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ABSTRACT: A fixpoint semantics is given for logic programming using domain theory, with 
undefined as one truth value, allowing negation, and arbitrary data structures. This generalizes 
the conventional semantics, and agrees with it on 'successes' for Horn clause programs. 
Consequences of requiring the data structure to be a compact topological space and the given 
relations to be continuous are investigated, extending results in the last chapter of Lloyd's book. 
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SI Introduction 

In the last chapter of [ 10], based on [ 1 ], a theory of logic programming "perpetual processes" 
(such as operating systems) is presented. Think of o perpetual process as computing an infinite 
term via a sequence of finite approximations. But the development in [ 1 O] is based on two-valued 
logic, which in many ways Is far from Ideal. A program like P +- P can not be thought of as 
assigning either true or false as a value for P; ± (undefined) is the only thing that makes sense 
because of infinite regress. A break from the two-valued position is found in [9] and [ 1 I]. In [4] 
we argued for a semantics allowing, as a value, showing that it yielded a smooth treatment of 
negation. Here we extend this to perpetual proceses. We use machinery from so-called domain 
theory, thus making logic programming semantics a part of program semantics generaly. We also 
generalize beyond the terms of formal logic. Commercial Prologs make available other data 
structures, such as integers, finite decimals and character strings. These can be identified with 
certain terms since the family of terms constitutes a "universal" data structure. 
But such an identification leaves no place for typed predicates, or for issues of implementation. 
Primarily, though, a restriction of theory to formal terms is entirely unnecessary. Logic 
programming semantics develops as nicely as ever when applied to arbitrary data structures. But 
then, what plays the role of infinite terms for a theory of perpetual processes? We show that any 
compact data structure (definition in $5) wil l  do quite well. Infinite terms provide one example, 
but there are others, equally natural, such as infinite words, or real numbers. 

I want to thank Paul Meyer for help with the topological aspects of this paper, and in particular 
for supplying the lemma for Proposition 1, and its proof. 

$2 The class of truth values, background 

By #~/we mean the partial ordering /rue fa/se \ / 
J. 

247 



Boo/, simple as it is, has a rich algebraic and topological life. It is a complete partial ordering 
(cpo): there Is a least member', and every non-empty directed family has a supremum. It is a 
domain in the sense of domain theory. Suppese A is a set and C is a partial ordering; let C A be the 
family of all functions from ^ to C, with the pointwise ordering ( f  ~; g if f (x) ~; g(x) for every x e 
A). Then C A is a partial ordering, and C A is a opo if C is. In particular, this is the case with 
Boo/^. A function T:C -, C is monotone provided x ~; y implies T(x) ~; T(y), for all x,y e C. 
Monotone functions on cpos always have smallest fixed points. Proofs of these and related results 
may be found in [6] and [4]. Every cpo has an associated topology, the Scott topoioqy, chosen to 
mesh well with the algebraic structure. We won't need the general definition here. For Boo/, the 
Scott topology has as open sets the upward closed ones.. ®, { true}, [ false}, { true, false}, and BooL 

The truth functions we consider on Boo/ere those of Kleene's strong three-valued logic [ 7]. These 
have played roles in philosophy [8] and in logic prcoj'amming [4] ,  [5]. Informally, for P ^ Q to 
be true, both P and C! must be true, and for P ^ Q to be false, one of P or Q must be false; if P is 
true but the truth value of Q is unknown, the truth value of P ^ CI is unknown. Formally, the 
operations ^, v, -, and ::)are defined by the following tables. 

I ^ true false ± v true false • :) true false • -, 

false [else [else false true false ~ true true true true 
± ~ false ~ true • ± true • • ± 

Note that ^ is not the infimum, nor is v the supramum operation (though they are using the 
ordering false < ± < true). Each truth function is monotone. For example, if p,q,r e Boo/and p ~; 
q, then p ^ r ~: q ^ r. In the ._~__tt topology, each truth function is continuous in the appropriate 
sense. For example, ^: Boot 2 -. Boo/is continuous, where Boo/2 has the product topology. 

SupposeD issome nen-emptyset, end f:D n+l ~ BooL For each i = 1,2,..., n+ I we define an i th 

existential quantifier (3if) to be a function from D n to BooL For notational convenience we give 

the definition for i = 1 ; the general case is similar. 

(: l l f)(x2,..., xn+ 1 ) = 
r true l f ( : lx  1 e D) Kx 1 ,x2,...,xn+ 1) = true 
i false i f (Vx l  s D) Kxt,x2,...,xn+ l )  = false 
L .  otherwise 

Existential quentifiers preserve monotonicity: i f  f (x )  ~; g(x)  for every x e D n*l , then (3 i f ) ( x )  

~; ( 3ig)(x) for every x e D n. 

Lamina: Let D be a topological space and let Pi: on+t ~ Dn be defined by Pi(<Xl ,...,Xn+l>) = 
<x I ,... ,x i_ l ,xi+ 1 ,-.. ,Xn+ l >. Then ( usi ng the product topologies) Pi is an open map, and also a cL_n,~=d__ 
mop provided D is compact. (An open map takes open sets to open sets; similarly for closed map.) 

Proof :  It is straightforward that Pi is an open map, and we omit the proof. Now suppose D is 

compact; we show P! is a closed map. Without loss of generality, take i to be 1 ; thus P 1: DxDn ~ 

D n. Let O be a closed subset of DxDn; we show tha complement of P1B is open in D n. Let c e D n - 

P1B. For each y e D, <y,c> ¢ B and since B is closed, there is a basic neighborhood Uy of <y,c> 
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dlsJolnt from 6. D is compact so a flnlte set Uyl,...,Uy. of these neighborhoods covers Dx{c). P1 

is an open map so each P 1 gy, is open in D n. Let V = ~ P  1Uy !,... ,P 1 gy,}. This is e neighborhood of 

c. Finally, DxY ~ U(Uy I,... ,Uy.) which is disjoint from 6, hence Y is disjoint from P 16. 

Proposition 1: Suppose D is e compact topological space and f:D n+! -, Bapl is continuous, 
where D n*l has the product topology, and Do~! has the Scott topology. Then (3if): D n --, O ~ / i s  
also continuous. 

Proof: We show the inverse images of { true} and { false} under (3if) are open in D n. Let Pi: 

D n*l -, D n be as above. Then (31f)-1({ true }) = Plf- l ( {  t rue}) and this is open, using the 

continuity of f and the fact that Pi is an open map. Also (3if)-1({ true, J.)) = Pif- l ( {  true,, .L}). 

Since { true, J.} ts closed in #go/, this set is closed in D n. using the continuity of f and the fact that 
Pi is a closed map. Then the complemant in D n is open, but this is (3 i f ) - l ( {  [else }). 

$3 Logic Programming, syntax 

Bye data structure we mean <D; R I ,..., Rk> where D is a non-empty set, called the domain, and 
R! ..... R k are partial relations on D, called given relations (functions on D are identified with 
their graphs). By oartlai relations we Informally mean relations whose truth value is allowed to 
be undefined in some cases. Formally, an n-ary partial relation on O is a mapping from O n to 
Do~/. The examples in this section have given partial relations that never take on the value ±, but 
relations that de wil l  be used in $5. 

Examples: 
1 ) Domain: L*, oll finite words over the finite alphabet L. Given relation: concatenation. 
2) Domain: finite decimals. 9ivan relations: addition, multiplication. 
3) Domain: oll closed terms built up from o finite list of constant and function symbols, given 
relations: equality and, for each n-place function symbol f, the n+ i place relation R r such that 
Rr(tl ,...,in,in+ 1 ) just when f ( t l  ,...,t n) = in+ I. 

In example 1 equality can be defined from concatenation and the empty word. Similarly for 
example 2, using addition and 0. Example 3 is the usual setting for logic programming theory. 

Fix 8 data structure <D; R! ..... Rk> for the time being. We describe a logic programming language 
for it. As usual, we suppose available an unlimited supply of variables, and an unlimited supply of 
1 -place, 2-place,... relation symbols. Once and for all, certain relation symbols, R I, .... R k are set 
aside to represent the given relations of <D; R 1 ,..., Rk>. We call these reserved. They must be 

distinct, and R i must be an n-place relation symbol i f  R i is an n-place relation. Atomic formulas 

are expressions of the form R(u I ,-.. ,Un) where R is a relation symbol and each u i is a variable or a 
member of D. We also allow true and false as atomic formulas. Formulas are built up using the 
connectives A, V, ",, :) and the existential quantifier" 3. Free variable occurrences are defined in 
the usual way. We write ~,(x 1 ..... x n) to indicate that qP is a formula with all its free variables 
among xl ..... Xn. Then by ~(t ! ..... tn) we mean the result of substituting occurrences of t i for all 

free occurrences ofx i in ~e ( i  = 1,2, .... n). Let R be an n-place relation symbol: a definition for" R 
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ls an expression of the form R(Xl ,...,Xn) '- ~P(xl .... ,Xn), where ~P is some formula, called the body 
of the definition. A orcoram is a finite set of definitions such that: 1) no definition is for a 
reserved relation symbol; 2) no relation symbol has two definitions; and 3) every non-reserved 
relation symbol occurring in any definition body' itself has a definition. 

$4 Logic Programming, semantics 

Let <D; R 1 .... , Rk> be a data structure, fixed for this section. Then we have a logic programming 
language for it as described in the previous section (with R1 ..... R k as the reserved relation 
symbols associated with the given partial relations R 1 ..... Rk). Let P be a program, also fixed for 
this section. We sketch a semantics for P. 

Let F1, F2,..., Ft. be the relation symbols of P (including all reserved ones), where F i is n( l )  

place. By interpretation space we mean/nt = D n(I ) (]) l)n(2) E)... (b D n(t) where D n(i) is D x D x 
... x I) with n( i)  components, and ~) represents disjoint union, the union of disjoint copies. Thus 
/nt  has one component for each relation symbol F I, F2,.-., Ft. In a mild abuse of notation we wil l  

act as if D n(i) and the corresponding component of /nt  are the same, though technically the 
component of//7I is an isomorphic copy of D n(i) , chosen so that no two components of /nt  overlap. 
If <d I .... ,dn(i)> e D n(i) we wil l  say <d I ,...,tin(i)> is in the F I component of /nt, and assume no 

misunderstanding wil l  result from this. An interpretation issimplya mapping I : / n t  ~ Boo/. An 
interpretation I is i_n the data structure <D; R 1,..., Rk> provided, for each given relation R i, the 
behavior of I on the R i component o f /n t  agrees with the map R i. The family of all interpretations 

in <1); R I ,..., Rk> with the pointwise ordering is a cpo because Boo/ is. Let q,(x I ,...,x n) be a 
constant-free formula built up from the relation symbols F I , F2,..., F t, with free variables 

x I ,...,x n, and let I be an interpretation in <i); R 1 ,..., Rk>; we define a function ~,l:l)n --, Boo/ 

inductively as follows. I ) ~ is atomic, .say ~,(x 1 ,...,x n) is F(x 1 ,...,x n) where F is an n place 

relatlonsymbol. Then, for dl.,...,dn e D, ~l(d 1 ..... (In) is I(<dl ..... (In>), where <dl ..... dn> is taken 

from the F component of/nt. 2) ~P is o< ̂  ,6. Then q,I = ^( o<1, ,61 ), where A is the function on 

Boo/given in $2. Similarly for v,  -~ and:). 3) ~, is (]xi)o¢ Then q,I = (3 i o<1), whare.li was also 
defined in $2. Since the propesitional connectives are monotone on Boo/, and existential 
quantifiers preserve monotonicity, it follows that I < J implies ~pI ~; ~J. 

Now, we associate with program P an operator Tp on interpretations in <D; R 1 , . . . ,  Rk>.  Let I be 

an interpretation in <1); R i,..., Rk>; Tp(I)  is the interpretation J characterized as follows. For 

<d I ..... ~(i)> in the F I component of /nt, 1) if F I is a reserved relation symbol, say R k, then 

J(<dl,...,dn(i)>) ls Rkl(dl,...,dn(i)), that is, Rk(dl,...,dn(i)). 2) Otherwise, F i is e defined 

relation symbol, .say lts definition in P is F i ( x  1 .. . . .  X n ( i ) )  *- ~P(X 1 . . . . .  Xn(i)). Then J(<dl ..... (In(i)>) 

is ~pl(d 1 ,...,dn(i)). Tp maps interpretations in <D; R 1 .... , Rk> to interpretations in <D; R 1 ,..., 

Rk>, and is easily seen to be monotone. Then Tp has a smallest fixed point I in the space of 
interpretations in <D; R I ,..., Rk>. We take this smallest fixed point as the semantical meaning of 
program P. 

There is a direct connection between this approach and the more familiar minimal model semantics 
as found in [ 12], [2] and [ 10]. Suppose we use the data structure given as example 3 in $3, 
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which can be identified with the customary logic programming setting. Let P be a conventional 
Horn clause program (in particular, no negations ere used). P can be converted to a program in 
our sense in standard ways; call the resulting program O. Then, for each relation symbol R and 
closed terms t i  ..... in, R(tt ..... tn) is assigned the value /rue in the conventional minimal model 

semantics if and only if Rl(t! .... ,t n) = /rue where I is the smallest fixed point of the operator TQ 
defined as above. This extends to relate the failure (not finite failure) set of the conventional 
semantics for P with the set mapping to [a/se using the smallest fixed point of TQ. A proof of this 
can be found in [ 4], after noting that the semantics presented here is equivalent to the semantics of 
that paper. 

$5 Introducing compact data structures 

For each data structure <D; R 1 ,..., Rk> and each program P a mapping Tp on interpretations has 

been defined. Let IPo be the smallest Interpretation in <D; R! ,..., Rk>, behaving like the given 
relations of <D; R 1 ,..., Rk> on the components of /nf corresponding to the reserved relation 

symbols, identically, on all other components. Let IPn+! = Tp(IPn). Then IPo ~; IP! ~; 11)2 ~; ... 

Let IP(o be the pointwise l imit of this sequence. One would like IP(o to be the least fixed point of 
Tp, but this is not always the case. The problem is not due to our use of arbitrary data structures, 
or of #oo/instead of the conventional two valued setting. In [2] an example is given which shows 
their T operator need not reach a fixed point when "coming down from above" in o) steps. By work 
In [,t], this provldes an example of a program P for which IP,,~ is not the least fixed point of Tp. 

[3] makes it clear that we may have to go very much further than IPm to reach a fixed point. 

Wecall adetastructure <D; R 1 ,..., Rk> compact if: 1 ) D has a compact topology, and 2) each 

given (n-place) relation R i, thought of as a mapping from D n with the product topology, to goal 
wlth the ,%art topology, is a continuous function. 

In the next section we show that i f  we have a compact data structure, then the least fixed point of 
Tp wil l be IP~ We conclude this section with some examples of compact data structures. 

Example 4: Domain D: all words, finite or infinite, over the finite alphabet L. A distance 
between words is defined as follows. If w 1 and w 2 are identical, the distance between them is O. 

Otherwise, the distance between them ls 1/2 n where w 1 and w 2 first differ at position n. (For 
thls purpose words are taken as having the same letter at position i If both words are shorter In 
length than i, and as having different letters at position i i f  one word is shorter than i but the 
other is not.) This distance provides us with a compact metric space, but given relations are a 
little subtle. The equality relation, thought of as the function f on D 2 such that f(x,y) = true i f  x 
= y and f(x,y) = false i f  x ,, y, is not continuous. Nor is it desirable computationelly. If x and y 
are different words, that fact can be discovered. 6tertlng at the left ends and working through a 
letter at a time, we must come on a position where x and y differ. Likewise, i f  x and y are identical 
and finite, their ldentlty can be determined since we can examine each position In each word. But 
i f  x and y are identical and infinite, an inspection procedure wil l  never terminate. This suggests 
we use the following. 

true i f  x : y and x and y are finite words 
equel(x,y) = fa/se i f x ,, V 

.L otherwise 
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Then a?ual:D 2 -, Boo/is a continuous function. Similar reasoning applies to a candidate for the 
concatenation relation. 

Example 5: Domain D: the real Interval [0,1 ] with standard distance function. Equality ls as 
inappropriate here as it was in example 4. A "nearness" relation is reasonable, however. 

within( x,y ,z) = 
true i f l x - y l < z  
[alse i f l x - y J > z  
.L otherwise 

This is a continuous function from D :3 to Boo/, as desired. Likewise, instead of "ordinary" 
addition, we can use an "approximate" addition relation: x + y is within z of w, correcting 
appropriately for the possibility of going out of the range [0, I ]. 

Example 6: The space of finite and infinite terms made up from a finite list of constant and 
function symbols, as presented in Chapter 4 of [ 10] is easily made into an example in our sense. 

$6 Results about compact data structures 

If D is a compact topological space, the product space D n, using the standard product topology,, is 
compact by Tychonoff's Theorem. If D 1 ..... D n are topological spaces, we give the disjoint union D I 

• ... ~ D  n a topology with basic open sets (copies of) the open sets of D i , ..., D n. In this topology a 

function on D 1 • ... E)D n wil l  be continuous just when it is continuous on each component 

separately. And finally, D ! ~... ~ Dn is compact i f  and only if each of D 1, ..., Dn is compact. For 
the rest of this section, <D; R 1 ,..., Rk> is a compact data structure and P is a program in its logic 

programming language. We assume the relation symbols of P are F t, F2,.-., Ft. Thent/nt = D n(I) 

E)Dn(2) ~ ... ~ Dn(t) is also a compact space. 

Proposition 2: Suppose the interpretation I : ~hi ~ Boo / i s  a continuous function. Then so is 
Tp( I)" /nt ~ Boo/. 

Proof: Tp( I ) will  be continuous on /n t  = D n(! ) • D n(2) ~... $ Dn(t) i f  It Is continuous on each 
component. A component corresponding to a reserved relation symbol gives no trouble since the 
given relations are required to be continuous. For a non-reserved relation symbol F i, say the 

corresponding definition in program P is Fi(x i , . . . ,Xn( i ) )  , -  ~ ( x  I ,... ,Xn(i)). The behavior of Tp(I )  

on the F i component is defined to be that of ~l(x 1 .... ,Xn(i)). Continuity follows easily from the 

continuity of I, the continuity of the propositional connectives and Proposition I. 

As in the previous section, we can define an "approximation sequence" of interpretations IPo, IPl ,  

IP2,.... IP 0 is continuous because it agrees with the continuous given relations of <D; R 1 ,..., Rk> 

on components of In t  corresponding to reserved relation symbols, and is identically • on all other 
components of In t  (obviously a continuous function on each component). Then each IPn must be 

continuous by Proposition 2. The following extends this to IP~ 
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Proposi t ion 5: Let I o ~ 11 ~ 12 ~; ... be a sequence of Interpretations, monotone under the 
polntwlse ordering, And ]at I = sup n I n be the (polntwlse) l lm l t  If each I n ls continuous, so Is I, 

Proof: The open sets in #ool are upward closed in that, i f  0 is open, e e O, and e ~ b, then b e O. 
Then, for an open set 0 in Boo/, i f  In(x) e 0 and n < k, then Ik(X) e 0 because of the pointwiso 

ordering usedon interpretations. It re]lows that for any open set 0 in Boo/, I-1(0) = Unln-I(O) 

and this is open because each I n is continuous and the open sets are closed under union. 

Lamina: Let I 0 ~; 11 ~; 12 ~; ... be a monotone sequence of continuous interpretations with I as the 

pointwise limit. Also ]et ~(x 1 ,...,x n) be a formula with no constants (members  of D), built up 

from the relation symbols F 1 ,..., FL of P. Then, for each d I ,..., dn e D, there is some m such that 

q,t.(dl,. . . ,  dn) = q,t(dl ,..., tin). 

Proof: By Induction on the degree of m. If fe ls atomic the result ls immediate from the definition 
of I. The propositional connective cases are straightforward. For the quantifier case, q,(x I ,... ,x n) 

Is ( ~ )  9(y,x I ..... x , ) ,  the subceses where ~l(dl ,..., (in) is true or z are unproblemetlc. Suppose 

now that the result is known for o, ~(x 1 ,...,x n) is (~)O(y ,x !  ,...,xn), and ~l(d 1 ,..., d n) = false 

Each I k ls continuous and it follows that @,: D n* 1 ..+ Boo/ is 8 continuous function. For notational 

convenience, let Hk(Y) = @,(y,dl ,...,(In). Then each H k : D --, Boo/ is also continuous. Since 

~pl(dl ..... (In) = [also, for each a e D, @(a,dl ..... dn) = raise By the induction hypothesis, for 

each a s D there is some k such that I-Ik(a) = false Since { false} is open in Boo/, Hk-l({ false}) 
is open in D. Then { Ho-l({false}), Hl- I({ false}),  ... } is an open cover of D. Compactness 

yields o finite subcover, { Ha-l({fa/se}),..., Hrn-l({fa/se}) } where m is the biggest index 

oppear'ing. It follows from the pointwise ordering of the sequence I0, 11,12-- that 81-(e,d 1 ,... ,(I n) 

= false for every a e D, end hence ~el-(d l ,... ,(I n) = false 

Proposi t ion 4: For the compact data structure <D; R 1 , .... Rk> and program P, the associated 

mapping Tp has IP~) as Its least fixed point. 

Proof: Let F be the least fixed point of Tp. Trivial ly, IPo ~ F. If IPn ~ F, using monotonicity, 

IPn+l = Tp(IP n) ~ Tp(F) = F. It follows that IP~ ~; F. Consequentty IPo~ wi l l  be least i f  It is a 

fixed point at all. For each n, IP n ~: IP m, hence IPn+! = Tp( IP n) ~; Tp(IP(~). It follows that IPo~ 

Tp(IP~)). Finally to show Tp(IP~) ~; IPm it suffices to show that for each atomic formula 

Fi(d! ..... dn(i)) without variables, its truth value under Tp(IPc~) is ~; its truth value under" IP~ 
If Fi is reserved, the result is immediate. If F i is not reserved, there is a definition for i t in P, 

say Fi(x I ,...,Xn(|)) ~- mix I ,...,Xn(i)). The truth value of Fi(d 1 ,...,dn(i)) under" Tp(IPo)) is that of 

q,(d! ..... dn(i)) under IPo  By the Lemma, for some j,  q,(dl,...,dn(i)) I'ms the same truth value 
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under IPo~ and IPj. Then Fi(dl ..... dn(i)) has the same truth value under Tp(IPo~) and Tp(IPj) = 

IPj+ 1. But IPj+ 1 ~ IPco, which concludes the proof. 

Flnally, compact data structures of interest tend to have a domain with a dense subset of "concrete" 
objects. The reels have the rationals, the family of all words has the family of finite words; the 
family of all terms has the family of finite terms. We conclude with a result relating the 
semantics for a compact data structure with that for a dense substructure. We use the following 
notation. As usual in this section, <D; R1 ..... Rk> is a compact data structure, P is a program 
relative to this data structure, and Tp is the corresponding mapping on the interpretation space 

/nL Now DO is a dense subset of D, and R1 o ..... Rk o are the relations R 1 ..... R k restricted to D o, 

I n /o  is the interpretation space, like ~hi, except that each component is a power of Do rather than 

of D. Finally, "Cp is the mapping on/nt  o associated with program P, using the data structure <D°; 

RlO,..., RkO>, just as Tp is associated with P using <D; R1,..., Rk>. All the results about 

monotonicity and fixed points from S=t apply to "cp, since no special topological assumptions were 

made in S,t Finally, we defined a sequence of interpretations above, mapping I n t  to Boo/.. IPo, 

IP 1 ,... and a l imit  IPm, using the map Tp. In exactly the same way we have a sequence of 

interpretations, mapping/nt o to #oo/.. dP o, ,,IP 1 ,... and a l imit dPm, using the map z'p. 81nca 

<DO; RlO,..., RkO> need not be compact, JP(o may not be the least fixed point of "cp, but it must be 
the least fixed point. 

Lamina: Suppose m(x 1 ..... x n) is e formula with no constants, and I is an interpretation mapping 

/ n t  to doe/, whose interpretation space has a component for every relation symbol of m. Let ,I be 
I restricted to /nt°.  Then, for d 1 ,..., (I n e D o, ml(d t .... , d n) ~ ~Pl(d 1 ,..., tin), where ml treats 

existential quantlflers as quantifying over D, while ~J treats them as quantifying over D o. 

Proof: By induction on the degree of q~. If ~P is atomic, we have ~pl(d I ,..., d n) = ~J(d 1 ,..., dn). The 

propositional cases are straightforward. Suppose ~P(Xl,...,x n) is (~)8(Y,Xl,.. . ,xn), and the 

result is known for (~ If q~l(dl, .... d n) = z, the conclusion is immediate. If q~l(d 1 ,..., d n) = fa lse 

then for each a e D, el(a, d I ,..., d n) = fals~ In particular, this happens for all a e D o. By the 

induction hypothesis, eJ(a, d t ..... tin) = false for all a ~ D o, and so ~J(dl ..... dn) = [ a l ~  

Finally, suppose q~l(d t .... ,d n) = t / ' ~  Then for some a e D, el(a, d 1 ..... (I n) = 1/ '~ Since el is 

continuous end { true} is open, there is an open set 0 in D with a e 0 such that for all y ~ O, el(y, 
d 1 ,..., d n) = trz~. Since D o is dense in D, there is some b e D o 130. Then el(h, d 1 ,..., d n) = true, 

and by the induction hypothesis, eJ(b, d I ,..., d n) = true, so ~ ( d  1 , .... (! n) = t / ' ~  

Our final result says that by working with a dense subset of D we loose no positive information, 
though some atomic formulas wi l l  be assigned true or false which should have been L 

Proposition 5: Let IP~ be the least fixed point of Tp. Then IPco, restricted to I n t  ° is ~ the 

least fixed point of Z'p. 
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Proof: IPo, restricted to In t°  ~ JPo. In fact, we have equality. Suppose IPn, rastrtcted to 

Int°, ~ JPn. Let Fi(x 1 ,..., xn(i)) be atomic, and d 1 .... , dn(i) s D o. We show the truth value of 

Fi(d 1 .... , dn(i)) under IPn+! < the truth value of Fi(d 1 ,..., dn(i)) under JPn+l, which is enough to 

establish that IPn.l, restricted to Into, ~ JPn.l. If F i is reserved, the rasult is immediate. 

Otherwise, say Fi(x 1 .... , Xn( i ) )  +- q~(x 1,. . . ,  Xn(i)) iS a definition in P. The truth value of Fi(d 1 .... , 

dn(i)) under IPn+ 1 is that of ~,(d I ,..., dn(i)) underlP n. Using the lemma, the induction hypothesis, 
and the monotonicity of the connectives and quantifiers, this is ~; the truth value of ~,(d I ,..., dn(i)) 

under JPn, which In turn is the truth value of Fi(d 1 ,..., dn(i)) under JPn+l. Then, by Induction, 

IP n, restricted to Int° ~ JPn for every integer n, and the theorem follows directly. 
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