LOGIC PROGRAMMING SEMANTICS USING A COMPACT DATA STRUCTURE

Melvin Fitting
The Graduate School and University Center (CUNY), and
Herbert H. Lehman College (CUNY)
Department of Mathematics and Computer Science
Bedford Park Boulevard West
Bronx, New York 10468

ABSTRACT: A fixpoint semantics is given for logic programming using domain theory, with
undefined as one truth value, allowing negation, and arbitrary dats structures. This generalizes
the conventicnal semantics, and agrees with it on ‘successes’ for Horn clsuse programs.
Conseguences of requiring the data structure to be a compact topological space and the given
relations to be continuous are investigated, extending results in the last chapter of Lloyd's book.

KEYWORDS: logic programming, fixpoint, semantics, compact, Scott topology.

S1 Introduction

In the last chapter of [10}, based on [1], a theory of logic programming “perpetual processes”
(such es operating systems) is presented. Think of a perpetual process as computing an infinite
term via a sequence of finite approximations. But the development in [10] is based on two-valued
logic, which in many ways is far from ideal. A program like P « P can not be thought of as
assigning either & we or /8/se as a value for P; 1 (undefined) is the only thing that makes sense
because of infinite regress. A break from the two-valued position is found in [9] and[11]. In[4]
we argued for a semantics allowing 1 as a velue, showing that it yielded a smooth treatment of
negation. Here we extend this to perpetual proceses. We use machinery from so-called domagin
theory, thus making logic programming semantics a part of program semantics generaly. We also
generalize beyond the terms of formal logic. Commercial Prologs make available other data
structures, such as integers, finite decimals and character strings. These can be identified with
certain terms since the family of terms constitutes a ‘“universal” dats structure.
But such an identification leaves no place for typed predicates, or for issues of implementation.
Primarily, though, a restriction of theory to formal terms is entirely unnecessary. Logic
programming semantics develops as nicely as ever when applied to arbitrary data structures. But
then, what plays the role of infinite terms for a theory of perpetual processes? We show that any
compact deta structure (definition in S§5) will do quite well. Infinite terms provide one example,
but there are others, equally natural, such as infinite words, or real numbers.

| want to thank Paul Meyer for help with the topological aspects of this paper, and in particular
for supplying the lemma for Proposition 1, and its proof.

S$2 The class of truth values, background

By Bao/ we mean the partial ordering lru@(/fﬂx

4

247

Baol, simple ss it is, has a rich algebraic and topological life. It is a complete partial ordering
(cpo): there is a least member, and every non-empty directed family has a supremum. It is a
domain in the sense of domain theory. Suppose A is a set and C is a partial ordering; let CA be the
family of all functions from A to C, with the pointwise ordering (f < g if f(x) <g(x) for every x €
A). Then CA is a partisl ordering, and CA is a cpo if C is. In particular, this is the case with
Bao/A. A function T:C - C is monotone provided x < y implies T(x) < T(y), for all x,y € C.
Monotone functions on cpos always have smallest fixed points. Proofs of these and related resuits
may be found in [6] and [4]. Every cpo has an associated topology, the Scott topology, chosen to
mesh well with the algebraic structure. We won't need the general definition here. For Aao/, the

Scott topology has as open sets the upward closed ones: &, { rue}, { /8lse}, { true, false}, and Baol

The truth functions we consider on Bao/ are those of Kleene's strong three-valued logic [7]. These
have played roles in philosophy [8] and in logic programming [4], [S]. Informally, for P A Q to
be true, both P and Q must be true, and for P A Q to be false, one of P or Q must be false; if P is
true but the truth value of Q is unknown, the truth value of P A Q is unknown. Formally, the
operations A, v, ~and O are defined by the following tables.

| A ltrue Ffalse 1 v lrue f8lse . D lrue false 1 =
lrue lrive 18lse 1 rve lrie lrue lrue 18lse 1 18/se
1alse 18lse 1galse false | I(rue ralse s rue true lrue lrue
1 1 18/se lree 1 1 rve 1 1 1

Note that A is not the infimum, nor is v the supremum operation (though they are using the
ordering /&/se < 1 < ¢rug). Each truth function is monotone. For example, if p,q,r € Sao/ and p <
g, thenpar <g ar. In the Scott topology, each truth function is continuous in the appropriate

sense. For example, A: Bav/2 - Baol is continuous, where Ba0/2 has the product topology.

Suppose D is some non-empty set, and f:D°*! » Boo/ For each i = 1,2,..., n+ 1 we define an ith
existential quantifier (3;f) to be a function from D" to Aaz/ For notational convenience we give
the definition for 1 = 1; the general case is similar.
¢ rue 11(3xy €D) (X4 X9,.. X041} = Urve
(3|f)(X2,...,Xn+‘) = { 18/se if(VX| eD) f(X| ,X2,...,Xn+1) = [f5/se
L. otherwise

Existential quantifiers preserve monotonicity: if f(x) < g(x) for every x € D1, then (3;1)(x)
< (3;9)(x) for every x € D",

Lemma: Let D be a topological space and let P;: D"™1 - D be defined by Pi(<xy,... X541>) =
<Xy pore Xjm g Xja 1 - Xna 1>~ Then (using the product topologies) P; is an open map, and also a closed
map provided D is compact. (An open map takes open sets to open sets; similarly for closed map.)

Proof: It is straightforward that P; is an open map, and we omit the proof. Now suppose D is
compact; we show P is a closed map. Without loss of generality, take i to be 1; thus P ;: DxD" -
D". Let B be a closed subset of DxD"; we show the complement of PB isopen in D". Letc € D" -
P4B. For eachy € D, <y,c> ¢ B and since B is closed, there is a basic neighborhood Uy of <y o>

248

disjoint from B. D is compact so a finite set uy,,...,uy‘ of these neighborhoods covers Dx{c}. Py
is an open map so each P,Uy. isopenin D, LetV = n{P,uy,,...,PNy.}. This is a neighborhood of
c. Finally, Dx¥Y C u{uy,,...,uy‘} which is disjoint from B, hence ¥ is disjoint from P4B.

Proposition 1: Suppose D is a compact topological space and f:D"*! » B/ is continuous,
where D1 has the product topology and Za/ has the Scott topology. Then (3;f): D - Baw/ is
also continuous.

Proof: We show the inverse images of { Z7ue} and { /8/se} under (3;f) are open in D", Let P;:
DP+! ~ DN be gs above. Then (3;)-V({#w}) = Pif-V({ #ue}) and this is open, using the
continuity of f and the fact that P; is an open map. Also (3;1)-1({ &rwe 1}) = PV ({ true, 1}).

Since { #rue, 1} is closed in Bao/, this set is closed in DM, using the continuity of f and the fact that
P; is aclosed map. Then the complement in D" is open, but this is (3;1)~1({ /s }).

S3 Logic Programming, syntax

By a data structure we mean <D; Ry,..., Ry> where D is a non-empty set, called the domain, and
R,...., Ry are partial relations on D, called given relations (functions on D are identified with
their graphs). By partial relations we informally mean relations whose truth value is allowed to
be undefined in some cases. Formally, an n-ary partial relation on D is a mapping from D" to

Lol The examples in this section have given partial relations that never take on the value 1, but
relations that do will be used in S5.

Examples:

1) Domain: L*, all finite words over the finite alphabet L. Given relation: concatenation.

2) Domain: finite decimals. Given relations: addition, multiplication.

3) Domain: all closed terms built up from s finite list of constant and function symbols. Given

relations: equality and, for each n-place function symbol f, the n+ 1 place relation Ry such that
Rr(t] ,-.-,tn,tn+|)just when f(t' ,,,.,tﬂ) = tﬂ*'

In example 1 equality can be defined from concatenation and the empty word. Similarly for
example 2, using addition and 0. Example 3 is the usual setting for logic programming theory.

Fix a data structure <D; Ry...., Ry> for the time being. We describe a logic programming language

for it. As usual, we suppose available an unlimited supply of yariables, and an unlimited supply of
1-place, 2-place,... relation symbols. Once and for all, certain relation symbols, Ry,...,Ry are set

aside to represent the given relations of <D; Ry,..., Ry>. We call these reserved. They must be
distinct, and R; must be an n-place relation symbol if R; is an n-place relation. Atemic formulas
are expressions of the form R(uy,...,u;) where R is a relation symbol and each u; is a varisble or &
member of D. We also allow ¢ ue and /&/se as atomic formulss. Formulas are built up using the
connectives A, v, =, D and the existential quantifier 3. Free variable occurrences are defined in
_the usual way. We write ¢(x;,...,X,) fo indicate that ¢ is a formula with all its free variables

among Xy.... Xn. Then by ®(t;,....t,) we mean the result of substituting occurrences of t; for all
free occurrences of x; in @ (i = 1,2,...,n). Let R be an n-place relation symbol: a definition for R

249

is an expression of the form R(Xy,...,.X,) « ®(Xy,....X;), where o is some formula, called the body

of the definition. A program is & finite set of definitions such that: 1) no definition is for a
reserved relation symbol; 2) no relation symbo! has two definitions; and 3) every non-reserved
relation symbol occurring in any definition body itself has a definition.

S4 Logic Programming, semantics

Let <D; Ry,..., Ry> be & data structure, fixed for this section. Then we have a logic programming
language for it as described in the previous section (with Ry,..., Ry as the reserved relation
symbols associated with the given partial relations Ry,..., Ry). Let P be a program, also fixed for
this section. We sketch a semantics for P.

Let Fy, Fo,..., Fy be the relation symbols of P (including all reserved ones), where F; is n(i)

place. By interpretation space we mean /2f = DN @DV @ ... & DY) where D) is D x D x

... x D with n(i) components, and @ represents disjoint union, the union of disjoint copies. Thus
/nt has one component for each relation symbol Fy, Fo,...,Fy. In a mild abuse of notation we will

act as if D"() and the corresponding component of /7/ are the same, though technically the
component of /»¢ is an isomorphic copy of pnli), chesen so that no two components of /¢ overlap.
If <dy...,dyiy> € D) we will say <dy,...,dy)> is in the F; component of /n7, and assume no

misunderstanding will result from this. An interpretation is simply a mapping V: /2f —» Bao/ An
interpretation 1 is in the data structure <D; Ry,..., Ry> provided, for each given relation R;, the

behavior of | on the R; component of /7 agrees with the map R;. The family of all interpretations
in <D; Ry,..., Re> with the pointwise ordering is a cpo because Bao/ is. Let e(xy,....x,) be a
constant-free formula built up from the relation symbols Fy, Fop,.., Fy, with free variables
X{,...Xqy, 6nd let | be an interpretation in <D; Ry,..., Ry>; we define a function o):D" - Bao/
inductively as follows. 1) e is atomic, say #(xy,...,X,) is F(xy,..,x,) where F is an n place
relation symbol. Then, for dy....,d, € D, ©1(d;,....d,) is 1{<dy,....d>), where <dy,... d,> is taken
from the F component of /7Z 2) @ is A B. Then ol = A(od, 81), where A is the function on
Bool given in S2. Similarly forv, ~andD. 3) @ is (3x)ec Then ol = (3, od), where 3 was also
defined in S2. Since the propositional connectives are monotone on Saw/ and existential
quantifiers preserve monotonicity, it follows that | < J implies ol < ¢J.

Now, we associate with program P an operator Tp on interpretations in <D; Ry,..., Ry>. Let 1 be
an interpretation in <D; Ry,..., Re>; Tp(1) is the interpretation J characterized as follows. For
<dy....dn(j)> in the F; component of /a7, 1) if F; is a reserved relation symbol, say Ry, then
J(<dy,...,di)>) I8 Rel(dy,....dyi)), thet is, Re(dy,... dy)). 2) Otherwise, F; is & defined
relation symbol, say its definition in P is F;(xq,... Xn()) « ®(Xq.....X%n(5)). Then J(<dy,....dyi)>)
is @l(dy ... dy)). Tp maps interpretations in <D; Ry,..., Ry> to interpretations in <D; Ry,...,
Ry>, and is easily seen to be monotone. Then Tp has a smallest fixed point 1 in the space of

interpretations in <D; Ry,..., Re>. We take this smallest fixed point as the semantical meaning of
program P.

There is a direct connection between this approach and the more familiar minimal model semantics
as found in [12], [2] and [10]. Suppose we use the data structure given as example 3 in S3,

250

which can be identified with the customery logic progremming setting. Let P be a conventionsl
Horn clause program in particular, no negations are used). P can be converted to a program in
our sense in standard ways; call the resulting program Q. Then, for each relation symbol R and
closed terms ty,....4,, R(ty,...,t;) is assigned the value #we in the conventional minimal model
semantics if and only if RI(t1.....tn) = Zrue where | is the smallest fixed point of the operator Tq

defined as above. This extends to relate the failure (not finite failure) set of the conventional
semantics for P with the set mapping to /a/se using the smallest fixed point of Tq. A proof of this

can be found in [4], after noting that the semantics presented here is equivalent to the semantics of
that paper.

S5 introducing compact data structures

For each data structure <D; Ry,..., Ry> and each program P a mapping Tp on interpretations has

been defined. Let I"o be the smallest interpretation in <D; R,..., Ry>, behaving like the given
relations of <D; Ry,..., Ri> on the components of /7/ corresponding to the reserved relation

symbols, identically 1 on ali other components. Let 1P, = Tp(IP,). Then 1Py < 1P} < 1P ¢ ..

Let 1P, be the pointwise limit of this sequence. One would like IP , to be the least fixed point of
Tp, but this is not always the case. The problem is not due to our use of arbitrary data structures,
or of Bao/ instead of the conventional two valued setting. In [2] an example is given which shows
their T operator need not reach a fixed point when “coming down from above” in w steps. By work
in [4], this provides an example of a program P for which IP,, is not the least fixed point of Tp.

[3) makes it clear that we may have to go very much further than 1P, to reach a fixed point.

We call a data structure <D; Ry,..., Ry> compact if: 1) D has a compact topology, and 2) each

given (n-place) relation R;, thought of as a mapping from D" with the product topology, to Sa/
with the Scott topology, is a continuous function.

In the next section we show that if we have a compact data structure, then the least fixed point of
Tp will be Ipw We conclude this section with some examples of compact data structures.

Example 4: Domain D: all words, finite or infinite, over the finite alphabet L. A distance
between words is defined as follows. |f w and wo are identical, the distance between them is O.

Otherwise, the distance between them is 1/2" where w4 and wo first differ at position n. (For

this purpase words are taken as having the same letter at position i if both words are shorter in
length than i, and as having different letters at position i if one word is shorter than i but the
other is not.) This distance provides us with a compact metric space, but given relations are a
little subtle. The equality relation, thought of as the function f on D2 such that f(x,y) = frue if x
=y and f(x,y) = /&/s2 if x = y, is not continuous. Nor is it desirable computationally. If x and y
are different words, that fact can be discovered. Starting at the left ends and working through a
letter at a time, we must come on a position where x and y differ. Likewise, if x andy are identical
and finite, their identity can be determined since we can examine each position in each word. But
if x and y are identical and infinite, an inspection procedure will never terminate. This suggests
we use the foliowing.

Irive 1T X =yandxandy are finite words
equal(x y) = { Blse ifx=y
1 otherwise

251

Then agus/-D2 - Bao/ is a continuous function. Similer reasoning applies to & candidate for the
concatenation relation,

Example S5: Domain D: the real interval [0,1] with standard distance function. Equality is as
inappropriate here as it was in example 4. A "nearness” relation is reasonable, however.

trve if|x-y|<¢2
within(xy.2) = {ﬁs/x iflx-y|>2
i otherwise

This is a continuous function from DS to Ban/, as desired. Likewise, instead of "ordinary”
addition, we can use an “approximate” addition relation: x + y is within z of w, correcting
appropriately for the possibility of going out of the range [0,1].

Example 6: The space of finite and infinite terms made up from a finite list of constant and
function symbols, as presented in Chapter 4 of [10] is easily made into an example in our sense.

S6 Results about compact data structures

If D is a compact topological space, the product space DM, using the standard product topology, is
compact by Tychonoff's Theorem. If Dy,...,D,, are topological spaces, we give the disjoint union D

®... ® D, a topology with basic open sets (copies of) the open ssts of Dy, ..., Dp. In this topology a
function on Dy @ ... ® Dy, will be continuous just when it is continuous on each component

separately. And finally, Dy @... @Dy, is compact if and only if each of Dy, ..., Dy, is compact. For
the rest of this section, <D; Ry ..., Ry> is a compact data structure and P is a program in its logic

programming language. We assume the relation symbols of P are ¢, Fo,..., Fi. Thent /a7 = pr(1)
®p(2) @ ... & DY) is also a compact space.

Proposition 2: Suppose the interpretation | : /2 - Bao/ is a continuous function. Then so is
Tp(1) : /nt - Bool

Proof: Tp(1) will becontinuouson /27 = DD @D2) @ ... @ DY ff 1t s continuous on each

component. A component corresponding to a reserved relation symbol gives no trouble since the
given relations are required to be continuous. For a non-reserved relation symbol F;, say the

corresponding definition in program P is Fi(X,... X)) « ®(Xq,... Xy5)). The behavior of Tp(1)
on the F; component is defined to be that of #}(xy,....Xy)). Continuity follows easily from the
continuity of I, the continuity of the propositional connectives and Proposition 1.

As in the previous section, we can define an "approximation sequence” of interpretations l"o, (LA
IP,,.... IPg is continuous because it agrees with the continuous given relations of <D; Ry,..., Ry>

on components of /2¢ corresponding to reserved relation symbols, and is identically 1 on all other
components of /»¢ (obviously a continuous function on each component). Then each 1P, must be

continuous by Proposition 2. The following extends this to I"w

252

Proposition 3: Let I < 14 < I < ... be a sequence of interpretations, monotone under the
pointwise ordering. And let | = sup,, I, be the (pointwise) 1imit. if each I, is continuous, so is 1.

Proof: The open sets in Sav/ are upward closed in thet, if O isopen,a€ 0, anda < b, then b € 0.
Then, for an open set 0 in Bag), if 1,(x) € 0 and n <k, then l(x) € O because of the pointwise

ordering used on interpretations. It follows that for any open set 0 in Baz/, 1-1(0) = Ul,~1(0)
and this is open because each [, is continuous and the open sets are closed under union.

‘Lemma: Letlg< 14 < I < ... be a monotone sequence of continuous interpretations with 1 as the
pointwise limit. Also let 9(xy,...,x,) be a formula with no constants (members of D), built up
from the relation symbols Fy,..., Fy of P. Then, for each dy,..., d, € D, there is some m such that

‘P'"‘(d1 soen dn) = 'Pl(d1 yosy dn)

Proof: By induction on the degree of 9. If @ is atomic the result is immediate from the definition
of I. The propositional connective cases are straightforward. For the quantifier case, ®(xj,....X,)

i ()Y Xy,...X5) , the subcases where #}(d; ..., d,) s frue or 1 are unproblematic. Suppose
now that the result is known for 8, ®(xy,....X,) is (¥)&yXy,...%,), and #}(dy,..., d,) = /8/sa

Each I is continuous and it follows that 8l: D1 — Bap/ is & continuous function. For notational

convenience, let H(y) = eh(y dy,..,d,). Then each He : D —» Sao/ is salso continuous. Since
el(dy,...,d,) = /@/sg for eacha e D, M(ads,..,d,) = /&/se By the induction hypothesis, for
each a € D there is some k such that H(a) = /a/se Since { /5/se} is open in Bao, H - \({ false})
is open in D. Then { Hy~1({ //s}), H;~V({ /8/s¢}), ... } is an open cover of D. Compactness
yields a finite subcover, { Hy~1({/a/52}),..., Hy,"1({/8/52}) } where m is the biggest index
appearing. It follows from the pointwise ordering of the sequence Ig, 11, I5,... that &l=(a,d;,...,d,)

= false for every o € D, and hence ol=(dy ... d,) = /o/2

Proposition 4: For the compact data structure <D; Ry,..., Ry> and program P, the associated
mapping Tp has IP as its least fixed point.

Proof: Letf be the least fixed point of Tp. Trivially, I"o sF.Iif l"n < F, using monotonicity,
IP.s =Tp(IP,) < Tp(F) = F. It follows that IP,, < F. Consequently IP,, will be least if it is a
fixed point at all. For eachn, 1P, < 1P, hence 1P,y = Tp(IP) < Tp(IP). It follows that IP,
< Tp(IP). Finally to show Tp(1P,) < IP,, it suffices to show that for each atomic formula

Fi(dy.....dngi)) without variables, its truth value under Tp(IP,) is < its truth value under P,
If F; is reserved, the result is immediate. If F; is not reserved, there is a definition for it in P,

say Fi(Xy ... Xngj)) « 9(X[,... Xn(q)). The truth value of Fi(dy.,....dy;)) under Tp(1Py) is that of
©(dy,....dy(j)) under 1Py, By the Lemma, for some j, ®(dy,....dyj)) hes the same truth value

253

under 1P and IP;. Then Fi(dy.....dy)) has the same truth vaiue under Tp(1P) and Tp(IP}) =
IPj,y. But 1Py, < 1P, which concludes the proof.

Finally, compact data structures of interest tend to have a domain with a dense subset of “concrete”
objects. The reals have the rationals; the family of all words has the family of finite words; the
family of all terms has the family of finite terms. We conclude with a result relating the
semantics for a compact data structure with that for a dense substructure. We use the following
notation. As usual in this section, <D; Ry,..., Ry> is a compact data structure, P is a program

relative to this data structure, and Tp is the corresponding mapping on the interpretation space
/nt. Now DO is a dense subset of D, and R4°,..., R, are the relations Ry,..., Ry restricted to D°.
/nt@ is the interpretation space, like /n7Z, except that each component is a power of DO rather than
of D. Finally, ¥p is the mapping on /»¢¢ associated with program P, using the data structure <D°;
Ry%,..., Ry®>, just as Tp is associated with P using <D; Ry,..., Ry>. All the results about
monotonicity and fixed points from S4 apply t0 Tp, since no special topological assumptions were
made in S4. Finally, we defined a sequence of interpretations above, mapping /¢ to Bao/: Ipo,
IP1,... and a limit Ipm, using the map Tp. In exactly the same way we have a sequence of
interpretations, mapping /77 to Baol: JPg, JP,... and a limit JP , using the map 7p. Since

D%; R¢9,..., R > need not be compact, JP(,, may not be the least fixed point of zp, but it must be
< the least fixed point.

Lemma: Suppose (x1,..., X,) is @ formula with no constants, and | is an interpretation mapping
/nt to Bao/, whose interpretation space has a component for every relation symbol of ¢. Let J be
| restricted to /722 Then, for dy,..., d, € D°, ol(dy,..., d,) < ¥¥(dy,..., d,), where ol treats

existential quantifiers as quantifying over D, while ¢ treats them as quantifying over DO.

Proof: By induction on the degree of . If 9 is atomic, we have 91(dy ..., d,) =¢d(dy,...,d;). The
propositional cases are straightforward. Suppose ®(x1,..,X,) is (Iy)&yxq,...X,), and the
result is known for 8. If ¢!(dy,..., d,) = 1, the conclusion is immediate. If ¢¥(dy,..., d,) = /aise
thenforeacha € D, é(a, dy,..., d,) = /8/%2 In particular, this happens for all a € D°. By the
induction hypothesis, 8¥(a, dy,..., d,) = /@/se for all a € D°, and s0 ¥(dy,..., 4,) = /&l
Finally, suppose ¢}(dy,...,d,) = #rue Thenfor someae D, &l(a, dy,..., d,) = rue Since & is
continuous and { #~«#} is open, there is an open set 0 in D with a € 0 such that for all y € 0, 8i(y,
dy,...,dy) = Zrue Since DO is dense in D, there is some b € D° NO. Then e(b, dy,..., d,) = e,

and by the induction hypothesis, 87(b, dy,...,d,) = Zrze, so9d(dy,..., 4,) = true

Our final result says that by working with a dense subset of D we loose no positive information,
though some atomic formulas will be assigned Zrue or 7a/%¢ which should have been L.

Propesition 5: Let Ipm be the least fixed point of Tp. Then I"m, restricted to /729, is < the
least fixed point of 2p.

254

Proof: 1Py, restricted to /729, < JPo. In fact, we have equality. Suppose IP,, restricted to
mto, < JP. Let Fi(xq,.., Xn(i)) be atomic, and dy,..., dygjy € DO. We show the truth value of
Fi(dy...., dngi)) under 1P, ¢ < the truth value of Fi(dy,..., dy;)) under JP, ¢, which is enough to
establish that IP,,, restricted to /779, < JP,,y. If F; is reserved, the result is immediate.
Otherwise, say Fi(Xy,..., Xp()) « ®(Xq,..., Xo(j)) is @ definition in P. The truth value of Fi(dy,...,
dniy) under 1P, is that of ®(dy ..., dyy) underIP,. Using the lemma, the induction hypothesis,
and the monotonicity of the connectives and quantifiers, this is < the truth value of e(dy,..., dy))

under JPp,, which in turn is the truth value of Fi(dy,..., dy;)) under JP,,,. Then, by induction,
IP,,, restricted to /22 < JP,, for every integer n, and the theorem follows directly.

Bibliography

[1] Infinite-Term Semantics for Logic Programs, H. Andreka, M.H. van Emden, |. Nemeti and J.
Tiuryn, manuscript, 1983.

[2] Contributions to the theory of logic programming, K. R. Apt, M. H. van Emden, J. Assoc.
Comput. Mach., vol 29, pp. 841-862, 1982.

[3] The recuréion-theoretic complexity of the semantics of predicate logic as a programming
language, H. Blair, Information and Control, vol 54, pp. 25-47, 1982.

[4] A Kripke-Kleene Semantics for Logic Programs, M. Fitting, The Journal of Logic
Programming, vol. 4, pp. 295-312, 1985.

[S} Partial models and logic programs, M. Fitting, manuscript, 1986.

[6] On the Existence of Optimal Fixpoints, J. H. Gallier, Math. Systems Theory, vol. 13, pp. 209-
217, 1980.

[7] Introduction To Metamathematics, S. C. Kleene, Yan Nostrand, New York, 1952,
[8] Outline of a Thesry of Truth, S. Kripke, Journal of Philosophy, vol. 72, pp. 690-716, 1975,

[9] Optimal fixedpoints of logic programs, J. L. Lassez and M. Maher, Theoretical Computer
Science, vol 39, 1985.

{ 10] Eoundations of Logic Programming, J. W. Lloyd, Springer-Verlag, Berlin, 1984.

[11] Logic Programs and Many-VYalued Logic, A. Mycroft, in: M. Fontet and K. Mehlhorn (eds.),
STACS 84, Sympesium of Theoretical Aspects of Computer Science, Proceedings, Springer Lecture
Notes in Computer Science, 166, pp. 274-286, 1984,

[12] The semantics of predicate logic as a programming language, M. van Emden, R. Kowalski, J,
Assoc. Comput. Mach., vol. 23, pp. 733-742, 1976.

255

