
Bilattices and the Semantics of Logic Programming

Melvin Fitting
MLFLC@CUNYVM.BITNET

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

Depts. Computer Science, Philosophy, Mathematics
Graduate Center (CUNY), 33 West 42nd Street, NYC, NY 10036 ∗

February 9, 1989

Abstract

Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for
missing or conflicting information. The simplest example is Belnap’s four-valued logic, based on
classical two-valued logic. Among other examples are those based on finite many-valued logics,
and on probabilistic valued logic. A fixed point semantics is developed for logic programming,
allowing any bilattice as the space of truth values. The mathematics is little more complex than
in the classical two-valued setting, but the result provides a natural semantics for distributed
logic programs, including those involving confidence factors. The classical two-valued and the
Kripke/Kleene three-valued semantics become special cases, since the logics involved are natural
sublogics of Belnap’s logic, the logic given by the simplest bilattice.

1 Introduction

Often useful information is spread over a number of sites (“Does anybody know, did Willie wear a
hat when he left this morning?”) that can be specifically addressed (“I’m not just talking to hear
myself talk; I’m asking you, you and you.”). Sometimes information is collective (“I know where he
keeps his hat when he isn’t wearing it.” ”I know it’s not there now.”). Sometimes things are more
direct (“Yes he did.”). All this is routine. But problems arise when answers conflict and must be
reconciled. Reasonable possibilities are: if anyone says yes then it’s yes; if anyone says no, then it’s
no. These correspond to the classical truth functional connectives ∨ and ∧. But equally reasonable
are: different answers tell me nothing; different answers tell me too much. These versions leave
the realm of classical logic behind. In fact, a four-valued logic was introduced by Belnap [3] for
precisely this purpose.

Logic programs can be distributed over many sites, and can exhibit behavior like that considered
in the previous paragraph. It turns out that a simple fixed point semantics, similar to that of [21]

∗Research partly supported by NSF Grant CCR-8702307 and PSC-CUNY Grant 6-67295.

1

2 Melvin Fitting

and [1], can be developed, based on Belnap’s logic (see [4] for a version). But we need not stop
here. Van Emden has proposed using real numbers in [0, 1] as quantitative truth values [20]. How
should such a truth value space be modified if programs are distributed? Similar issues arise for
any choice of truth value space, of course.

M. Ginsberg has invented the elegant notion of bilattice ([14], [15]), which deals with precisely
this issue. We reserve the definition till later on, but for motivation we note: Belnap’s four valued
logic constitutes the simplest bilattice; a natural bilattice can be constructed based on any ‘reason-
able’ truth value space; bilattices provide a truth value mechanism suitable for information that
contains conflicts or gaps; and a logic programming fixed point semantics can be developed relative
to any bilattice, rather easily at that. Demonstrating the truth of these assertions occupies the
bulk of this paper.

Several varieties of fixed point semantics have been proposed for logic programming. The
traditional one has been classical two-valued ([1], [21]). This is very satisfactory when negations
are not allowed in clause bodies. A three-valued semantics has been urged ([7], [8], [17], [18]) as
a way of coping with the problems of negation. Also the two valued semantics has been extended
via the device of stratification [2]. See [12] and [13] for a discussion of the relationship between the
stratified and the three valued approach. More recently a four valued logic has been proposed, to
allow for programs containing inconsistencies [5]. Also the set of reals in [0, 1] has been used as a
kind of truth value space, to allow treating confidence factors as truth values [20]. And in [10], sets
of possible worlds in a Kripke model were considered, as something like evidence factors. What
do these approaches have in common? There must be enough machinery to ensure the existence
of fixed points of the operator associated with a program. This means a partial ordering meeting
special conditions must exist. [4] is a nice study of this point, and the wide range of circumstances
under which the necessary conditions are obtained. But for the machinery to work smoothly, there
must be an appropriate interaction between the logical operations allowed in the programming
language and the underlying partial ordering. This is an issue addressed here. We claim that
bilattices apply naturally to most of the kinds of fixed point semantics people have considered,
and provide an account of the intended partial ordering, the truth functional connectives, and
the interactions between them. Indeed, bilattices even suggest other operations we might want to
incorporate into a logic programming language. In short, although a complete partial ordering (or
a complete semi-lattice) is behind most proposed semantics, we believe the mathematical structure
is actually richer than that in practice, and bilattices are the right abstract tools. Furthermore, we
will see below that one of the nice ‘extras’ that comes from the bilattice approach is that both the
two and the three valued semantical theories follow easily from work on Belnap’s four-valued version
(because two and three valued logics are natural sublogics of the four-valued logic). And this is not
unique to the four-valued case; with no more work similar results can be established for bilattices
in general, under certain simple additional conditions. Finally, there are nice relationships between
the two and the three valued approaches (for programs where both can be applied). The bilattice
setting makes possible an algebraic formulation of this connection, and a considerable extension of
it. Without the use of bilattices the very possibility of such a formulation is doubtful. We have
hopes that results like Theorem 7.7 will help to shed more light on the role of negation in logic
programming.

Bilattices and the Semantics of Logic Programming 3

In short, we believe bilattices are a very natural framework for the general consideration of logic
programming semantics. We intend to justify this belief.

2 The Four Valued Case

We begin with the simplest example — the four valued logic FOUR due to Belnap ([3], [22]). And
we begin with a motivation for considering it.

Suppose we have a fixed logic programming language L, whose details need not concern us
just now. We assume clause heads are atomic, and clause bodies can contain negations, and also
conjunctions and disjunctions, explicit or implicit. And say P is a program written in the language
L. But, let us suppose P is distributed over a number of sites, with some provision for interaction.
Some predicates might be local to a site, while others may be global. We issue a query to the
network of sites. Each site attempts to answer the query by the usual mechanism of replacing one
question by a list of others. Subsequent queries involving local predicates are handled locally, while
those involving global predicates are broadcast to the system in the same way that my initial query
was. Details of variable binding will not be gone into here — indeed, for our purposes we will
identify a program with the set of ground instances of its clauses. But even with this simple model
a fundamental problem arises: what do we do with conflicting responses? If we ask the system ?-q,
a site having clauses covering q may respond with ‘yes’, while a site having no clauses for q will,
via negation as failure, respond with ‘no’. How should we reconcile these?

Several simple minded solutions are possible, some of which take us beyond classical truth
values. We could, for instance, insist on a consensus. Then, faced with conflicting answers we
could say we have no information. Or we could treat each site as an expert whose opinions we
value, and so when faced with the problem of two answers, we accept them both, and simply record
the existence of a conflict.

Belnap’s four valued logic, which we call FOUR provides the right setting for this. One can
think of his truth values as sets of ordinary truth values: {true}, which we will write as true;
{false}, which we will write as false; ∅, which we will write as ⊥ and read as undefined, and
{true, false}, which we will write as > and read as overdefined.

Belnap noted that two natural partial orderings existed for these truth values. The subset
relation is one; it can be thought of as an ordering reflecting information content. Thus {true, false}
contains more information than {true} say. The other ordering expresses ‘degree of truth’; for
example, ∅ has a higher degree of truth than {false}, precisely because it does not contain false.
Thus we might call a truth value t1 less-true-or-more-false than t2 if t1 contains false but t2 doesn’t,
or t2 contains true but t1 doesn’t. Both of these are natural orderings to consider. Ginsberg had
the insight to see there are intimate interconnections and to generalize them. Figure 1 is a double
Hasse diagram displaying the two partial orderings of FOUR at once. The knowledge or information
direction is vertical (labeled k), while the truth direction is horizontal (labeled t). Thus a ≤k b if
there is an upward path from a to b, and a ≤t b if there is a rightward path from a to b.

Both partial orderings give us a complete lattice. In particular meets and joins exist in each
direction. We use the notation ∧ and ∨ for finite meet and join,

∧
and

∨
for arbitrary meet and

join, in the ≤t ordering. And we use ⊗ and ⊕ for finite meet and join,
∏

and
∑

for arbitrary

t

k

false true

T

⊥

4 Melvin Fitting

Figure 1: The Logic FOUR

meet and join in the ≤k ordering. Negation we define directly: ¬true = false; ¬false = true;
¬> = >; ¬⊥ = ⊥. Thinking of four valued truth values as sets of ordinary truth values, this
negation amounts to the application of ordinary negation to each member of the set.

Kleene’s strong three valued logic [16] and ordinary two valued logic are present as sublattices.
The operations of the ≤t ordering, and negation, when restricted to false and true are the clas-
sical ones, and when restricted to false, true and ⊥, are Kleene’s. Thus FOUR retains all the
mathematical machinery of the two and three valued logics that have worked so well, and gives us
complete lattics, thus simplifying the technical setting somewhat.

Note that the operations induced by the ≤k ordering also have a natural interpretation. Com-
bining truth values using ⊗ amounts to the consensus approach to conflicts mentioned above, while
the use of ⊕ corresponds to the accept-anything version. This suggests that counterparts of these
operations should be part of a logic programming language designed for distributed implementation.

Now, the meaning assigned to a program P will be a model, but a four valued one. As in
classical logic, we need a domain D, but in logic programming this domain is generally thought of
as fixed. In practice it is the Herbrand universe, or maybe the space of regular trees, or some such
thing. The details need not concern us now. We assume ground terms of the language L name
members of D, and every member of D has a unique such name, so we can just identify D with
the set of ground terms. (A more general treatment allowing arbitrary domains is easily possible.)
With this understood, we generally surpress mention of D for now. All that is left is to characterize
valuations.

Definition 2.1 A valuation v in FOUR is a mapping from the set of ground atomic formulas of
L to FOUR. Valuations are given two pointwise orderings as follows. v1 ≤k v2 if v1(A) ≤k v2(A)
for every ground atomic formula A. v1 ≤t v2 if v1(A) ≤t v2(A) for every ground atomic formula
A.

Bilattices and the Semantics of Logic Programming 5

The set of valuations constitutes a complete lattice under each of the induced orderings ≤k and
≤t, and inherits much of the structure of FOUR in a natural way. Valuations can be extended to
maps from the set of all ground formulas to FOUR in the following way. Here we assume formulas
are built up from the atomic level using ¬, ∧, ∨, maybe ∀, ∃, and maybe operation symbols ⊗, ⊕,∏

and
∑

.

Definition 2.2 A valuation v determines a unique map, also denoted v, on the set of all ground
formulas, according to the following conditions:

1. v(¬X) = ¬v(X)

2. v(X ◦ Y) = v(X) ◦ v(Y) for ◦ one of ∧, ∨, ⊗ or ⊕
3. v((∀x)P (x)) =

∧
d∈D v(P (d))

4. v((∃x)P (x)) =
∨
d∈D v(P (d))

5. v((
∏
x)P (x)) =

∏
d∈D v(P (d))

6. v((
∑
x)P (x)) =

∑
d∈D v(P (d)).

Now the idea of a fixed point semantics can be given an intuitively appealing presentation. We
want to associate with a program P an operator ΦP that maps valuations to valuations. It should
calculate values for clause bodies in P according to the definition above. In particular, the classic
truth functional operations have their meaning supplied by the ≤t ordering. And we want to find
the least fixed point of ΦP , but least in the ≤k direction: the fixed point containing no extraneous
information. In order to do this we need to know that the various operations interact well with the
≤k ordering, so that a least fixed point is guaranteed to exist. For example, the behavior of the
operation ∧, defined using ≤t, must mesh somehow with the properties of ≤k so that monotonicity
of the operator ΦP is ensured.

In fact, this always happens. Moreover, what happens relates well to, and generalizes the two
and three valued approaches already in the literature. The four valued setting is explored further
in [11], and with certain restrictions placed on the language, it is shown to provide a natural and
usable extension of conventional logic programming. An implementation on top of Prolog has been
developed, and the result is a language that behaves well when negations and free variables are
both allowed to occur in queries. But, rather than proceeding further with this four valued example
here, we move to the broader setting of bilattices, establish our results in greater generality, and
apply them to FOUR and other particular cases later on.

3 Bilattices

M. Ginsberg ([14], [15]) has proposed bilattices as an elegant generalization of FOUR. We need
a somewhat more restricted notion, which we call an interlaced bilattice. The Ginsberg references
should be consulted for the underlying bilattice definition and examples.

Definition 3.1 An interlaced bilattice is a set B together with two partial orderings ≤k and ≤t
such that:

6 Melvin Fitting

1. each of ≤k and ≤t gives B the structure of a complete lattice;

2. the meet and join operations for each partial ordering are monotone with respect to the other
ordering.

We call condition 2) the interlacing condition. We use notational conventions similar to those
of the previous section, with an arbitrary interlaced bilattice. ∧ and ∨ are finite meet and join
under the ≤t ordering;

∧
and

∨
are arbitrary meet and join under ≤t. ⊗ and ⊕ are finite meet

and join under ≤k;
∏

and
∑

are arbitrary meet and join under ≤k. false and true are least and
greatest elements under ≤t; ⊥ and > are least and greatest elements under ≤k.

If a ≤t b and c ≤t d then a∧c ≤t b∧d, because this is a basic property of meets in a lattice. But
condition 2) of Definition 3.1 requires also that a ≤k b and c ≤k d imply a∧c ≤k b∧d. Similarly for
other operation/ordering combinations. Condition 2) expresses the fundamental interconnection
that makes an interlaced bilattice more than just two independent lattices stuck together. Condition
2) of Definition 3.1 requires some care in interpretation when infinitary operations are involved.
We take its meaning in such cases as follows. Suppose A and B are subsets of B. We write A ≤t B
if: for each a ∈ A there is some b ∈ B with a ≤t b; and for each b ∈ B there is some a ∈ A with
a ≤t b. Then condition 2) is taken to require that if A ≤t B then

∏
A ≤t

∏
B. And of course

similarly for other operator/ordering combinations.
FOUR is an example of an interlaced bilattice. This can be checked directly; also it follows from

more general results later on. We tacitly assume all interlaced bilattices are non-trivial. FOUR,
then, is the simplest example, and is isomorphically a sub-bilattice of all other bilattices. On the
other hand, there are bilattices as defined in [14] and [15] that are not interlaced. Figure 2 displays
a bilattice for a default logic. In it, df is intended to represent a value of default falsehood, while
dt represents default truth. This does not satisfy the interlacing condition though. For instance,
false ≤t df but false⊗ ∗ = ∗ and df ⊗ ∗ = df , so false⊗ ∗ ≤t df ⊗ ∗ fails.

Proposition 3.1 In any interlaced bilattice,

1. true⊕ false = >; true⊗ false = ⊥;

2. > ∨⊥ = true; > ∧⊥ = false.

Proof It is easy to see that a⊕> = > for all a. Also since false is the smallest element under ≤t,
false ≤t >, so since we have an interlaced bilattice, a ⊕ false ≤t a ⊕ >. Taking a to be true we
have true⊕ false ≤t true⊕> = >. In the other direction, > ≤t true, hence a⊕> ≤t a⊕ true for
any a. Then > = false⊕> ≤t false⊕true. These two inequalities establish that false⊕true = >.
The rest of the cases are established in a similar way.

Notice that negation is not part of the basic interlaced bilattice structure. Still, a negation
notion generally exists in cases we are interested in. We merely require that it mesh well with the
orderings.

Definition 3.2 An interlaced bilattice B has a weak negation operation if there is a mapping
¬ : B→ B such that:

t

k
false true

T

⊥

df dt

*

Bilattices and the Semantics of Logic Programming 7

Figure 2: A Bilattice for a Default Logic

1. a ≤k b⇒ ¬a ≤k ¬b;
2. a ≤t b⇒ ¬b ≤t ¬a.

Note In bilattices as defined in [14] and [15], the existence of a negation operation is basic and, in
addition to the conditions above, one must also have that a = ¬¬a. Since we have postulated the
rather powerful interlacing conditions here, we do not need the full strength of negation; generally
the existence of a weak negation is sufficient. If the additional double negation condition is satisfied,
we will say we have a negation operation rather than a weak negation operation.

The intuition here is straightforward. Negations should reverse truth; one expects that. But
negations do not change knowledge; one knows as much about ¬a as one knows about a. Hence a
negation operation reverses the ≤t ordering but preserves the ≤k ordering.

There is one more basic operation on interlaced bilattices that we want to consider, though
its familiarity is considerably less than that of negation. In FOUR, some of the truth values
were essentially classical, while others made up a natural three valued logic. What we need is
some mechanism for distinguishing those parts of an interlaced bilattice that constitute natural
sublogics, and that is what this extra operation is for (more will be said about intuitive motivation
in the next section). We call it conflation. The basic ideas, though not the name, come from [22].
The intention is, conflation is like negation, but with the roles of ≤k and ≤t switched around. In
particular, in FOUR, negation ‘flips’ the diagram in Figure 1 from left to right. We take conflation
in FOUR to be the operation that ‘flips’ the diagram from top to bottom, interchanging > and ⊥,

8 Melvin Fitting

and leaving false and true alone. It is easy to check that this is a conflation operation, according
to the following definition.

Definition 3.3 An interlaced bilattice B has a conflation operation if there is a mapping − : B→
B such that:

1. a ≤t b⇒ −a ≤t −b;
2. a ≤k b⇒ −b ≤k −a;

3. −− a = a.

We said the space of valuations in FOUR ‘inherited’ much of the structure of FOUR. Now we
can be more precise about what this means.

Definition 3.4 Suppose B is an interlaced bilattice and S is a set. Let BS be the set of all
mappings from S to B, with induced orderings ≤k and ≤t defined pointwise on BS. That is, for
f, g ∈ BS, f ≤k g provided f(s) ≤k g(s) for all s ∈ S, and similarly for ≤t. If B has a weak
negation operation, this induces a corresponding operation on BS according to (¬f)(s) = ¬f(s).
Similarly for a conflation operation.

Proposition 3.2 Suppose B is an interlaced bilattice and S is a set. Then BS is also an interlaced
bilattice. The operations in BS are the pointwise ones: (f ⊗ g)(s) = f(s) ⊗ g(s), and so on. In
addition, if B is an interlaced bilattice with weak negation, so is BS, and similarly for conflation.

Proof A straightforward matter of checking, which we omit.

We use the obvious extension of notation from elements of an interlaced bilattice to subsets:
¬A = {¬a | a ∈ A} and −A = {−a | a ∈ A}.

Proposition 3.3 In an interlaced bilattice with conflation,

1. −∧A =
∧−A; −(a ∧ b) = (−a ∧ −b);

2. −∨A =
∨−A; −(a ∨ b) = (−a ∨ −b);

3. −∏A =
∑−A; −(a⊗ b) = (−a⊕−b);

4. −∑A =
∏−A; −(a⊕ b) = (−a⊗−b).

Proof We demonstrate part 1); the other parts are similar. If a is an arbitrary member of A then∧
A ≤t a, so −∧A ≤t −a. It follows that −∧A ≤t ∧−A. Conversely, for an arbitrary a ∈ A,
−a ∈ −A, and so

∧−A ≤t −a. It follows that −∧−A ≤t a, and so −∧−A ≤t ∧A, and hence∧−A ≤t −∧A.

Definition 3.5 If B is an interlaced bilattice with weak negation and conflation, we say conflation
commutes with negation provided −¬a = ¬ − a for all a.

Bilattices and the Semantics of Logic Programming 9

In FOUR conflation commutes with negation. The notion of commuting extends in an obvious
way to binary (and infinitary) operations. Then Proposition 3.3 says conflation commutes with ∧,∧

, ∨ and
∨

.

Proposition 3.4 In any interlaced bilattice with conflation,

1. −⊥ = >; −> = ⊥;

2. −false = false; −true = true;

Proof Since ⊥ ≤k a for any a, ⊥ ≤k −>, and so > ≤k −⊥. It follows from the definition of >
that > = −⊥. Then easily, −> = ⊥.

Since false ≤t a for any a, it follows from the definition of ∨ that false∨a = a for any a. Using
this we have −false = −false∨ false = −false∨−− false = −(false∨−false) = −(−false) =
false. Similarly for −true = true.

The interlaced bilattices of most interest to us in this paper all have a conflation operation
and usually a negation operation. These operations can not be taken for granted though. In [10]
we considered a family of interlaced bilattices with conflation and a weak negation operation that
satisfied the condition a ≤t ¬¬a though not generally a = ¬¬a. Thus the weak negation operation
there had an Intuitionistic flavor. The interlaced bilattice displayed in Figure 3 does not have
a conflation operation. It has a weak negation operation, but one that does not even meet the
intuitionistic condition stated above. (In the diagram of Figure 3, false and b are incomparable
under ≤k, while b and ⊥ are incomparable under ≤t. Similarly for other horizontal or vertical
edges.)

The diagram in Figure 3 does represent an interlaced bilattice, SIX — we will verify this in
Section 4. Checking that there is no conflation operation is simple. If there were one, its behavior
on >, ⊥, false and true would be determined by Proposition 3.4, so only −a and −b need to be
specified. If −a = > then a = −− a = −> = ⊥, which is not the case. Similarly all of >, ⊥, true
and false are ruled out as possible values for −a and −b, so we are forced to have either −a = a
or −a = b. Both of these are impossible. For instance, since a ≤k false then −false ≤k −a. If we
had −a = a then this would say false ≤k a, which is not the case. −a = b can be ruled out in a
similar way. Likewise one can check that there is no negation. There is a weak negation operation
though. Take ¬b = >, ¬a = ⊥, ¬false = true, ¬true = false, ¬> = > and ¬⊥ = ⊥. It is easy to
verify that this is a weak negation operation, but since ¬¬b = > we do not have b ≤t ¬¬b.

Now we take up the issue of possible sublogics of an interlaced bilattice that may be of use and
interest.

Definition 3.6 In an interlaced bilattice B with conflation, for a ∈ B

1. a is exact if a = −a;

2. a is consistent if a ≤k −a.

false

truea

b

⊥

T

k

t

10 Melvin Fitting

Figure 3: The Interlaced Bilattice SIX

We remark that [22] used other terminology for these notions, but the definitions are essentially
from that paper. In FOUR the exact truth values are the classical ones, false and true, and the
consistent ones are (of course) these, and also ⊥. In other words, we get the classical values, and
Kleene’s values as exact and consistent. Now, the classical values are closed under the ≤t based
operations in FOUR, and similarly for the truth values of Kleene’s logic. Likewise Kleene’s values
yield a complete semilattice under ≤k, a point which played a significant role in [7]. Features like
these are, in fact, quite general.

Proposition 3.5 Let B be an interlaced bilattice with conflation. The exact members include false
and true and are closed under ∧,

∧
, ∨ and

∨
. If B has a weak negation which commutes with the

conflation operation then the exact members are closed under negation as well. The exact members
do not include ⊥ or > and are not closed under ⊗ or ⊕.

Proof false and true are exact by Proposition 3.4. If a and b are exact, by Proposition 3.3
−(a ∧ b) = −a ∧ −b = a ∧ b, hence there is closure under ∧. Similarly for the other cases. Neither
⊥ nor > is exact, by Proposition 3.4 (and the fact that ⊥ 6= >). The exact members are not closed
under ⊗ because then true⊗ false = ⊥ would be exact. Similarly for ⊕.

Definition 3.7 A complete semilattice is a partially ordered set that is closed under arbitrary
meets, and under joins of directed subsets. A subset D is directed if for all x, y ∈ D, there is a
z ∈ D such that x ≤ z and y ≤ z.

Bilattices and the Semantics of Logic Programming 11

Proposition 3.6 Let B be an interlaced bilattice with conflation. The consistent members include
the exact members, ⊥, and are closed under ∧,

∧
, ∨,

∨
. If B has a weak negation that commutes

with conflation, the consistent members are closed under negation as well. Finally the consistent
members constitute a complete semilattice under ≤k, being closed under

∏
and under directed

∑
.

Proof Exactness trivially implies consistency. If S is a set of consistent members it follows that
S ≤k −S so

∧
S ≤k

∧−S = −∧S, hence the consistent members are closed under
∧

. The other
truth functional closures are similar.

Again, let S be a set of consistent members, so S ≤k −S. Then
∏
S ≤k

∏−S = −∑S. Also∏
S ≤k

∑
S, so −∑S ≤k −

∏
S. It follows that

∏
S ≤k −

∏
S, so

∏
S is consistent. Thus we

have closure under
∏

.
Finally, suppose S is a set of consistent members that also is directed by ≤k. To show

∑
S

is consistent we must show
∑
S ≤k −

∑
S =

∏−S. For this, it is enough to show that for any
a, b ∈ S, a ≤k −b. But, since S is directed and a, b ∈ S, there is some c ∈ S with a ≤k c and b ≤k c.
Then: −c ≤k −b; c is consistent so c ≤k −c; and hence a ≤k −b.

Note Many of these arguments, including that for being a semilattice, come from [22].

4 Examples

The basic bilattice construction is due to Ginsberg, and is easily described. Suppose C = 〈C,≤〉
and D = 〈D,≤〉 are complete lattices. (We use the same notation, ≤, for both orderings, since
context can determine which is meant.) Form the set of points C ×D, and give it two orderings,
≤k and ≤t, as follows.

〈c1, d1〉 ≤k 〈c2, d2〉 if c1 ≤ c2 and d1 ≤ d2

〈c1, d1〉 ≤t 〈c2, d2〉 if c1 ≤ c2 and d2 ≤ d1

We denote the resulting structure, 〈C ×D,≤k,≤t〉 by B(C,D)

Proposition 4.1 For complete lattices C and D, B(C,D) is an interlaced bilattice.

Proof Straightforward. It is easy to check that, if we use u and t for meet and join in both of C
and D, then

〈c1, d1〉 ⊗ 〈c2, d2〉 = 〈c1 u c2, d1 u d2〉

〈c1, d1〉 ⊕ 〈c2, d2〉 = 〈c1 t c2, d1 t d2〉

〈c1, d1〉 ∧ 〈c2, d2〉 = 〈c1 u c2, d1 t d2〉

〈c1, d1〉 ∨ 〈c2, d2〉 = 〈c1 t c2, d1 u d2〉

12 Melvin Fitting

and similarly for the infinitary cases.

The intuition here is illuminating. Suppose we think of a pair 〈c, d〉 in B(C,D) as representing
two independent judgements concerning the truth of some statement: c represents our degree of
belief for the statement; d represents our degree of belief against it. These may, for instance, have
been arrived at by asking independent experts. And since C and D can be different lattices, expres-
sions of belief for and against need not be measured in the same way. Now, if 〈c1, d1〉 ≤k 〈c2, d2〉
then 〈c2, d2〉 embodies more ‘knowledge’ than 〈c1, d1〉, which is reflected by an increased degree of
belief both for and against; perhaps more information has been received which has increased the
certainty of our ‘experts’. On the other hand, if 〈c1, d1〉 ≤t 〈c2, d2〉 then 〈c2, d2〉 embodies more
‘truth’ than 〈c1, d1〉, which is reflected by an increased degree of belief for, and a decreased degree
of belief against.

The simplest particular example begins with the simplest non-trivial lattice T R: {false, true}
with false ≤ true. B(T R, T R) is simply an isomorphic copy of FOUR (Figure 1). In this
representation, ⊥ is 〈false, false〉, no belief for and no belief against; similarly > is 〈true, true〉.
Likewise false is 〈false, true〉, no belief for, total belief against; and true is 〈true, false〉.

Another example of importance is a quantitative one, based on the complete lattice [0, 1] with
the usual ordering ≤ of reals. This lattice was used as a space of truth values by van Emden [20].
B([0, 1], [0, 1]) is an interlaced bilattice that bears the same relation to van Emden’s system that
FOUR bears to classical logic: it accomodates conflicting quantitative information smoothly.

Kripke models for modal logics provide another family of examples. As Ginsberg suggests, we
can think of the set of possible worlds in which a formula is true as the evidence for a formula;
similarly for false and evidence against. Then, given a particular Kripke model withW as the set of
possible worlds, use the power set lattice P = 〈P(W),⊆〉 to create the interlaced bilattice B(P, P).
This is a natural sort of evidence space.

A different family of interlaced bilattices was considered in [10], based on topological spaces
arising out of Kripke Intuitionistic Logic models. Let T be a topological space. The family O
of open sets is a complete lattice under ⊆. Join is union, while meet is interior of intersection.
Likewise the family C of closed sets is a complete lattice under ⊆. In [10] we investigated interlaced
bilattices of the form B(O, C).

Finally, suppose C is the lattice {0, 1} with 0 ≤ 1 and D is the lattice {0, 1, 2} with 0 ≤ 1 ≤ 2.
Then B(C,D), shown in Figure 4, is isomorphic to the interlaced bilattice SIX , given in Figure 3,
which incidentally verifies that SIX is an interlaced bilattice.

If the two lattices being combined to create an interlaced bilattice are the same, then a negation
is easy to define.

Definition 4.1 In B(C,C), let ¬〈a, b〉 = 〈b, a〉.

The intuition, once again, is appealing. In passing from 〈a, b〉 to ¬〈a, b〉 we are reversing evidence
roles, counting for what was counted against, and conversely. Of course doing this presupposes that
evidence for and against is measured the same way, hence the need for a single underlying lattice.
This also suggests why the interlaced bilattice SIX , in Figure 3, was plausible as a candidate for

<0,2>

<1,0><0,1>

<1,1>

<0,0>

<1,2>

k

t

Bilattices and the Semantics of Logic Programming 13

Figure 4: The Interlaced Bilattice B(C,D)

one without a negation. The verification that the operation defined above is a negation is simple,
and is omitted.

The definition of negation does not apply to the family of interlaced bilattices based on open
and closed sets of a topological space, since it presupposes that only one lattice is involved, rather
than two different ones. But for such an interlaced bilattice, we can take ¬〈O,C〉, where O is
an open set and C is a closed set, to be 〈interior(C), closure(O)〉. In general this gives a weak
negation satisfying the condition a ≤t ¬¬a, though not the full negation condition.

For a conflation, additional lattice machinery is necessary.

Definition 4.2 We say a lattice has an involution if there is a one-to-one mapping, denoted −,
such that a ≤ b implies −b ≤ −a.

For example, in T R = {false, true}, classical negation is an involution. In [0, 1] the map taking
x to 1 − x is an involution. In a power set lattice P = 〈P(W),⊆〉, based on a Kripke model say,
complementation is an involution.

Proposition 4.2 If C is a complete lattice with an involution, then −〈a, b〉 = 〈−b,−a〉 is a con-
flation in B(C,C), that commutes with negation defined as above.

Proof Straightforward.

Once again, there is a loose intuition at work here. In passing from 〈a, b〉 to −〈a, b〉 = 〈−b,−a〉
we are moving to ‘default’ evidence. We are now counting for whatever was not counted against

14 Melvin Fitting

before, and against what was not counted for. Now our definitions of consistent and exact can be
given further motivation. In B([0, 1], [0, 1]) for instance, a truth value 〈x, y〉 is consistent if x+y ≤ 1
and exact if x+ y = 1. Likewise in B(P, P) where P is 〈P(W),⊆〉, 〈x, y〉 is consistent if x ∩ y = ∅,
and exact if x and y are complementary. Generally the idea is that consistency means there is no
conflict between our beliefs for and against; exactness means these beliefs cover all cases.

Conflations based on involutions only make sense when a single underlying lattice is involved,
and so this does not apply to the topological examples. But a conflation can be defined there as
well. Take −〈O,C〉, where O is open and C is closed, to be 〈C̄, Ō〉, where the overbar denotes
complement. This also gives a conflation that commutes with negation, as defined above. Clearly
this example can be generalized, to cases where order reversing mappings exist between two lattices
— we do not do this here.

There are also examples of interesting and useful operations that make sense only for very special
interlaced bilattices. A good instance involves the interlaced bilattice B([0, 1], [0, 1]). For each real
r ∈ [0, 1], let 5r be the scalar multiplication operation: 5r(〈a, b〉) = 〈ra, rb〉. In B([0, 1], [0, 1]), 5r

is monotone with respect to both the ≤k and the ≤t orderings and commutes with negation but
not with conflation. 5r finds a natural use in the logic programming setting later on.

5 Logic Programming Syntax

Logic programming is generally thought of as being relative to the Herbrand universe, with the
space {false, true} of truth values. Both restrictions are unnecessary, and rather narrow. In
this section we set up the syntax for a logic programming language relative to an arbitrary data
structure, not just the Herbrand universe. We also introduce syntactical machinery to deal with
distributed programs. In the next section we turn to semantical issues.

Definition 5.1 A data structure is a tuple 〈D; R1, . . . ,Rn〉 where D is a non-empty set, called
the domain, and R1, . . . , Rn are relations on D, called given relations. A work space W consists
of a data structure 〈D; R1, . . . ,Rn〉 and a permanent association of relation symbols R1, . . . , Rn
with each of the given relations R1, . . . , Rn. The relation symbols R1, . . . , Rn are reserved relation
symbols.

One example of a work space in common use in many Prologs is that of arithmetic: the domain
is the integers, the given relations are the (three-place) addition and multiplication relations, and
these are associated with the relation symbols plus and times. Another example is strings: the
domain is all words over a finite alphabet; the concatenation relation is given. The usual Herbrand
universe can be made into a work space: take the Herbrand universe as the domain, and for each
n-place function symbol f , take a given n+ 1-place relation Rf where Rf (x1, . . . , xn, y)⇔ y is the
term f(x1, . . . , xn). In a similar way one can make the rational trees into a work space. Examples
like these are considered more fully in [9].

Data structures are really semantic objects, but we need to know a little about them now, in
order to specify syntax. Let W be a work space with data structure 〈D; R1, . . . ,Rn〉 and reserved
relation symbols R1, . . . , Rn. W is fixed for the rest of this section. We want to specify a logic
programming language L(W) that ‘uses’ W.

Bilattices and the Semantics of Logic Programming 15

To begin, L(W) needs constants, to refer to members of D. If D were, say, the integers, L(W)
would have some notion of numeral so that particular integers could be referenced. Since this sort
of issue is not central to our present concerns, we simply assume members of D themselves are
allowed as constants in L(W).

Definition 5.2 The terms of L(W) are constants (members of D) and variables (x1, x2, . . .). We
generally use x, y, . . . to stand for variables.

We also assume we have an unlimited supply of relation symbols of all arities.

Definition 5.3 An atomic formula of L(W) is an expression P (t1, . . . , tk) where P is a k-place
relation symbol and t1, . . . , tk are terms of L(W). If the terms are members of D the atomic formula
is ground. If P is reserved in W we refer to P (t1, . . . , tk) as reserved too.

Logic programs are generally written with implicit quantifiers and connectives. But by applying
techniques like those of Clark’s completion [6], many clauses for a given relation symbol can be
collapsed into a single ‘clause’. For example, consider the (conventional) logic program:

P (f(x))← A(x), B(x, y).

P (g(x))← C(x).

This converts to

P (z)← (∃x)(∃y)(Rf (x, z) ∧A(x) ∧B(x, y)) ∨ (∃x)(Rg(x, z) ∧ C(x)).

It will be simplest for us to assume all program clauses are already in such a form, and that only a
single clause for each relation symbol is present in any program. Further, by making use of explicit
quantifiers, we can assume without loss of generality that all variables present in a clause body
must occur in the head. Finally we do not allow reserved relation symbols to appear in clause
heads. These represent given relations, not relations we are computing.

Definition 5.4

1. A simple formula is any formula built up from atomic formulas in the usual way using ∧, ∨,
¬, ∀ and ∃.

2. A simple clause is an expression P (x1, . . . , xk)← φ(x1, . . . , xk) where x1, . . . , xk are variables,
P (x1, . . . , xk) is unreserved atomic, and φ(x1, . . . , xk) is a simple formula whose free variables
are among x1, . . . , xk. The atomic formula to the left of the arrow is the clause head, and
the formula to the right is the clause body.

3. A simple program is a finite set of simple clauses with no relation symbol appearing in more
than one clause head.

16 Melvin Fitting

Note We call a formula positive if it does not contain ¬. We call a simple program positive if
its clause bodies are positive. We use the same terminology with other kinds of programs, defined
below.

Next we turn to programs distributed over a number of sites. Say we have a finite, fixed
collection of sites S, labeled 1, 2, . . . , s. Each site will have its own program clauses. We assume
that each site can ask other sites for information. To keep syntactic machinery uncluttered, we
merely subscript relation symbols to indicate what site should be asked. Thus P3(a, g(b)) will be
taken to mean that site 3 should be asked to establish that P (a, g(b)). Since the number of sites is
finite and fixed, things like “does anybody know. . . ” can be turned into “does 1 know; does 2 know;
. . . ; does s know.” Thus what we need is versatile machinery for combining possibly conflicting
answers from various sites. Syntactically we add operations ⊗ and ⊕. When we come to semantics
in the next section, these will correspond to ‘knowledge direction’ bilattice operations, as we have
seen in previous sections.

Definition 5.5

1. An S atomic formula is an atomic formula of the form Pi(t1, . . . , tk) where P is an unreserved
relation symbol and i ∈ S; also R(t1, . . . , tk) is an S atomic formula if R is an (unsubscripted)
reserved relation symbol. An S formula is a formula built up from S atomic formulas using
∧, ∨, ¬, ∀, ∃, ⊗ and ⊕.

2. A local clause is an expression of the form P (x1, . . . , xk)← φ(x1, . . . , xk) where P (x1, . . . , xk)
is unreserved atomic, and φ(x1, . . . , xk) is an S formula whose free variables are among x1,. . . ,
xk.

3. A local program is a finite set of local clauses with no relation symbol appearing in the head
of more than one local clause.

4. A distributed program is a set {P1,P2, . . . ,Ps} of local programs.

Thus we think of P1 as the program clauses ‘at’ site 1, P2 ‘at’ site 2, and so on. Thinking of
a program as being distributed over multiple sites, with communication by query and response, is
suggestive. But we do not intend, here, to consider computational or implementation issues, only
semantic ones. And for semantic purposes we only need to record which sites have which clauses —
communication mechanisms can be ignored. Thus it is convenient to convert a distributed program
into a single entity, which we do as follows. Suppose {P1,P2, . . . ,Ps} is a distributed program.
Rewrite each clause in Pi by attaching the subscript i to the relation symbol occurring in the
clause head (recall, unreserved relation symbols in clause bodies already have subscripts attached,
since clause bodies are S formulas). Then let P be the set of all rewritten clauses, coming from
P1, P2,. . . , Ps. We say P is the compound program corresponding to the distributed program
{P1,P2, . . . ,Ps}.

A compound program, then, is a single set of clauses, and differs from a simple program by the
presence of subscripts (inessential) and by the use of ⊗ and ⊕ (essential). Semantically we can think
of subscripted relation symbols as just different relation symbols, and ignore explicit subscripts from
now on. Then simple programs become special cases of compound programs; compound programs

Bilattices and the Semantics of Logic Programming 17

differ from simple ones by allowing ⊗ and ⊕. (We could also allow
∏

and
∑

; it does not affect the
semantics, but we do not know of a use for them.) It is the semantics of compound programs that
we take up in the next section.

6 Logic Programming Semantics

For this section, program means compound program, as characterized in the previous section. Let
〈D; R1, . . . ,Rn〉 be a data structure, fixed for this section, with a work space W based on it that
assigns the reserved relation symbol Ri to the given relation Ri. We use a logic programming
language L(W), relative to this work space, as defined in the previous section. Also let B be an
interlaced bilattice, fixed for the section.

Definition 6.1 An interpretation is a mapping v from ground atomic formulas to B. The inter-
pretation is in the work space W provided, for each given relation Ri, if Ri(d1, . . . , dk) is true then
v(Ri(d1, . . . , dk)) = true and if Ri(d1, . . . , dk) is not true then v(Ri(d1, . . . , dk)) = false.

Note true and false, in the definition above, refer to the least and greatest elements of B in the ≤t
ordering. As defined, given relations are classical, hence interpretations in a work space assign to
atomic formulas involving reserved relation symbols only ‘classical’ truth values. This restriction
can be relaxed for many of the results below, and so a more general notion of work space can be
used, for instance allowing ‘partial’ relations as in [12] and [13]. We keep to classical values now
for given relations for simplicity of presentation.

Definition 6.2 The orderings ≤t and ≤k are extended to interpretations pointwise. That is, v1 ≤t
v2 provided, for each closed atomic formula A, v1(A) ≤t v2(A), and similarly for ≤k.

Given a closed formula φ and an interpretation v, a ‘truth value’ v(φ) in B is determined in the
obvious way, by associating the operation symbol ∧ with the bilattice operation ∧, ∀ with

∧
, and so

on. We assume that negations are allowed in φ only in cases where B has a weak negation operation.
The pointwise ordering, though defined using ground atomic formulas, extends to arbitrary closed
formulas.

Proposition 6.1 Let φ be a closed formula and let v1 and v2 be interpretations.

1. v1 ≤k v2 implies v1(φ) ≤k v2(φ);

2. v1 ≤t v2 implies v1(φ) ≤t v2(φ) provided φ is positive.

Proof Immediate from the definitions of interlaced bilattice and negation.

We are about to associate an operator with each program. Before we do, we must decide what
action to take for atomic formulas that do not match the head of any clause of a program. The two
obvious possibilities are: assign such formulas the value ⊥; assign the value false. It is technically
convenient, as well as being consistent with negation as failure, to use the value false in such cases.

18 Melvin Fitting

Definition 6.3 Let P be a compound program in the work space W. ΦP is the mapping from
interpretations to interpretations such that, for an interpretation v:

1. for a reserved relation symbol Ri, ΦP(v)(Ri(d1, . . . , dk)) = true if Ri(d1, . . . , dl) is true and
ΦP(v)(Ri(d1, . . . , dk)) = false if Ri(d1, . . . , dl) is false;

2. for an unreserved relation symbol Q, if there is a clause in P of the form Q(x1, . . . , xk) ←
φ(x1, . . . , xk) then ΦP(v)(Q(d1, . . . , dk)) = v(φ(d1, . . . , dk));

3. for an unreserved relation symbol Q, if there is no clause in P of the form Q(x1, . . . , xk) ←
φ(x1, . . . , xk) then ΦP(v)(Q(d1, . . . , dk)) = false.

It is in part 2) that we use our assumption that all variables occurring in a clause body also
occur in the head. Part 1) says that ΦP(v) will be an interpretation in the given work space. What
is more, it is immediate from Proposition 6.1 that monotonicity extends to operators generally.

Proposition 6.2 Let P be a compound program.

1. if v1 ≤k v2 then ΦP(v1) ≤k ΦP(v2);

2. if v1 ≤t v2 then ΦP(v1) ≤t ΦP(v2) provided P is positive.

The family of interpretations is a complete lattice under both the ≤t and the ≤k orderings. By
the Knaster-Tarski Theorem [19], least and greatest fixed points exist in a complete lattice for any
monotone mapping. We suggest that a natural semantical meaning for a compound program P is
the least fixed point of ΦP under the ≤k ordering. It is a program model that interprets the various
operations reasonably, and contains the least information consistent with the program P.

Proposition 6.2 continues to hold, of course, if other operation symbols are allowed in clause
bodies, provided they are interpreted by monotone operations. For instance, in Section 4 we
introduced a family of scalar multiplication operators 5r in the interlaced bilattice B([0, 1], [0, 1]),
and we observed that they were monotone with respect to each ordering. Thus operator symbols
for them could be introduced into clause bodies when B([0, 1], [0, 1]) is being used as the space
of truth values, and all appropriate fixed points would still exist. Application of 5r amounts
to a proportional diminuation of the degree of certainty. Van Emden built counterparts of these
operators into his logic programming system [20]. They cause no complication in the present
interlaced bilattice setting.

7 Connections

When programs are restricted in various ways, more can be said about the extremal fixed points.
The next few propositions consider this. For the rest of this section, semantics is with respect to an
interlaced bilattice B. Some of the results use the notions of exact or consistent, and hence require
a conflation operation. If a weak negation operation is present, we always assume it commutes with
conflation if there is a conflation operation.

Definition 7.1 Assuming B has a conflation operation, an interpretation v is consistent (or exact)
if, for each ground atomic formula A, v(A) is consistent (or exact).

Bilattices and the Semantics of Logic Programming 19

Note This is equivalent to saying v is consistent (or exact) in the interlaced bilattice of interpre-
tations, using the induced conflation operation of Proposition 3.2.

Proposition 7.1 Suppose P is a simple program, and B has a conflation operation. Then the
least fixed point of ΦP under the ≤k ordering is consistent.

Proof One ‘approximates’ to the least fixed point of a monotone operator in a complete lattice
through a transfinite sequence of steps. We show by transfinite induction that every member of
such an approximation sequence is consistent; it follows that the limit (which must be attained at
some ordinal) is also consistent. The initial term in the approximation sequence is the smallest
member of the complete lattice. In our case, the smallest interpretation under the ≤k ordering is
the one that gives ground atomic formulas the value ⊥. Such an interpretation is consistent.

Next, having defined the αth term of the approximation sequence, the α + 1st results from it
by applying the operator ΦP . But Proposition 3.6 says the family of consistent truth values is
closed under the operations allowed in the body of a simple program. Also the given relations have
consistent (indeed exact) truth values. It follows that ΦP , applied to a consistent interpretation,
yields another consistent interpretation. Thus if the αth term of the approximation sequence is
consistent, so is the α+ 1st.

Finally, at a limit ordinal λ one takes the sup of interpretations associated with smaller ordinals
(a collection which constitutes a chain). But again, Proposition 3.6 says we have closure of consistent
truth values under directed

∑
. Then, if every member of the approximation sequence up to λ is

consistent, it follows that the λth member also is consistent. This completes the transfinite induction
proof.

In the simplest case, where the interlaced bilattice is FOUR, this proposition says the least
fixed point in the ≤k ordering, for a simple program, must actually be an interpretation in Kleene’s
strong three valued logic. It is not hard to check that it is the same as the least fixed point assigned
by the three-valued semantics discussed in [7]. Indeed, the three-valued operator denoted Φ in
[7] coincides with the four-valued bilattice operator, when restricted to consistent truth values.
In other words, the three-valued semantical approach is subsumed by the present, more general
one. Indeed, the bilattice approach provides nicely suggestive terminology and motivation for the
three-valued semantics. The operations used are truth-functional, being based on the ≤t ordering.
But the least fixed point is evaluated in the ≤k ordering, minimizing knowledge rather than truth.
It is this shift from truth to knowledge that makes a smooth treatment of negation possible.

Proposition 7.2 Suppose P is a simple, positive program, and B has a conflation operation. Then
the least and the greatest fixed points of ΦP under the ≤t ordering are exact.

Proof The argument for the least fixed point is essentially the same as in the preceeding proof,
except that Proposition 3.5 must be used instead of Proposition 3.6. Also the initial term of the
approximation sequence must be smallest in the ≤t ordering now, so it should assign to ground
atomic formulas the value false instead of ⊥. The argument for the greatest fixed point is similar,
except that one constructs the approximation sequence down from the top instead of up from the

20 Melvin Fitting

bottom, beginning with the biggest interpretation, which assigns to ground atomic formulas the
value true, and at limit ordinals one takes infs,

∧
, instead of sups.

Again in the simplest case, using the interlaced bilattice FOUR, the proposition above says the
least fixed point and the greatest fixed point, under the ≤t ordering, must be classical two-valued
interpretations. In fact, for a simple, positive program P, these are the least and greatest fixed
points of the well-known TP operator, from [1]. So the classical semantics developed for positive
programs is also a special case under the bilattice approach. The bilattice FOUR is also considered
in [5], though in a somewhat more restricted way, with emphasis entirely on the ≤t operations.
That paper considers the issues of model, continuity, and operational semantics, none of which we
take up here.

For positive programs, both ≤k and ≤t least and greatest fixed points exist. Some easy results
are obtained concerning their interrelationships. We use the following handy notation: vt and Vt
are the least and greatest fixed points of ΦP under the ≤t ordering, and vk is the least fixed point
under the ≤k ordering. The following inequalities are immediate, by definition of least and greatest:

1. vt ≤t vk ≤t Vt;

2. vk ≤k vt;

3. vk ≤k Vt.

Proposition 7.3 Let P be a simple, positive program, and let A be ground atomic. Also assume
B has a conflation operation. vk(A) is exact iff vt(A) = Vt(A) iff vt(A) = Vt(A) = vk(A).

Proof By 1), if vt(A) = Vt(A), then vt(A) = Vt(A) = vk(A). It then follows that vk(A) is exact,
by Proposition 7.2.

By 2), vk(A) ≤k vt(A). Then −vt(A) ≤k −vk(A). vt(A) is exact, by Proposition 7.2, so if
vk(A) is exact too, then vt(A) ≤k vk(A), and hence vt(A) = vk(A). Similarly if vk(A) is exact,
Vt(A) = vk(A).

Corollary 7.4 For a simple, positive program P, assuming there is a conflation, vk is exact iff
vt = Vt iff vt = Vt = vk.

Finally, for the classical truth values, we can be even more precise.

Corollary 7.5 For a simple, positive program P, assuming there is a conflation,

1. vk(A) = true iff vt(A) = true;

2. vk(A) = false iff Vt(A) = false.

Proof If vk(A) = true then vk(A) is exact, hence vk(A) = vt(A). Conversely, if vt(A) = true,
by inequality 1) earlier, true ≤t vk(A), hence vk(A) = true since true is the largest member of B
under the ≤t ordering. Part 2) is similar.

Bilattices and the Semantics of Logic Programming 21

For the simplest interlaced bilattice, FOUR, the only exact truth values are the classical ones,
and the only consistent ones are these and ⊥, so this Corollary completely characterizes vk in such
a case. In the previous section we observed that the operator associated with a simple, positive
program, using the interlaced bilattice FOUR, embodies the behavior of both the classical TP
operator and the three-valued operator. Then the Corollary above specializes to the following
result: using FOUR, for a simple, positive program, and for a ground atomic formula A, the least
fixed point of the operator in the three-valued semantics assigns A the value true iff the least fixed
point of TP assigns A true in the classical two-valued semantics; and the least fixed point of the
three-valued operator assigns A false iff the greatest fixed point of TP assigns A the value false.
This result first appeared in [7], with a different proof, and with essentially the present proof in
[10].

The result from [7] about the interlaced bilattice FOUR just discussed has a rather far-reaching
generalization, with which we conclude. Before stating it, we re-formulate the result connecting
the two and the three-valued semantics in more algebraic terms. One reason this re-formulation
was not discovered earlier is that the appropriate algebraic operations are not evident until the full
interlaced bilattice FOUR is considered. Specifically, we need the operation ⊗.

In FOUR, for a simple, positive program P, using the notation for least and greatest
fixed points given earlier: vk = vt ⊗ Vt.

The justification of this is easy. If vk(A) = true, by Corollary 7.5, vt(A) = true, hence Vt(A) =
true since vt ≤t Vt, and so (vt ⊗ Vt)(A) = true. If vk(A) = false, then (vt ⊗ Vt)(A) = false by a
similar argument. vk(A) can not be > by Proposition 7.1. Finally, if vk(A) = ⊥, by Proposition 7.3,
vt(A) 6= Vt(A), though both are exact, and it follows that (vt ⊗ Vt)(A) = ⊥.

Now, we generalize this in three directions. First, above we only considered the fixed points
vt, Vt and vk. There are four extremal fixed points for ΦP when P is positive. We intend to find
relationships between them all. Second, the result above was only for positive, simple programs.
The proof made use of simplicity in citing results about exactness and consistency. This restriction
can be relaxed. Also the existence of a conflation operation was necessary, in order for exactness and
consistency to make sense. Finally, the result above was only for the interlaced bilattice FOUR.
We extend it to a broad class of bilattices including some, like SIX , with no conflation operation.

An interlaced bilattice has four basic binary operations, ⊕, ⊗, ∧ and ∨, and so there are twelve
possible distributive laws:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∧ (b⊕ c) = (a ∧ b)⊕ (a ∧ c)
etc.

Definition 7.2 We call an interlaced bilattice distributive if all twelve distributive laws hold.

Note We will continue to refer to an interlaced distributive bilattice, but in fact this is somewhat
redundant since the distributivity laws imply the interlacing condition. For example, suppose

22 Melvin Fitting

a ≤k b, where ≤k is a lattice ordering. Then a⊕ b = b and so (a⊕ b) ∧ c = b ∧ c. If we are allowed
to distribute, this yields (a ∧ c) ⊕ (b ∧ c) = b ∧ c, and hence a ∧ c ≤k b ∧ c. The other interlacing
conditions are established in a similar way.

Distributive bilattices are fairly common. They include FOUR and SIX , for instance. This
follows from a general result.

Proposition 7.6 If C and D are distributive lattices then B(C,D) is a distributive bilattice.

Proof Straightforward checking.

Next, we remarked above that four, not three extremal fixed points were available for positive
programs. We extend the notation used earlier, in the obvious way: if P is a positive (not necessarily
simple) program, and ΦP is the associated operator on an interlaced bilattice of interpretations,
then vt and Vt are the least and greatest fixed points of ΦP under the ≤t ordering, and vk and Vk
are the least and greatest fixed points of ΦP under the ≤k ordering. Now, our main result is as
follows.

Theorem 7.7 Let P be a positive compound program, and suppose the interlaced bilattice B of
truth values is distributive and finite. Then:

1. vk = vt ⊗ Vt
2. Vk = vt ⊕ Vt
3. vt = vk ∧ Vk
4. Vt = vk ∨ Vk

Thus there is a nice, symmetric relationship between the extremal fixed points. The rest of this
section is devoted to a proof of the proposition above, and can be omitted if you wish to avoid the
technical details.

Lemma 7.8 Suppose that in a distributive interlaced bilattice, a1 ≤t A1 and a2 ≤t A2 (or a1 ≤k A1

and a2 ≤k A2). Then:

(a1 ⊗A1) ∧ (a2 ⊗A2) = (a1 ∧ a2)⊗ (A1 ∧A2),

(a1 ⊕A1) ∧ (a2 ⊕A2) = (a1 ∧ a2)⊕ (A1 ∧A2),

(a1 ∧A1)⊗ (a2 ∧A2) = (a1 ⊗ a2) ∧ (A1 ⊗A2),

etc.

Proof We show the first equality; the others are similar. Using a distributive law:

(a1 ⊗A1) ∧ (a2 ⊗A2) = (a1 ∧ a2)⊗ (a1 ∧A2)⊗ (A1 ∧ a2)⊗ (A1 ∧A2) = ∗
If a1 ≤t A1 and a2 ≤t A2 then using the basic interlacing conditions:

∗ ≤t (a1 ∧ a2)⊗ (A1 ∧A2)⊗ (A1 ∧A2)⊗ (A1 ∧A2) = (a1 ∧ a2)⊗ (A1 ∧A2)

Bilattices and the Semantics of Logic Programming 23

Similarly

∗ ≥t (a1 ∧ a2)⊗ (a1 ∧ a2)⊗ (a1 ∧ a2)⊗ (A1 ∧A2) = (a1 ∧ a2)⊗ (A1 ∧A2).

Lemma 7.9 Suppose that in a finite, distributive interlaced bilattice, ai ≤t Ai for each i ∈ I (or
ai ≤k Ai for each i ∈ I). Then ∧

i∈I
(ai ⊗Ai) =

∧
i∈I

ai ⊗
∧
i∈I

Ai

∧
i∈I

(ai ⊕Ai) =
∧
i∈I

ai ⊕
∧
i∈I

Ai

∏
i∈I

(ai ∧Ai) =
∏
i∈I

ai ∧
∏
i∈I

Ai

etc.

Proof As in the previous lemma; since the interlaced bilattice is assumed to be finite, ‘infinitary’
operations are really ‘finitary’ ones.

Proposition 7.10 Suppose B is a finite, distributive interlaced bilattice, v and V are interpre-
tations of the language L(W) in B, and φ is a closed, positive formula. If v ≤t V or v ≤k V
then:

1. (v ⊕ V)(φ) = v(φ)⊕ V (φ),

2. (v ⊗ V)(φ) = v(φ)⊗ V (φ),

3. (v ∧ V)(φ) = v(φ) ∧ V (φ),

4. (v ∨ V)(φ) = v(φ) ∨ V (φ),

Note The operations on the left are the induced ones in the interlaced bilattice of interpretations,
which need not be finite. The operations on the right are in the finite interlaced bilattice B.

Proof By induction on the complexity of φ. If φ is ground atomic, the result is immediate from the
definitions of the pointwise orderings in the space of interpretations, and does not depend on the
inequalities between v and V . We consider one of the induction cases, as a representative example.
Suppose φ is (∃x)ψ(x), and 1) is known for formulas simpler than φ, in particular for ψ(d) for each
d in the work space domain D. Then

(v ⊕ V)(φ) = (v ⊕ V)((∃x)ψ(x))
=

∨
d∈D

(v ⊕ V)(ψ(d))

24 Melvin Fitting

=
∨
d∈D

[v(ψ(d))⊕ V (ψ(d))] (by induction hypothesis)

=
∨
d∈D

v(ψ(d))⊕
∨
d∈D

V (ψ(d)) (by Lemma 7.9)

= v((∃x)ψ(x))⊕ V ((∃x)ψ(x))
= v(φ)⊕ V (φ)

Finally we come to the proof of Theorem 7.7 itself.

Proof Smallest and biggest fixed points are approached via a transfinite sequence of approxi-
mations. We use the following notation to represent this. (vt)0 is the smallest interpretation in
the ≤t direction. For an arbitrary ordinal α, (vt)α+1 = ΦP((vt)α). Finally, for a limit ordinal
λ, (vt)λ =

∨
α<λ(vt)α. As usual, the sequence (vt)α is monotone increasing in α (α < β implies

(vt)α ≤t (vt)β). And for some ordinal∞, (vt)∞ = vt, the least fixed point of ΦP in the ≤t ordering.
In fact, from that stage on, things remain fixed; that is, if α ≥ ∞ then (vt)α = vt.

More notation. (Vt)0 is the largest interpretation in the ≤t ordering. (Vt)α+1 = ΦP((Vt)α). And
for limit λ, (Vt)λ =

∧
α<λ(Vt)α. Then (Vt)α decreases in the ≤t ordering, and for some ordinal ∞,

(Vt)∞ = Vt. Finally we use (vk)α and (Vk)α analogously, but with ≤k,
∑

and
∏

playing the rules
that ≤t,

∨
and

∧
played above.

Now to show item 1) of Theorem 7.7, say, vk = vt ⊗ Vt, it is enough to show by transfinite
induction that, for each ordinal α, (vk)α = (vt)α ⊗ (Vt)α. Items 2), 3) and 4) are proved in exactly
the same way.

Initial Case. Let A be ground atomic. Because the initial interpretations are smallest and greatest
in their respective orderings, (vk)0(A) = ⊥, (vt)0(A) = false and (Vt)0(A) = true, so (vk)0(A) =
(vt)0(A)⊗ (Vt)0(A) by Proposition 3.1. Thus (vk)0 = (vt)0 ⊗ (Vt)0.

Induction Case. Suppose (vk)α = (vt)α ⊗ (Vt)α. Let A = P (d1, . . . , dn) be ground atomic, and
suppose P is unreserved. Say P (x1, . . . , xn) ← φ(x1, . . . , xn) is the clause of program P for P .
Then:

(vk)α+1(A) = (vk)α+1(P (d1, . . . , dn))
= ΦP((vk)α)(P (d1, . . . , dn))
= (vk)α(φ(d1, . . . , dn))
= [(vt)α ⊗ (Vt)α](φ(d1, . . . , dn)) (by induction hypothesis)
= (vt)α(φ(d1, . . . , dn))⊗ (Vt)α(φ(d1, . . . , dn)) (by Proposition 7.10)
= ΦP((vt)α(P (d1, . . . , dn))⊗ ΦP((Vt)α(P (d1, . . . , dn))
= (vt)α+1(P (d1, . . . , dn))⊗ (Vt)α+1(P (d1, . . . , dn))
= (vt)α+1(A)⊗ (Vt)α+1(A).

If P is unreserved but there is no program clause for P , or if P is reserved, then (vk)α+1(A) =
(vt)α+1(A)⊗ (Vt)α+1(A) trivially. Hence (vk)α+1 = (vt)α+1 ⊗ (Vt)α+1.

REFERENCES 25

Limit Case. Suppose (vk)α = (vt)α ⊗ (Vt)α for every α < λ, where λ is a limit ordinal. Let A be
ground atomic. Then (vk)λ(A) = (

∑
α<λ(vk)α)(A) =

∑
α<λ(vk)α(A). Since the interlaced bilattice

B is finite, and (vk)α is increasing with α in the ≤k ordering, there must be an αo < λ so that∑
α<λ(vk)α(A) = (vk)α0(A). Further, for any ordinal β with α0 ≤ β ≤ λ we must have (vk)α0(A) =

(vk)β(A) = (vk)λ(A). Similarly, using the facts that (vt)α is increasing and (Vt)α is decreasing in
the ≤t ordering, there must be ordinals α1, α2 < λ such that α1 ≤ β ≤ λ⇒ (vt)α1(A) = (vt)β(A) =
(vt)λ(A) =

∨
α<λ(vt)α(A) and α2 ≤ β ≤ λ ⇒ (Vt)α2(A) = (Vt)β(A) = (Vt)λ(A) =

∧
α<λ(Vt)α(A).

Now, let γ = max{α0, α1, α2}. Then, since γ < λ we can use the induction hypothesis, and so:

(vk)λ(A) = (vk)γ(A)
= [(vt)γ ⊗ (Vt)γ](A)
= (vt)γ(A)⊗ (Vt)γ(A)
= (vt)λ(A)⊗ (Vt)λ(A).

Hence (vk)λ = (vt)λ ⊗ (Vt)λ.

This concludes the proof.

8 Conclusion

Interlaced bilattices provide a simple, elegant setting for the consideration of logic programming
extensions allowing for incomplete or contradictory answers. On a theoretical level a considerable
unification of several ideas is achieved. Though in the abstract all interlaced bilattices are quite
natural, in practice not all are appropriate for computer implementation. A version based on FOUR
is a practical goal, taking the Prolog implementation of the classical logic programming paradigm as
a model. An implementation along these lines may be found in [11]. Also logic programming using
B([0, 1], [0, 1]) should be possible as an extension of the version proposed in [20]. In other cases
desirability and practicality are issues that remain to be decided. We hope interlaced bilattices will
provide the same kind of motivation, for future logic programming language development, that the
classical semantics has supplied heretofore.

References

[1] K. R. Apt and M. H. van Emden, Contributions to the theory of logic programming, JACM,
pp 841–862, vol 29 (1982).

[2] K. R. Apt, H. A. Blair and A. Walker, Towards a theory of declarative knowledge, in Founda-
tions of Deductive Databases and Logic Programming, Jack Minker editor, pp 89–148, Morgan-
Kauffmann (1987).

[3] N. D. Belnap, Jr. A Useful four-valued logic, in Modern Uses of Multiple-Valued Logic, J.
Michael Dunn and G. Epstein editors, pp 8–37, D. Reidel (1977).

26 REFERENCES

[4] H. A. Blair, A. L. Brown and V. S. Subrahmanian, A Logic programming semantics scheme,
Technical Report LPRG-TR-88-8, Syracuse University (1988).

[5] H. A. Blair, V. S. Subrahmanian, Paraconsistent logic programming, Proc. of the 7th Con-
ference on Foundations of Software Technology and Theoretical Computer Science, Springer
Lecture Notes in Computer Science, vol 287.

[6] K. L. Clark, Negation as failure, Logic and Databases, H. Gallaire and J. Minker editors, pp
293–322, Plenum Press, New York (1978), reprinted in Readings in Nonmonotonic Reasoning,
M. L. Ginsberg editor, pp 311–325, Morgan Kaufmann, Los Altos, CA (1987).

[7] M. C. Fitting, A Kripke/Kleene semantics for logic programs, Journal of Logic Programming,
pp 295–312 (1985).

[8] M. C. Fitting, Partial models and logic programming, Theoretical Computer Science, pp 229–
255, vol 48 (1986).

[9] M. C. Fitting, Computability Theory, Semantics, and Logic Programming, Oxford University
Press (1987).

[10] M. C. Fitting, Logic programming on a topological bilattice, Fundamenta Informaticae pp
209–218, vol 11 (1988).

[11] M. C. Fitting, Negation as refutation, to appear in LICS 1989.

[12] M. C. Fitting and M. Ben-Jacob, Stratified and three-valued logic programming semantics,
Logic Programming, Proc. of the Fifth International Conference and Symposium, R. A. Kowal-
ski and K. A. Bowen editors, pp 1054–1069, MIT Press (1988).

[13] M. C. Fitting and M. Ben-Jacob, Stratified, weak stratified and three-valued semantics, to
appear Fundamenta Informatica.

[14] M. L. Ginsberg, Multi-valued logics, Proc. AAAI-86, fifth national conference on artificial
intelligence, pp 243–247, Morgan Kaufmann Publishers (1986).

[15] M. L. Ginsberg, Multivalued Logics: A Uniform Approach to Inference in Artificial Intelligence,
Computational Intelligence, vol 4, no. 3.

[16] S. C. Kleene, Introduction to Methmathematics, Van Nostrand (1950).

[17] K. Kunen, Negation in logic programming, J. Logic Programming, pp 289–308 (1987).

[18] K. Kunen, Signed data dependencies in logic programs, forthcoming in Journal of Logic Pro-
gramming.

[19] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Math-
ematics, vol 5, pp 285–309 (1955).

REFERENCES 27

[20] M. van Emden, Quantitative deduction and its fixpoint theory, Journal of Logic Programming
pp 37–53, vol 3 (1986).

[21] M. van Emden and R. A. Kowalski, The Semantics of predicate logic as a programming lan-
guage, JACM, pp 733–742, vol 23 (1976).

[22] A. Visser, Four valued semantics and the liar, Journal of Philosophical Logic, pp 181–212, vol
13 (1984).

