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Abstract

One approach to the paradoxes of self-referential languages is to allow some sentences to lack
a truth value (or to have more than one). Then assigning truth values where possible becomes
a fixpoint construction and, following Kripke, this is usually carried out over a partially ordered
family of three-valued truth-value assignments. Some years ago Matt Ginsberg introduced the
notion of bilattice, with applications to artificial intelligence in mind. Bilattices generalize the
structure Kripke used in a very natural way, while making the mathematical machinery simpler
and more perspicuous. In addition, work such as that of Yablo fits naturally into the bilattice
setting. What I do here is present the general background of bilattices, discuss why they are
natural, and show how fixpoint approaches to truth in languages that allow self-reference can
be applied. This is not new work, but rather is a summary of research I have done over many
years.

1 Introduction

An obvious way out of the problem posed by a sentence like ”This sentence is false,” is to declare
that it lacks a truth value. That is easy. The difficulty comes in saying which sentences should have
truth values. That is hard. Kripke and others have applied fixpoint methods to this problem—
one introduces a truth revision operator and looks for a partial truth assignment that does not
revise away. I will not attempt to analyize or continue the philosophical discussions and insights
that began with Kripke’s paper on a theory of truth. I have a more technical goal in mind. The
question for this paper is, what is the algebraic structure of the space in which Kripke-style truth-
revision operators live, and how may it best be organized?

Kripke took a very concrete approach in his influential paper [18]. A partial truth assignment
(valuation) is identified with a pair, 〈T ,F〉, of disjoint sets of atomic sentences. Think of T as
the set of atoms assigned true and F as the set assigned false. Disjointness guarantees there is
no ambiguity, but F is not required to be the complement of T , so some atoms may lack truth
values. Next, some scheme is adopted for extending a partial valuation to all formulas, not just
atomic. The actual machinery for effecting this extension is not unique—Kripke considered three
versions (all of which will be generalized in this paper). Once the extension is made to all formulas,
a new partial truth assignment is defined—roughly, the new assignment adds “X is true” to either
T or F depending on the value given to X by the original partial truth assignment, after it has
been extended to all formulas. No matter which of the three schemes for extending partial truth
assignments to non-atomic formulas is used, this defines an operator that turns partial valuations
into partial valuations. Formally, such an operator maps a pair 〈T ,F〉 of disjoint sets of atoms to
another such pair. Kripke partially ordered his valuations, essentially by subset. That is, 〈T1,F1〉
is considered less than 〈T2,F2〉 if T1 ⊆ T2 and F1 ⊆ F2. In a sense, this ordering has to do
with information; an increase does not mean formulas switch truth values, but rather that more
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formulas acquire truth values. Kripke then made use of lattice-theoretic properties of this ordering
to establish the existence of fixpoints for his truth revision operators. A fixed point of a truth
revision operator is a plausible candidate for saying which formulas should be what assigned truth
values.

In [7] I took a more abstract approach. Algebraically, the ordering sketched above has the
following properties: it is a partial ordering (reflexive, anti-symmetric, transitive); there is a smallest
element (it is 〈∅, ∅〉); every non-empty set having an upper bound has a least upper bound. It turns
out that having these properties is enough to ensure that any monotone operator has fixpoints
having the various features Kripke investigated. Although this is very nice, there is still a sense
that more is going on than meets the eye. There really are two orderings being used, not just one.
As noted above, Kripke’s explicit ordering has to do with information. But if we take a partial
valuation in his sense, 〈T ,F〉, and move an atom from F to T , we get a new valuation that gives
us no more and no less information—we still know truth values for the same atoms—but an atom
is now “truer” than it was. There is an implicit ordering involving truth, as well as one involving
information. And further, there is some kind of interplay between the information and the truth
ordering. For instance, the operations ∧ and ∨ of, say, the Kleene strong three-valued logic are
definable using the ordering involving truth just referred to, but Kripke’s fixpoint construction
makes use of the information ordering. The algebraic approach of [7], while abstracting away some
of the details of [18], still hides the double ordering structure.

In [3, 4], Belnap introduced a four-valued logic that extends Kleene’s strong three-valued logic
in a natural way, but has two explicit orderings, on information and on truth. Then in [15, 16]
the notion of bilattice was introduced, with Belnap’s four-valued logic as the simplest example. I
realized that bilattices provide exactly the algebraic structure needed to carry out Kripke’s con-
struction, and also that of Yablo [23]. Not only did the mathematical structure serve well, but
there is an underlying intuition about it that is quite satisfying.

In the rest of this paper I will sketch the basic ideas of bilattices, and show how they apply to
languages allowing self-reference. I will omit all proofs, but I will give references to papers in which
they can be found. Thus there will be no self-references.

2 Bilattices—the Basics

Terminology concerning bilattices has varied some in the literature. I will use a version I have
found handy—it differs some from that originally introduced by Ginsberg, [15, 16]. I will be using
bilattices here simply as generalized truth-value spaces. For seeing them as the basis of a logic in
their own right, look at [1, 2], and for a general survey of the whole subject, consult [13].

2.1 Pre-bilattices

As I sketched in the introduction, what is needed are two orderings, one having to do with truth
and the other with information. The idea now is to make these explicit, in an abstract sort of way.

Convention The notion of a lattice comes up throughout. All lattices I consider will have tops and
bottoms—largest and smallest elements. To keep terminology simple, in everything that follows
the term lattice means lattice with a top and a bottom.

If you are not familiar with the terminology, in a lattice the greatest lower bound and the
least upper bound of two-element sets is required to exist (and hence also for any finite set). The
greatest-lower-bound operation is usually called meet and the least-upper-bound operation is called
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join. Lattice meet and join operations are always commutative and associative. Requiring a top
and a bottom amounts to saying there is an element bigger than all others and an element smaller
than all others.

Definition 2.1 A pre-bilattice is a structure B = 〈B,≤t,≤k〉 in which B is a non-empty set and
≤t and ≤k are partial orderings each giving B the structure of a lattice.

Think of the members of B as pieces of information that are embodied as truth values in some
generalized sense. It is to deal with this dual role that we have the two ordering relations.

The ordering ≤k should be thought of as ranking “degree of information”. Thus if x ≤k y, y
gives us at least as much information as x (and possibly more). I suppose this really should be
written as ≤i, using i for information instead of k for knowledge. In some papers in the literature
i is used, but I have always written ≤k, and now I’m stuck with it. The meet and join operations
for ≤k are denoted ⊗ and ⊕. The ⊗ operation is called consensus: x⊗ y is the most information
that x and y agree on. The ⊕ operation is called gullability—a person who is gullable will believe
anything. Then x ⊕ y should be thought of as combining the information in x with that in y,
without worrying about whether the pieces fit together or not. The bottom in the ≤k ordering is
denoted by ⊥ and the top by >. Think of ⊥ as representing the state of complete ignorance—no
information. Likewise > represents full information, possibly including inconsistencies.

The relation ≤t is an ordering on the “degree of truth.” The bottom in this ordering will be
denoted by false and the top by true. Thus false ≤t x ≤t true for any x ∈ B. The meet and join
operations for ≤t will be denoted by ∧ and ∨. It is easy to check that when restricted to false and
true, these obey the usual truth-table rules. It is also easy to check that when restricted to false,
⊥ and true they obey the rules of Kleene’s strong three-valued logic [17] (this works equally well if
we restrict to false, > and true).

In a lattice, meets and joins of finite sets must exist. What is called a completeness assumption
extends this to infinite sets as well. Completeness is needed to adequately interpret quantifiers.
Here is the bilattice version of completeness.

Definition 2.2 A pre-bilattice 〈B,≤t,≤k〉 is complete if all meets and joins exist, with respect to
both orderings. I’ll denote infinitary meet and join with respect to ≤t by

∧
and

∨
, and by

∏
and∑

for the ≤k ordering.

2.2 Examples

Suppose we have a certain group of people, P, whose opinions we value. If we ask these people
about the status of a sentence X, some will call it true, some false. But also, some may decline to
express an opinion, and some may be uncertain enough to say they have reasons for calling it both
true and false. We can, then, assign X a kind of generalized truth value, 〈P,N〉, where P is the
set of people in P who say X is true and N is the set who say it is false. As just noted, we do not
require that P ∪N = P, nor that P ∩N = ∅.

Orderings can be introduced into our people-based structure: set 〈P1, N1〉 ≤k 〈P2, N2〉 if P1 ⊆ P2

and N1 ⊆ N2, and set 〈P1, N1〉 ≤t 〈P2, N2〉 if P1 ⊆ P2 and N2 ⊆ N1 (note the reversal here). Thus,
information goes up if more people express a positive or negative opinion, and truth goes up if people
drop negative opinions or add positive ones. This gives us the structure of a pre-bilattice. In it, for
example, 〈P1, N1〉 ∧ 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∪ N2〉, and 〈P1, N1〉 ⊗ 〈P2, N2〉 = 〈P1 ∩ P2, N1 ∩ N2〉.
Reflection should convince you that these are quite natural operations. Also, ⊥ = 〈∅, ∅〉, > =
〈P,P〉, false = 〈∅,P〉, and true = 〈P, ∅〉. You should reflect on these too.
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As another example, consider a “fuzzy” truth value space, in which truth values are pairs 〈p, n〉
of real numbers in the interval [0, 1], where p is “degree of belief,” and n is “degree of doubt.”
Appropriate orderings for this example are 〈p1, n1〉 ≤k 〈p2, n2〉 if p1 ≤ p2 and n1 ≤ n2; and
〈p1, n1〉 ≤t 〈p2, n2〉 if p1 ≤ p2 and n2 ≤ n1.

The two examples above can be combined if we consider a collection of people, each of whom
has “fuzzy” opinions. I won’t follow up on this—you probably get the general idea.

Figure 1 shows the simplest non-trivial example of a pre-bilattice: only the four extreme el-
ements exist and are distinct. It can be thought of as a special case of the people pre-bilattice
above, in which there is only one person. This is a fundamental example, and originated before
bilattices as such arose—it is the four-valued logic due to Belnap, [3, 4], and will be called FOUR
here. Think of the left-right direction as characterizing the ≤t ordering: a move to the right is
an increase. The meet operation for the ≤t ordering, ∧, is then characterized by: x ∧ y is the
rightmost thing that is left of both x and y. The join operation, ∨ is dual to this. In a similar
way the up-down direction characterizes the ≤k ordering: a move up is an increase in information.
x⊗ y is the uppermost thing below both x and y, and ⊕ is dual. Spatial conventions like these will
be used throughout.

Figure 2 shows a pre-bilattice in which subtler distinctions can be registered. As is also the case
with FOUR, ⊥ represents a state of complete ignorance, and > one of information overload—solid
evidence has been supplied both for and against some proposition. Likewise false represents the
situation in which we have convincing evidence against some proposition, and no evidence in its
favor, while true is just the opposite. But in Figure 2 there are two more states. Think of fd as
a state in which we have no evidence in favor of a proposition, but we have some weak evidence
against—read fd as “false with doubts.” Think of td likewise as “true with doubts.”
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Figure 1: The Bilattice FOUR
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Figure 2: A Six-Valued Bilattice

2.3 Bilattices

A pre-bilattice has two orderings, with no postulated connections between them. I’ll reserve the
term bilattice for pre-bilattices where there are useful connections between orderings. Ginsberg’s
original definition of bilattice postulated a connection through a negation operation. Here I will
use stronger notions that also trace back to Ginsberg.

Definition 2.3 A pre-bilattice 〈B,≤t,≤k〉 is:

1. an interlaced bilattice if each of the operations ∧, ∨, ⊗, and ⊕ is monotone with respect to
both orderings (the interlacing conditions);

2. an infinitarily interlaced bilattice if it is complete and all four infinitary meet and join oper-
ations are monotone with respect to both orderings;

3. a distributive bilattice if all 12 distributive laws connecting ∧, ∨, ⊗, and ⊕ are valid;

4. an infinitarily distributive bilattice if it is complete and infinitary, as well as finitary, distribu-
tive laws are valid. Examples of infinitary distributive laws are: a ∧

∑
i bi =

∑
i(a ∧ bi), and

a⊗
∧
i bi =

∧
i(a⊗ bi).

A lattice is called distributive if it satisfies distributive laws; for example, a pre-bilattice is a
lattice with respect to the ≤k ordering, and this lattice is distributive if x⊗(y⊕z) = (x⊗y)⊕(x⊗z)
and x⊕ (y⊗z) = (x⊕y)⊗ (x⊕z) holds. Saying a pre-bilattice is distributive requires that we have
distributive lattices with respect to both orderings and, in addition, we have “mixed” distributive
laws, such as x⊗(y∨z) = (x⊗y)∨(x⊗z). All examples from Section 2.2 are distributive bilattices,
and infinitary distributivity is satisfied as well.

In a lattice, meet and join operations are always monotone with respect to the lattice ordering.
Thus we always have that x1 ≤t y1 and x2 ≤t y2 implies (x1 ∧ y1) ≤t (x2 ∧ y2). Saying we have an
interlaced bilattice adds to this the requirement that monotonicity also work “across” orderings;
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for example x1 ≤k y1 and x2 ≤k y2 implies (x1 ∧ y1) ≤k (x2 ∧ y2). It is not hard to show that every
(infinitarily) distributive bilattice is also (infinitarily) interlaced, hence the examples of Section 2.2
satisfy the interlacing conditions.

2.4 Negation and conflation

Some bilattices have natural symmetries, and these can be used to characterize interesting subsys-
tems.

Definition 2.4 A bilattice has a negation operation if there is a mapping, ¬, that reverses the ≤t
ordering, leaves unchanged the ≤k ordering, and ¬¬x = x. Likewise a bilattice has a conflation
operation if there is a mapping, −, that reverses the ≤k ordering, leaves unchanged the ≤t ordering,
and −− x = x. If a bilattice has both operations, they commute if −¬x = ¬ − x for all x.

In the people example of Section 2.2, there are natural notions of negation and conflation.
Take ¬〈P,N〉 to be 〈N,P 〉—the roles of for and against are switched. And take −〈P,N〉 to be
〈P − N,P − P 〉, where P is the set of people. This amounts to a kind of switching to a default
position—the people who affirm under a conflation are the people who originally did not deny,
for instance. The “fuzzy” example has a similarly defined negation and conflation—I’ll leave their
formulation to you. For both examples, negation and conflation commute.

In the example of Figure 1, there is a negation operation under which ¬true = false, ¬false =
true, and ⊥ and > are left unchanged. There is also a conflation under which −⊥ = >, −> = ⊥
and true and false are left unchanged. In this example negation and conflation commute. In any
bilattice, if a negation or conflation exists the behavior on the extreme elements ⊥, >, false, and
true will be as it is in FOUR.

The example of Figure 2 does not have either a negation or a conflation. One might, for
instance, try introducing a negation by adding to the usual conditions for the extreme elements the
requirement that ¬td = fd and ¬fd = td, but this will not work. We have fd ≤k false and negation
is required not to affect the ≤k ordering, so we should have td ≤k true, but in fact we have the
opposite. There is a deeper reason for the lack of conflation and negation in this example that will
become clear in the next section.

Definition 2.5 Suppose B is a bilattice with a conflation operation. Call x ∈ B exact if x = −x
and consistent if x ≤k −x.

In the bilattice example involving people, Section 2.2, the exact values are those 〈P,N〉 where
N is the complement of P—everyone expresses an unambiguous opinion. The consistent values are
those where P ∩N = ∅, that is, people may be undecided, but they are never contradictory. In the
bilattice FOUR of Figure 1, the exact members are {false, true}, the classical truth values, and
the consistent ones are {false,⊥, true}, which behave like the values of Kleene’s strong three-valued
logic, with respect to ¬, ∧, and ∨. This phenomenon, in fact, is not uncommon. The exact part of a
complete bilattice with commuting conflation and negation is always closed under ¬, ∧, and ∨, and
similarly for the consistent part. In addition, the consistent part will always be closed under the
infinitary version of ⊗, and under the infinitary version of ⊕ when applied to a directed set. It is
essentially these conditions that were used in [7] for the special case of Kleene’s strong three-valued
logic, but in fact they obtain much more generally.
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3 Where Bilattices Come From

There are standard ways of constructing bilattices that also provide some intuition concerning
them. The first is from [16] with extensions of mine, though underlying ideas actually go back
somewhat earlier. The second approach is apparently due to me.

3.1 Bilattice product

Suppose we have notions of positive and negative evidence. For instance, positive evidence for a
mathematical conjecture might consist of plausibility arguments, computer experiments, almost
correct proofs, and so on. Actual proofs would be best possible, of course. Negative evidence
might also consist of various informal arguments, with counter-examples as best possible. Let us
say we have a way of ranking evidence—this piece is better than that. More formally, say we have
two lattices, L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉, where members of L1 are things that can serve
as positive evidence, with ≤1 as a comparison relation, and similarly for L2 as pieces of negative
evidence. The lattices need not be the same.

Definition 3.1 A bilattice product L1 ¯ L2 is the structure 〈L1 × L2,≤t,≤k〉 where:

1. 〈x1, x2〉 ≤t 〈y1, y2〉 if x1 ≤1 y1 and y2 ≤2 x2

2. 〈x1, x2〉 ≤k 〈y1, y2〉 if x1 ≤1 y1 and x2 ≤2 y2

Think of a member 〈x, y〉 of L1 × L2 as encoding evidence about some assertion: evidence for, x,
and evidence against, y. Then an increase in information amounts to saying evidence in general
goes up. An increase in truth says evidence for increases while evidence against decreases. Earlier
examples concerning people and “fuzzyness” are both special cases of this construction.

It is straightforward to show that L1 ¯ L2 is always an interlaced bilattice, and is complete if
both L1 and L2 are complete as lattices. And further, if both L2 and L2 are distributive lattices,
L1 ¯ L2 will be a distributive bilattice.

If L1 = L2 then a negation operaton can be introduced into L1¯L2. Set ¬〈x, y〉 = 〈y, x〉. That
is, negation switches the roles of positive and negative evidence. Next, suppose L1 = L2 = L has
what is called a de Morgen complement operation, an operation that maps x to x such that x ≤ y
implies y ≤ x, and x = x. Then a conflation operation can also be introduced into the bilattice
product: set −〈x, y〉 = 〈y, x〉. Defined these ways, negation and conflation will commute.

The machinery just set forth for constructing various kinds of bilattices is completely general.
That is, every distributive bilattice is isomorphic to L1 ¯ L2 for some distributive lattices L1 and
L2, and similarly for the other cases. Proof can be found for the various parts of this family of
results in [16, 8, 11, 13]. In a way the result is a descendant of the Polarities Theorem of Dunn, [5].

Consider the familiar lattice B whose carrier is {false, true}, with false < true. This is a
distributive lattice for which the operation false = true and true = false is a de Morgen complement.
Then B¯B is a distributive bilattice with a negation and a conflation. It is, in fact, isomorphically
the bilattice FOUR of Figure 1. Further, let C be the lattice whose carrier is {0, 1

2 , 1}, ordered
numerically. Then B ¯ C is isomorphically the bilattice of Figure 2. Since B and C are different,
there is no negation or conflation. But since both are distributive lattices, B ¯ C is a distributive
bilattice.
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3.2 An interval construction

There is a second approach to the construction of bilattices that provides a somewhat different
intuition for them. The idea traces to [16] and was fully developed in [9].

Say we have a lattice L, which we can think of as generalized truth values of some kind, with ≤L
as the ordering relation. As a concrete example, consider the unit interval with the usual ordering.
This is linerally ordered, but other more complex examples are easy to come by. For a, b ∈ L with
a ≤L b, by the interval [a, b] is meant {x ∈ L | a ≤L x ≤L b}. Let I(L) be the family of intervals
in the lattice L. Uncertain measurement of x may lead to the conclusion that it is between a and
b, and so we might use [a, b] as our current information about x. Presumably better measurements
will shrink the interval.

Definition 3.2 Let L be a lattice. K(L) is the structure 〈I(L),≤t,≤k〉 where:

1. [a, b] ≤t [c, d] if a ≤L c and b ≤L d;

2. [a, b] ≤k [c, d] if [c, d] ⊆ [a, b].

Thus an increase in information corresponds to shrinking an interval, and an increase in degree
of truth corresponds to shifting the interval rightwards.

If L has a de Morgan complement, we can introduce a notion of negation into K(L) by setting
¬[a, b] = [b, a].

Suppose we apply this construction to the simplest non-trivial lattice, {false, true}, with false <
true. There are three intervals, [false, true], essentially representing no information, and [false, false]
and [true, true], which have narrowed things down as much as possible. The interval structure we
get is, in fact, isomorphic to the consistent part of FOUR.

This interval-based construction is also quite general. If we start with any lattice L having a
de Morgan complement, K(L) will be isomorphic to the consistent part of an interlaced bilattice
having a negation and a conflation. If L is distributive, the bilattice in question will also be. And
conversely, given an interlaced bilatice with a negation and a conflation, its consistent part will
always be isomorphic to K(L) for some lattice L having a de Morgan complement. (And, if the
bilattice is distributive, the lattice will also be.)

3.3 Function spaces

There are still other ways of constructing bilattices, though not as general as those discussed above.
Among them one stands out as the thing that makes bilattices especially applicable to our present
purposes. As was noted in Section 1, Kripke took a very concrete representation for partial truth
assignments. Here we can be somewhat more abstract. If we have a bilattice B, we can think of its
members as generalized truth values. For instance, as has been noted several times now, in FOUR,
the consistent values can be identified with those of Kleene’s strong three-valued logic, so we can
identify a truth assignment, in Kripke’s sense, with a mapping from atomic sentences of a language
to the consistent truth values of FOUR. Or we could map to all of FOUR. Or we could use some
other bilattice altogether. The key point is that there is a mapping to a bilattice involved.

Definition 3.3 Let B = 〈B,≤t,≤k〉 be a pre-bilattice and let S be some non-empty set. BS is
the set of all functions from S to B. Ordering relations are defined on BS pointwise, and if B
has a negation or a conflation operation, these are also extended to BS in pointwise fashion. The
characterizations are as follows.
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1. v ≤t w if v(s) ≤t w(s) for all s ∈ S;

2. v ≤k w if v(s) ≤k w(s) for all s ∈ S;

3. If B has a negation, a negation operation is defined on BS by: ¬v is the mapping such that
(¬v)(s) = ¬(v(s));

4. If B has a conflation, a conflation operation is defined on BS by: −v is the mapping such that
(−v)(s) = −(v(s));

It is straightforward that this makes BS itself into a pre-bilattice. In fact, (v ⊕ w)(s) = v(s)⊕
w(s), and similarly for the other operations. Further, if B is interlaced, or distributive, BS will also
be interlaced, or distributive. If B has a negation operation, the negation operation defined above
on BS will meet the conditions for being a negation operation, and similarly for conflation.

If we take S to be the set of atomic formulas of some formal language, and B to be some
interesting bilattice of truth values, BS is really a space of valuations, and it is guaranteed to have
algebraic properties that will make it useful to us.

We can carry this one step further yet. Suppose BS is a space of valuations, where B is a
bilattice of some particular kind. As just noted, BS will itself be a bilattice of the same kind. Now,
suppose we have a modal Kripke model—that is, a relational model for modal logic—with G as the
set of possible worlds. (BS)G is the space of mappings from possible worlds to valuations, and it
too must be a bilattice of the same kind as B. This is the natural machinery to use in developing
a Kripke-style theory of truth in a modal setting.

4 How To Get Monotone Operators

Kripke defined three different truth revision operators and showed each must have a fixed point.
The three differed in the underlying logic used: Kleene’s strong three-valued, Kleene’s weak three-
valued, and supervaluations. As was noted in Section 1, Kripke made use of an ordering on
information. All this generalizes quite naturally to a bilattice setting. For starters, we need a
language capable of self-reference, and I’ll do this in the most familiar way.

From here on Lang is the first-order language extending the language of arithmetic with the
inclusion of an additional predicate symbol T , intended to be a “truth predicate.” The only other
relation symbol of Lang is =. We could, of course, also have relation symbols intended to represent
relations in the “real world;” I omit consideration of these here for simplicity. I’ll take ∧, ∨, and ¬
as connectives and ∀ and ∃ as quantifiers of Lang . I’ll also assume Lang has constant and function
symbols for 0, successor, addition, and multiplication, and so, in particular, it has terms that
(intuitively) denote exactly the natural numbers. In the usual Gödelian way numbers encode the
various syntactic constructs of Lang , syntactic manipulations correspond to arithmetic operations
on code numbers, and these operations can be represented in Lang itself. To keep the details simple,
I’ll assume the coding is onto from numbers to sentences of Lang , and for a closed term t, I’ll say
t names the sentence X if, in the standard model for arithmetic, t designates a code for X.

Since the meaning of the T predicate is what really concerns us now, let A be the set of all
atomic sentences of Lang of the form T (t), where t is a closed term (which names a sentence of
Lang). Let B be some complete, infinitarily interlaced bilattice with a negation, and a conflation,
with negation and conflation commuting. A valuation is a mapping from A to B, and so the space of
valuations, BA, is itself an infinitarily interlaced bilattice with commuting negation and conflation.

From here on the treatment splits depending on how we choose to extend the behavior of
valuations beyond the atomic level.
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4.1 Kleene’s strong three-valued logic generalized

Kleene’s strong three-valued logic has probably been the most popular of the various logics used in
Kripke’s approach to self-reference. In this logic, for instance, true ∨ ⊥ = true, informally because
if we get enough further information about the second component of the disjunction to assign it a
classical truth value, whether we find that component to be true or false we would still evaluate
the disjunction to true, so extra information is not really relevant—we can assign true right now.
Because of the nature of bilattices, this is the simplest partial logic for us to generalize. Let v
be a valuation, that is, a member of BA. Since this assigns values in B only to atomic sentences
involving T , our first task is to extend it to a mapping on all sentences of Lang . I’ll denote this
extension by vs; the superscript is for “strong”.

1. vs(T (t)) = v(T (t)).

2. If X is an atomic sentence not involving T , it must be a sentence of arithmetic. Set vs(X)
to be true or false in B depending on whether X is true or false in the standard model for
arithmetic.

3. vs(X ∧ Y ) = vs(X) ∧ vs(Y )

4. vs(X ∨ Y ) = vs(X) ∨ vs(Y )

5. vs(¬X) = ¬vs(X)

6. vs((∀x)F (x)) =
∧
t v
s(F (t))

7. vs((∃x)F (x)) =
∨
t v
s(F (t))

In item 3 the occurrence of ∧ on the left is syntactic—it is a symbol of Lang ; the occurrence of
∧ on the right denotes the meet operation of B with respect to the ≤t ordering. Similar remarks
apply to 4 and 5 as well. In item 6 the infinitary meet operation is over the set of all closed terms
of Lang , and F (t) is the result of substituting t for free occurrences of x in F (x).

A remark that is not needed here, but will be when we come to supervaluations: if v is exact in
the bilattice BA then for every formula X, vs(X) is an exact member of B. The argument for this
is rather simple. If v is exact in BA then exactness also applies pointwise, that is, for every atomic
formula T (t), v(T (t)) will be exact in B. Now, using the extension vs to arbitrary formulas, this
exactness condition carries over to all formulas. Verifying this uses the fact that conflation does
not change the ≤t ordering (hence conflation preserves ∧, ∨, and their infinitary analogs), and the
fact that negation and conflation commute.

Now define a mapping Φs from valuations to valuations. For a valuation v, set Φs(v) = v′ where
v′ is the valuation such that v′(T (t)) = vs(X), where the closed term t names the sentence X.
B is required to be infinitarily interlaced, hence the same applies to BA, the space of valuations.

Given this, it is easy to check that Φs is monotone in the following sense (I’ll leave details of the
verification to you).

v ≤k v′ =⇒ Φs(v) ≤k Φs(v′) (1)

If we take for B the bilattice FOUR, Φs is Kripke’s operator based on Kleene’s strong three-
valued logic. It maps consistent valuations to consistent valuations, and the consistent subsystem
of FOUR is exactly Kripke’s setting.
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4.2 Kleene’s weak three-valued logic generalized

Kleene’s weak three-valued logic assigns a value of ⊥ to any compound formula in which some
part has been assigned ⊥. Thus, for instance, true ∨ ⊥ = ⊥, which is a different outcome than we
get in Kleene’s strong three-valued logic. The weak logic too can be generalized to the bilattice
setting—[11] proposes an approach, but here I follow a different one. For motivation, consider once
again the bilattice example based on people, from the beginning of Section 2.2. Suppose we have
two bilattice values, A = 〈P1, N1〉 and B = 〈P2, N2〉, where the Pi and Ni are sets of people, those
expressing opinions for, and against, respectively. Of course A∧B was defined earlier, but suppose
we want to ‘cut this down’ by only considering people who have actually expressed an opinion on
both propositions A and B. As far as A is concerned, A ⊕ ¬A = 〈P1 ∪ N1, P1 ∪ N1〉, and taking
the consensus, ⊗, of this with an arbitrary member of the people bilattice does, indeed, cut things
down to those who have expressed an opinion concerning A. Similarly for B. To keep notational
clutter down, suppose I write ‖X‖ for X ⊕ ¬X, so what we want for a ‘cut down’ conjunction is
(A ∧ B) ⊗ ‖A‖ ⊗ ‖B‖. We can do a similar thing with disjunction, of course, and with ∀ and ∃.
Negation is somewhat simpler since ¬A ⊗ ‖A‖ = ¬A, so we can avoid extra complication in this
case.

This suggests we define the following operators for any complete bilattice with negation. The
superscript w is for “weak,” and in fact, confined to the consistent part of the bilattice FOUR,
they are the connectives of Kleene’s weak three-valued logic.

1. X ∧w Y = (X ∧ Y )⊗ ‖X‖ ⊗ ‖Y ‖

2. X ∨w Y = (X ∨ Y )⊗ ‖X‖ ⊗ ‖Y ‖

3.
∧w S = (

∧
S)⊗

∏
{‖X‖ | X ∈ S}

4.
∨w S = (

∨
S)⊗

∏
{‖X‖ | X ∈ S}

Once again let v be a valuation in B; I’ll extend it to a mapping vw on all sentences of Lang as
follows.

1. vw(T (t)) = v(T (t)).

2. If X is a sentence of arithmetic, set vw(X) to be true or false in B depending on whether X
is true or false in the standard model for arithmetic.

3. vw(X ∧ Y ) = vw(X) ∧w vw(Y )

4. vw(X ∨ Y ) = vw(X) ∨w vw(Y )

5. vw(¬X) = ¬vw(X)

6. vw((∀x)F (x)) =
∧w
t v

w(F (t))

7. vw((∃x)F (x)) =
∨w
t v

w(F (t))

This time define a mapping Φw on valuations by: for a valuation v, Φw(v) = v′ where v′ is the
valuation such that v′(T (t)) = vw(X), where the closed term t names the sentence X.

Given the various properties of infinitarily interlaced bilattices, it is simple to verify that we
again have monotonicity.

v ≤k v′ =⇒ Φw(v) ≤k Φw(v′) (2)

If we take for B the bilattice FOUR, Φw is Kripke’s operator based on Kleene’s weak three-
valued logic. It maps consistent valuations to consistent valuations.
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4.3 Supervaluations generalized

A way of assigning partial truth values that respects tautologies was introduced in [21], and given
the name supervaluation. The idea is, for a partial truth assignment to atomic formulas, extend
it to the non-atomic level by taking a formula X to be true if every total truth assignment that
extends the given partial one assigns X true; similarly for false; only in cases of disagreement is
there a truth-value gap. Thus true ∨ ⊥ = true as with the strong Kleene logic, but also P ∨ ¬P
always evaluates to true as well. Supervaluation, too, generalizes quite nicely to bilattices.

We need the following properties of infinitarily interlaced bilattices with commuting negation
and conflation operations.

• For every x, x ∨−x is exact. Reason: −(x ∨−x) = −x ∨−− x = −x ∨ x = x ∨−x. (Recall,
conflation does not affect the ≤t ordering, hence preserves ∧ and ∨.)

• Every consistent member is below an exact member, in the ≤k ordering. Reason: Suppose x
is consistent; x ∨ −x is exact, and x is below it because x ≤k −x (by consistency), x ≤k x,
and we have the interlacing conditions.

• If S is a non-empty set of exact members,
∏
S is consistent. Reason:

∏
S ≤k

∑
{x | x ∈

S} =
∑
{−x | x ∈ S} = −

∏
{x | x ∈ S} = −

∏
S.

Now, suppose v is a consistent valuation. A mapping from all formulas to B, called vsv, is
defined as follows (the superscript is for “supervaluation”).

vsv(X) =
∏
{ws(X) | v ≤k w and w is exact}

The conditions verified above ensure that this definition is meaningful, and that vsv(X) is a
consistent member of B. Now, define an operator on the consistent part of BA as follows. For a
consistent valuation v, Φsv(v) = v′ where v′ is the valuation such that v′(T (t)) = vsv(X), where
the closed term t names the sentence X. This operator, applied to a consistent valuation, produces
another consistent valuation. And the operator is monotone on consistent valuations, with respect
to the ≤k ordering. In FOUR, the operator Φsv is exactly Kripke’s supervaluation version of a
truth revision operator. Finally, although Φsv is only defined on consistent valuations, it can be
artificially extended to the entire of BA by setting Φsv(v) = > whenever v is not consistent. This
still leaves us with a monotone operator, a fact that will be useful later on.

5 Fixed Points

Three different families of truth-revision operators have now been presented—families because the
choice of bilattice is left open. If a truth-revision operator has a fixed point, it must be a valuation
that is, in a sense, coherent. Without additional information from the outside, a fixed point cannot
be revised away, so it is a plausible way of assigning truth values to formulas while accomodating
self-reference. So are there fixed points and, if there are, how do they relate to each other.

5.1 Fixed points exist

Fortunately, showing fixed points exist for each of the three operator families is easy. There is a
well-known theorem of Knaster and Tarski [20] that says a monotone mapping on a complete lattice



Bilattices 13

always has a smallest and a biggest fixed point. (Actually it says more, but we won’t need the
additional information.) Let B be a infinitarily interlaced bilattice with negation and conflation.
Then operators Φs, Φw, and Φsv have been defined, and each is monotone with respect to the
≤k ordering of the bilattice. Since B is a complete lattice with respect to ≤k, each of the three
operators has a smallest and a biggest fixed point.

Carrying things further, it can be shown that smallest fixed points for our three operators must
be consistent. So, if we take B to be the Belnap bilattice FOUR, and restrict our attention to
the consistent part, we have duplicated the investigation presented by Kripke in [18]. Some of
the mathematics needed to justify Kripke’s direct approach is a bit more complicated, essentially
because he only considered the consistent part of FOUR, by itself this is not a complete lattice,
and so the Knaster-Tarski theorem could not be used. By moving to the bilattice setting, we not
only get a simplification in the mathematics, but a considerable generalization—recall some of the
bilattice examples discussed earlier, involving populations of people, or fuzzy truth values, or modal
models, for instance.

Of course in FOUR, both the sentence asserting its own falsehood and the sentence asserting
its own truth are assigned ⊥ in smallest fixed points, and > in largest. Since Kripke only worked
with the consistent part of FOUR, > was unavailable, but others have considered analogs of his
theory in dual settings, where > was present. Bilattices combine both developments in a single
setting.

5.2 Family structure

Kripke analyized the structure of the family of fixed points, introducing notions of maximal, in-
trinsic, and so on. I will not try to duplicate that here, except to note that the concept of intrinsic
fixed point can be carried over to the general bilattice setting—see Section 7. Instead I want to
discuss another topic—what happens if we restrict our formal language. Besides being of interest
for its own sake, this also has some relationship to a different fixed point construction that will be
presented in Section 6. For the rest of this section, let B be a complete bilattice—it doesn’t matter
if it has negation or conflation.

One of the reasons self-reference is such a problem is that the presence of negation in the
language makes truth revision operators non-monotonic with respect to the ≤t ordering, which is
the ordering our first impulses direct us toward. So let’s get rid of negation. By Lang0 we mean
the sublanguage of Lang without negation. In Lang0 we can no longer write a formal counterpart
of “I am not true,” but we still can for “I am true.” Truth revision operators Φs, Φw, and Φsv can
be defined with respect to Lang0 essentially as we did above. If Φ is such an operator, it will be
monotone with respect to ≤k, just as before, but now it will also be monotone with respect to ≤t.
Since bilattices are lattices with respect to each of their orderings, we can apply the Knaster-Tarski
theorem two different ways. There are least and greatest fixed points for Φ with respect to both
orderings. The question is, how are these four fixed points related to each other?

Suppose we let pk and Pk be the least and greatest fixed points of Φ with respect to the ≤k
ordering of B, and let pt and Pt be the least and greatest fixed points of Φ with respect to ≤t. By
definition, all fixed points of Φ must lie between pk and Pk in the ≤k ordering, and between pt and
Pt in the ≤t ordering. Figure 3 shows the configuration. But more, these extreme fixed points are
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related in the following remarkable way.

pk = pt ⊗ Pt
Pk = pt ⊕ Pt
pt = pk ∧ Pk
Pt = pk ∨ Pk

Each extreme fixed point with respect to one ordering is a meet or join of the extreme fixed points
with respect to the other ordering. As a special case, in FOUR the truth-teller is assigned ⊥ and
> by pk and Pk respectively, and is assigned false and true by pt and Pt respectively. And, in any
bilattice the following identities hold.

⊥ = false⊗ true
> = false⊕ true

false = ⊥ ∧>
true = ⊥ ∨>

false true

< t

<k pk

Pk

pt
Pt

Figure 3: Fixed Points Without Negation

6 Introducing A Bias

The liar sentence can’t have a classical truth value, but the truth-teller can—either true or false
is fine. Still it is not implausible to argue that the truth-teller should not be evaluated as true
because, as Mark Twain once said, “truth is precious, and we should economize it.” Dropping
negation altogether, as we did above, is not a good solution, because we are then unable to discuss
the liar sentence at all. But there is another way—there are fixed points that minimize truth as
much as possible. A full presentation can be found in [12], though the ideas grew out of stable
model semantics for logic programs, and for non-monotonic reasoning more generally [14, 6, 10].
Here I’ll just outline the development, referring to [12] for details.



Bilattices 15

6.1 Stable Fixed Points

The main idea is to separate the roles of positive and negative in sentences, and then apply mono-
tonic machinery as far as possible. This probably sounds quite mysterious, but bear with me. To
make this separation easier, from now on I assume all formulas are in negation normal form: all
occurrences of the negation symbol are at the atomic level.

For the rest of this section, let B be an infinitarily interlaced bilattice. With formulas in negation
normal form, think of occurrences of ¬T (x) as if they were occurrences of a new atom, a falsehood
atom, no longer directly connected with T (x). As enabling machinery, I introduce the notion of
a pseudo-valuation, a mapping from sentences of the forms T (t) and ¬T (t), independently, to B.
Pseudo-valuations are extended to non-atomic sentences inductively, using the bilattice operations
∧, ∨,

∧
, and

∨
. (In essence we are following the strong Kleene scheme; the weak Kleene, or

supervaluation versions do not work for what I am about to present.) Pseudo-valuations can be
created naturally, starting with valuations.

Definition 6.1 Let v1 and v2 be valuations. A pseudo-valuation denoted v14v2 is characterized
as follows.

(v14v2)(T (t)) = v1(T (t))
(v14v2)(¬T (t)) = ¬v2(T (t))

I’ll also write (v14v2) for the extension of this pseudo-valuation to all formulas.

Next, we generalize the truth revision operator to an operator Ψ that uses separate inputs for
positive and for negative occurrences of T .

Definition 6.2 Let v1 and v2 be valuations. Ψ(v1, v2) = v′ where v′ is the valuation such that
Ψ(v1, v2)(T (t)) = (v14v2)(X), where the closed term t names the sentence X.

The operators looked at earlier in this paper, while well-behaved with respect to ≤k, could be
rather chaotic with respect to ≤t. This new one is much more orderly, and indeed, all subsequent
assertions about what I call the derived operator follow from these facts alone.

1. Ψ is monotone in both inputs, under ≤k; if v1 ≤k v2 and w1 ≤k w2 then Ψ(v1, w1) ≤k
Ψ(v2, w2).

2. Ψ is monotone in its first input, under ≤t; if v1 ≤t v2 then Ψ(v1, w) ≤t Ψ(v2, w).

3. Ψ is anti-monotone in its second input, under ≤t; if w1 ≤t w2 then Ψ(v, w1) ≥t Ψ(v, w2).

As noted earlier, in a complete bilattice we have a complete lattice under ≤t as well as under
≤k. Since Ψ is monotone under ≤t in its first input, if we hold the second input fixed, and treat
the operator as a function of its first input, we can apply the Knaster-Tarski Theorem.

Definition 6.3 The derived operator of Ψ is the single input function Ψ′ characterized by: Ψ′(v)
is the smallest fixed point, in the ≤t ordering, of the function (λx)Ψ(x, v).

Since I chose to use the smallest fixed point, instead of the largest, an explicit bias towards
falsehood has been introduced. I could, of course, have gone the other way—that is, everything
that follows dualizes.
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The mapping Ψ′ is another candidate for a truth revision operator. In [12] I gave the following
definition: A GLF-stable valuation is a fixed point of Ψ′. The ‘GLF’ stood for Gelfond-Lifschitz,
Fine, to honor their work on stable model semantics for logic programming, [14, 6]. It can be shown
that every GLF-stable valuation is also a fixed point of the operator Φs, defined in Section 4.1, so
we are talking about a distinguished subclass of something whose investigation began with Kripke.
Of course, we don’t yet know there are any GLF-stable fixed points, but in fact it can also be shown
that Ψ′ is monotone with respect to ≤k, and so once again Knaster-Tarski gives us the result we
want.

Using Ψ′ in FOUR, we get smallest and biggest fixed points that are different from the extreme
fixed points given by any of Kripke’s operators. In the smallest GLF-stable valuation, the liar
sentence has value ⊥, and in the largest, >. But in both, the truth-teller is simply false.

6.2 An Alternating Approach

In [23] a way was introduced for approximating to a fixed point from below and from above. In
logic programming a related approach was introduced, called an alternating fixpoint construction,
[22]. The idea carries over to the general bilattice setting as well, and is rather easy to describe.
To begin, we need a variation on the familiar Knaster-Tarski theorem.

Suppose L is a complete lattice with ≤ as its ordering, and f is a function from L to itself. Two
members, x, y ∈ L are called oscillation points of f if f(x) = y and f(y) = x. They are extreme
oscillation points if they are comparable (say x ≤ y) and if a and b are any pair of oscillation points,
x ≤ a, b ≤ y. Finally, the mapping f is called anti-monotone if x ≤ y implies f(y) ≤ f(x). The
result we need is: an anti-monotonic map on a complete lattice always has a unique pair of extreme
oscillation points.

A proof of the result cited above is not difficult. It can be shown by an argument similar to that
used to establish Knaster-Tarski, for instance. Or it can be derived directly from Knaster-Tarski
by noting that if f is anti-monotone, then f2 is monotone. Its greatest and smallest fixed points
will be extreme oscillation points for f . I omit details here.

false true

< t

<k

st St

sk

Sk

Figure 4: GLF-Stable Fixed Points
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Now, let B be a complete bilattice with negation, define an operator Ψ as we did in Section 6.1,
and also its derived operator Ψ′. Earlier I made use of the fact that Ψ′ is monotonic with respect to
≤k to establish there are GLF-stable valuations. But also, Ψ′ can be shown to be anti-monotonic
with respect to ≤t, and so Ψ′ has extreme oscillation points with respect to this ordering. Of course
these oscillation points are not GLF-stable valuations themselves, but if p any fixed point of Ψ′,
p, p is a trivial pair of oscillation points, and so p must be between the extreme oscillation points.
Let me be more precise. Suppose we let sk and Sk be the smallest and biggest fixed points of Ψ′

with respect to the ≤k ordering—these are GLF-stable valuations. And let st and St be extreme
oscillation points of Ψ′ with respect to ≤t, with st being the smaller—these are not themselves GLF-
stable valuations. Then all GLF-stable valuations lie between these four values. The arrangement
is shown in Figure 4, with the shaded area representing the GLF-stable valuations. Note that
st and St are not part of the shaded area. What is more remarkable is that the four points are
connected in exactly the same way that those of Figure 3 were.

sk = st ⊗ St
Sk = st ⊕ St
st = sk ∧ Sk
St = sk ∨ Sk

7 Intrinsic fixed points

Kripke defined a special class of fixed points which he called intrinsic, and showed they had a
number of interesting features. (An equivalent definition was given independently in [19], using
the name optimal.) The definition extends to bilattices quite easily, whether we use the strong
Kleene, weak Kleene, or supervaluation operator—I’ll use Φ for any one of these. In a bilattice
(with conflation) a fixed point v of Φ is intrinsic if v ⊕ w is consistent, for every consistent fixed
point w.

Let pk be the smallest fixed point of Φ with respect to the ≤k ordering. As I noted before, pk
will itself be consistent. If w is any consistent fixed point, pk ⊕ w = w, since pk is smallest. It
follows that pk is intrinsic. Hence intrinsic fixed points exist—pk is one. Also every intrinsic fixed
point must be consistent, because if w is intrinsic, since pk is consistent pk ⊕w must be consistent,
but this is just w. This is elementary, but with more work it can be shown that a largest intrinsic
fixed point always exists as well—a proof can be found in [12].

In some of the consistent fixed points of Φ a truth-teller is true, in some, false, so if v is an
intrinsic fixed point, a truth-teller can be neither true nor false in v. But a truth-teller will be false
in every GLF-stable valuation, so no GLF-stable valuation can be intrinsic.

But, the notion of intrinsic can be relativized to GLF-stable valuations. I’ll say a GLF-stable
valuation v is GLF-intrinsic if v ⊕ w is consistent, for every consistent GLF-stable valuation w.

It is easy to show that the smallest GLF-stable valuation is GLF-intrinsic, and a largest GLF-
intrinsic valuation exists. Very little more is known about the family of GLF-intrinsic valuations.

8 Conclusion

The machinery and results sketched above should provide convincing evidence that Kripke’s theory
of truth really lives in bilattices. Clearly a bilattice is an elegant place to live. But as the discussion
of GLF-intrinsic indicates, the neighborhood needs to be better mapped. I hope I have generated
enough interest in some readers of this paper to look further into the matter.



18 Melvin Fitting

References

[1] O. Arieli and A. Avron. Reasoning with logical bilattices. Journal of Logic, Language, and
Information, 5(1):25–63, 1996.

[2] O. Arieli and A. Avron. The value of four values. Artificial Intelligence, 102:97–141, 1998.

[3] N. D. Belnap, Jr. How a computer should think. In G. Ryle, editor, Contemporary Aspects of
Philosophy, pages 30–55. Oriel Press Ltd, Stocksfield, 1977.

[4] N. D. Belnap, Jr. A useful four-valued logic. In J. M. Dunn and G. Epstein, editors, Modern
Uses of Multiple-Valued Logic, pages 8–37. D. Reidel, Dordrecht, 1977.

[5] J. M. Dunn. Relevance logic and entailment. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, Volume III, chapter 3, pages 117–224. D. Reidel, 1986.

[6] K. Fine. The justification of negation as failure. In J. E. Fenstad, I. T. Frolov, and R. Hilpinen,
editors, Logic, Methodology and Philosophy of Science VIII, pages 263–301, Amsterdam, 1989.
North-Holland.

[7] M. C. Fitting. Notes on the mathematical aspects of Kripke’s theory of truth. Notre Dame
Journal of Formal Logic, 27:75–88, 1986.

[8] M. C. Fitting. Bilattices in logic programming. In G. Epstein, editor, The Twentieth Interna-
tional Symposium on Multiple-Valued Logic, pages 238–246. IEEE, 1990.

[9] M. C. Fitting. Kleene’s logic, generalized. Journal of Logic and Computation, 1:797–810, 1992.

[10] M. C. Fitting. The family of stable models. Journal of Logic Programming, 17:197–225, 1993.

[11] M. C. Fitting. Kleene’s three-valued logics and their children. Fundamenta Informaticae,
20:113–131, 1994.

[12] M. C. Fitting. A theory of truth that prefers falsehood. Journal of Philosophical Logic,
26:477–500, 1997.

[13] G. Gargov. Knowledge, uncertainty and ignorance in logic: bilattices and beyond. Journal of
Applied Non-Classical Logics, 9, 1999.

[14] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski
and K. Bowen, editors, Proc. of the Fifth Logic Programming Symposium, pages 1070–1080,
Cambridge, MA, 1988. MIT Press.

[15] M. Ginsberg. Multi-valued logics. In Proceedings of AAAI-86, Fifth National Conference on
Artificial Intelligence, pages 243–247, Los Altos, 1986. Morgan Kaufman.

[16] M. Ginsberg. Multivalued logics: a uniform approach to reasoning in AI. Computational
Intelligence, 4:256–316, 1988.

[17] S. C. Kleene. Introduction to Metamathematics. D. Van Nostrand, Princeton, NJ, 1950.

[18] S. Kripke. Outline of a theory of truth. The Journal of Philosophy, 72:690–716, 1975. Reprinted
in New Essays on Truth and the Liar Paradox, R. L. Martin, ed., Oxford (1983).



Bilattices 19

[19] Z. Manna and A. Shamir. The optimal approach to recursive programs. Comm. ACM, 20:824–
831, 1977.

[20] A. Tarski. A lattice-theoretical theorem and its applications. Pacific Journal of Mathematics,
5:285–309, 1955.

[21] B. Van Fraassen. Singular terms, truth-value gaps, and free logic. Journal of Philosophy,
63:481–485, 1966.

[22] A. Van Gelder. The alternating fixpoint of logic programs with negation. In Proc. 8th ACM
Symp. on Principles of Database Systems, pages 1–10, Philadelphia, 1989. ACM.

[23] S. Yablo. Truth and reflection. Journal of Philosophical Logic, 14:297–349, 1985.


