco, restricted to I n t ° is ~ the

least fixed point of Z'p.

254

Proof: IPo, restricted to In t° ~ JPo. In fact, we have equality. Suppose IPn, rastrtcted to

Int°, ~ JPn. Let Fi(x 1 ,..., xn(i)) be atomic, and d 1 , dn(i) s D o. We show the truth value of

Fi(d 1 , dn(i)) under IPn+! < the truth value of Fi(d 1 ,..., dn(i)) under JPn+l, which is enough to

establish that IPn.l, restricted to Into, ~ JPn.l. If F i is reserved, the rasult is immediate.

Otherwise, say Fi(x 1 , Xn(i)) +- q~(x 1,. . . , Xn(i)) iS a definition in P. The truth value of Fi(d 1 ,

dn(i)) under IPn+ 1 is that of ~,(d I ,..., dn(i)) underlP n. Using the lemma, the induction hypothesis,
and the monotonicity of the connectives and quantifiers, this is ~; the truth value of ~,(d I ,..., dn(i))

under JPn, which In turn is the truth value of Fi(d 1 ,..., dn(i)) under JPn+l. Then, by Induction,

IP n, restricted to Int° ~ JPn for every integer n, and the theorem follows directly.

Bibliooraphy

[I] Infinite-Term Semantics for Logic Programs, H. Andreka, M.H. van Emden, I. Nemeti and J.
Tiuryn, manuscript, 1983.

[2] Contributions to the theory of logic programming, K. R. Apt, M. H. van Emden, J. Assoc.
Comout. Mach., vol 29, pp. 841-862, 1982.

[3) The recursion-theoretic complexity of the semantics of predicate logic as a programming
language, H. Blair, Information and control, vol 54, pp. 25-47, 1982.

[4] A Kripke-Kleene Semantics for Logic Programs, M. Fitting, The Journal of Lo(lic
Programming, vol. 4, pp. 295-312, 1985.

[5] Partial models and logic programs, M. Fitting, manuscript, ! 986.

[6] On the Existence of Optimal Fixpoints, J. H. 8allier, Math. Svstems Theory, vol. 13, pp. 209-
217, 1980.

[7] Introduction To Metamathematics, S. C. Kleene ,. Van Nostrand, New York, 1952.

[8] Outline of a Theory of Truth, 8. Kripke, Journal of Philosophy, vol. 72, pp. 690- 7 ! 6, 1975.

[9] Optimal fixodpoints of logic programs, J. L. Lassez and M. Mahar, Theoretical computer
Science, voi 39, 1985.

[i O] Foundations of Logic Proorammirln, J. W. Lloyd, 8pringer-Verlag, Berlin, 1984.

[11] Logic Programs and Many-Valued Logic, A. Mycroft, in: M. Fontet and K. Mehlhorn (ads.),
8TACS 84, Symposium of Theoretical Aspects of computer Science, Proceedinqs, Springer Lecture
Notes in Computer ,Science, 166, pp. 274-286, 1984.

[12] The semantics of predicate logic as a programming language, M. van Emdan, R. Kowaiski, J.
Assoc. Comput. Mach., vol. 23, pp. 733-742, 1976.

25;5

