
Bilattices In Logic Programming

Melvin Fitting
mlflc@cunyvm.cuny.edu

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

Depts. Computer Science, Philosophy, Mathematics
Graduate Center (CUNY), 33 West 42nd Street, NYC, NY 10036 ∗

Abstract
Bilattices, introduced by M. Ginsberg, constitute an elegant family of multiple-valued log-

ics. Those meeting certain natural conditions have provided the basis for the semantics of a
family of logic programming languages. Now we consider further restrictions on bilattices, to
narrow things down to logic programming languages that can, at least in principle, be imple-
mented. Appropriate bilattice background information is presented, so the paper is relatively
self-contained.

1 Introduction

Logic programming is more than just Prolog. It is a distinctive way of thinking about computers
and programming that has led to the creation of a whole family of programming languages, mostly
experimental. Some time ago I found that bilattices provided a uniform semantics for a rich and
interesting group of logic programming languages [9]. Bilattices are a natural generalization of
classical two-valued logic, and were introduced by Matt Ginsberg in [12], and more fully in [13].
Recently I have found that a special class of bilattices not only has good semantic properties, but
also possesses a natural proof theory that lends itself well to implementation. One member of this
family was considered in detail in [7]. At the time I prepared that paper I did not realize how
general the ideas were. Here I will sketch an approach that applies to the family as a whole. Since
this is a conference on multiple valued logics I will concentrate on the features of bilattices that
are significant for my work. Details of logic programming will be merely summarized (or omitted
altogether). I intend to write a fuller treatment of the logic programming aspects for presentation
elsewhere.

2 Logic Programming Background

The logic of Prolog is classical, at least if one ignores negation as failure (see [17]). Operationally,
queries either succeed or they don’t. Denotationally, programs are given meanings in classical
∗Research partly supported by NSF Grants CCR-8702307 and CCR 8901489, and PSC-CUNY Grant 668283.

1

2 Melvin Fitting

models. There is a fixpoint semantics that picks out the ‘intended model.’ With a program one
associates a ‘single-step’ operator, usually denoted T , mapping interpretations to interpretations.
Such an operator always has a least fixed point, and this is taken to be the intended meaning of the
program. There are results connecting the denotational and the (non-deterministic) operational
semantics ([22], [1]).

More recently, Van Emden has proposed a natural generalization [21], in which ‘confidence
factors’ are assigned to statements, rather than simple truth values. Better said, one can think of
the unit interval as being a space of generalized truth values, and so the approach is rather like a
fuzzy version of Prolog. Syntactically, programs are much like in (pure) Prolog, except that with
each program clause is associated an ‘attenuation factor.’ The intention is, an application of a
given program clause diminishes certainty by the attenuation factor associated with that clause.
The result is a flexible language which naturaly generalizes Prolog, and which is suitable for writing
some expert systems. Van Emden also showed that the standard fixpoint Prolog semantics carried
over to his generalization in a direct, elegant way. I refer you to his paper for details.

Negation remains something of a problem, though. After all, negation as failure ([4]) is a
problem for Prolog too. One well-known approach to the Prolog problem involves the notion
of stratification [2]. Another approach that is especially pertinent to this conference involves a
semantics based on a three-valued logic, [5], [15], [16]. There are even some connections between
the two approaches, [10], [11]. Still, it is not entirely clear what negation as failure should even
mean, once confidence factors have replaced simple truth values. It is this point I want to address
in the rest of the paper. I want to propose a more ‘positive’ treatment of negation.

3 Bilattice Background

Bilattices are a family of multiple-valued logics with a particularly nice, useful algebraic structure.
They were introduced by Matt Ginsberg; I refer you to his papers for his motivation [12], [13].
I have found bilattices to be natural tools both for the treatment of truth in languages allowing
self-reference, [8], and for the semantics of logic programming generalizations, [6], [9]. It is their
application to logic programming that will concern us here.

Essentially, a bilattice is a space of generalized truth values with two lattices orderings. One
ordering, ≤t, records degree of truth, whatever that means, while the other ordering, ≤k, records
degree of information or knowledge. As an informal example, no information, ⊥, is certainly less
information than falsehood, so one would want ⊥ ≤k false. On the other hand, no information is
of a greater degree of truth than falsehood, precisely because it doesn’t contain the information of
falsehood; hence false ≤t ⊥. This example will be made more formal below.

Of course if a bilattice were just a space with two lattice orderings, it would be nothing more
than two lattices that happened to share a carrier. It is the postulated connections between the
orderings that make it an interesting structure. And here, there are several degrees of connections
that can be considered. Now it is time to introduce some formal definitions and terminology.

Definition 1 A bilattice is a structure 〈B,≤t,≤k,¬〉 consisting of a non-empty set B, two partial
orderings of it, ≤t and ≤k, and a mapping from it to itself, ¬, such that:

Bilattices In Logic Programming 3

1. each of ≤t and ≤k makes B a complete lattice;

2. x ≤t y =⇒ ¬y ≤t ¬x;

3. x ≤k y =⇒ ¬x ≤k ¬y;

4. ¬¬x = x.

The definition above is due to Matt Ginsberg, [13], and is the basic definition. It is the negation
operator that provides the connection between the two orderings. The connection is a very weak
one, to be sure. Even so, there are interesting bilattice-like structures that do not have a notion of
negation. Since the subject is still at an early stage, a proper choice of terminology is not always
clear.

The intuition is elegantly straightforward. One expects negation to invert our notion of truth.
On the other hand, we know no more and no less about ¬P than we know about P . From an
algebraic point of view, completeness of the lattices is a rather strong condition to build in at the
ground level, and it is of interest to investigate bilattices that do not make such a requirement. We
will say more about this below, although the bilattices we are primarily interested in here do satisfy
the completeness requirement. Since the basic bilattice definition does contain a completeness
requirement, there must be a top and a bottom element for each of the two orderings. From now
on we assume neither ordering is trivial: bottom and top are different. We systematicaly use the
following notation.

Definition 2 For the ≤t ordering: bottom and top are denoted false and true; meet and join are
denoted ∧ and ∨; infinitary meet and join are denoted

∧
and

∨
. For the ≤k ordering: bottom and

top are denoted ⊥ and >; meet and join are denoted ⊗ and ⊕; infinitary meet and join are denoted∏
and

∑
.

It is straightforward to show that in a bilattice, false and true are switched by ¬, and the
DeMorgan Laws hold with respect to ∨ and ∧, while ⊥ and > are left unchanged by ¬, and ⊕ and
⊗ are their own duals.

The essentials of the next definition are also due to Ginsberg. In [9] a completeness condition
was included, which we omit here.

Definition 3 An interlaced bilattice is a structure 〈B,≤t,≤k〉 where:

1. both ≤t and ≤k give B the structure of a lattice;

2. x ≤t y =⇒ x⊕ z ≤t y ⊕ z and x⊗ z ≤t y ⊗ z;
3. x ≤k y =⇒ x ∨ z ≤k y ∨ z and x ∧ z ≤k y ∧ z.

Thus in an interlaced bilattice an operation associated with one of the lattice orderings is required
to be monotonic with respect to the other lattice ordering. This is a different kind of connection
between the two orderings from that considered above, via negation.

Bilattices were required to be complete, and hence had tops and bottoms. Interlaced bilattices,
as defined here, do not have a completeness requirement. Nonetheless, from now on we assume all

4 Melvin Fitting

such structures have tops and bottoms with respect to both orderings. Consideration of weaker
structures, while interesting, would take us too far afield here.

While the definitions may seem somewhat peculiar on first glance, there is a natural and large
family of examples. We need one more definition, then the motivation will become easier to present.

Definition 4 Let 〈L1,≤1〉 and 〈L2,≤2〉 be lattices. By L1¯L2 we mean the structure 〈L1×L2,≤t
,≤k〉 where:

1. 〈x1, x2〉 ≤t 〈y1, y2〉 provided x1 ≤1 y1 and y2 ≤2 x2;

2. 〈x1, x2〉 ≤k 〈y1, y2〉 provided x1 ≤1 y1 and x2 ≤2 y2.

Proposition 5 If L1 and L2 are lattices (with tops and bottoms), L1¯L2 is an interlaced bilattice.
Further, if L1 = L2 then the operation given by ¬〈x, y〉 = 〈y, x〉 satisfies the negation conditions
of the bilattice definition. Finally, if both L1 and L2 are complete lattices, L1 ¯ L2 satisfies the
completeness condition for bilattices.

Now for motivation. Think of the lattice L1 as what we use when we measure the degree of
belief, confidence, evidence, etc. that we have in a statement. Think of L2 as what we use when
we measure the degree of doubt, lack of confidence, counter-evidence, etc. that we have against a
statement. Then a pair, 〈x, y〉, summarizes our evidence for and our evidence against. Notice that
bilattices treat doubt not just as lack of belief; instead it is given a positive role to play. Notice
also that no requirement is imposed that these pairs, or ‘truth values,’ be consistent. Anything
is allowed; after the fact we can try to identify those truth values that are consistent. Consistent
truth values are those in which belief and doubt complement each other in some reasonable sense.
This is treated more fully in [9], and is ignored here.

Next we turn to specific examples. First, the simplest one. Take for both L1 and L2 the two-
element lattice {0, 1} where 0 ≤ 1. Think of 0 as no evidence, and 1 as complete certainty. Then
L1¯L2 is a four-element bilattice in which ⊥ is 〈0, 0〉, indicating we have no evidence either for or
against, and > is 〈1, 1〉, indicating we are in the inconsistent situation of having full evidence both
for and against. Likewise false is 〈0, 1〉 and true is 〈1, 0〉. This bilattice is presented graphically in
Figure 1. It is, in fact, a well-known four-valued logic due to Belnap [3]. The operations associated
with the ≤t ordering, together with negation, when confined to {false, true} are simply those of
classical logic, while when ⊥ is added they are those of Kleene’s strong three valued logic [14].
Moreover ⊗ can naturally be thought of as a consensus operator. x ⊗ y is the most information
that x and y agree on. Likewise ⊕ is an accept anything or gullability operator.

Another natural example, and one that will be of special concern here, is based on the unit
interval. Take both L1 and L2 to be [0, 1]. Now we can think of a member of the resulting bilattice
as expressing a degree of belief and of doubt. The negation operation simply switches the roles
of belief and doubt. Likewise ∧ minimizes belief while maximizing doubt, and ⊗ minimizes both
belief and doubt.

There is yet a stronger natural condition that can be imposed on bilattices. Since we have four
basic operations, ∧, ∨, ⊗ and ⊕, there are 12 possible distributive laws.

t

k

false true

T

⊥

Bilattices In Logic Programming 5

Figure 1: A four valued bilattice

Definition 6 A bilattice, or an interlaced bilattice, is distributive if all twelve distributive laws
hold.

As a matter of fact, it is easy to see that the distributive laws imply the interlacing laws. (We
use this without comment below.) Further, if L1 and L2 are distributive lattices, L1 ¯ L2 will be
distributive. Hence both examples above are distributive. Somewhat more remarkably, these are
the only kinds of distributive bilattices, because of a representation theorem due to Ginsberg [13].
Before stating and proving it, we give a useful ‘normal form’ result.

Lemma 7 In a distributive bilattice B, x = (x ∧ ⊥)⊕ (x ∨ ⊥).

Proof Using distributivity, and the absorption laws of lattices:

(x ∧ ⊥)⊕ (x ∨ ⊥) = [x⊕ (x ∨ ⊥)] ∧ [⊥⊕ (x ∨ ⊥)]
= [(x⊕ x) ∨ (x⊕⊥)] ∧ [(⊥⊕ x) ∨ (⊥⊕⊥)]
= [x ∨ x] ∧ [x ∨ ⊥]
= x ∧ (x ∨ ⊥)
= x

Now the representation theorem itself.

Proposition 8 Suppose B is a distributive bilattice. Then there are distributive lattices L1 and L2

such that B is isomorphic to L1 ¯ L2.

Proof Let L1 = {x ∨ ⊥ | x ∈ B}, and give it the ordering ≤1 where x ≤1 y ⇔ x ≤t y. Let
L2 = {x∧⊥ | x ∈ B} with ordering x ≤2 y ⇔ y ≤t x. Using the distributive laws it is easy to check
that both L1 and L2 are closed under ∧, ∨, ⊗ and ⊕. Now we verify several further items.

6 Melvin Fitting

1) For x, y ∈ L1, x ≤t y ⇔ x ≤k y. For x, y ∈ L2, x ≤t y ⇔ y ≤k x.

We check the second of these assertions. Say x = a ∧⊥ and y = b ∧⊥. Each direction requires
a separate argument.

Suppose a∧⊥ ≤t b∧⊥. Then a∧⊥ = a∧ b∧⊥. Now ⊥ ≤k a∧⊥ so b∧⊥ ≤k b∧a∧⊥ = a∧⊥.
Suppose b ∧ ⊥ ≤k a ∧ ⊥. Then a ∧ b ∧ ⊥ ≤k a ∧ ⊥. Also ⊥ ≤k b ∧ ⊥ so using the interlacing

conditions, a ∧ ⊥ ≤k a ∧ b ∧ ⊥. Then a ∧ ⊥ = a ∧ b ∧ ⊥ so a ∧ ⊥ ≤t b ∧ ⊥.

2) Define a map θ : B → L1 ¯ L2 by: xθ = 〈x ∨ ⊥, x ∧ ⊥〉. θ is one-one and onto.

That θ is one-one is an easy consequence of Lemma 7. To show it is onto, suppose 〈a∨⊥, b∧⊥〉 ∈
L1 ¯ L2. Set t = (b ∧⊥)⊕ (a ∨⊥); we claim tθ = 〈a ∨⊥, b ∧⊥〉. By definition, tθ = 〈t ∨⊥, t ∧⊥〉.
Now,

t ∨ ⊥ = [(b ∧ ⊥)⊕ (a ∨ ⊥)] ∨ ⊥
= [(b ∧ ⊥) ∨ ⊥]⊕ [a ∨ ⊥ ∨ ⊥]
= ⊥⊕ (a ∨ ⊥)
= a ∨ ⊥

Equality of the second components is shown similarly.

3) Finally, a ≤t b⇔ aθ ≤t bθ and a ≤k b⇔ aθ ≤k bθ.
We show the second of these equivalences. Suppose a ≤k b. Then a∧⊥ ≤k b∧⊥ so by item 1),

b∧⊥ ≤t a∧⊥, hence a∧⊥ ≤2 b∧⊥. Also a∨⊥ ≤k b∨⊥ so a∨⊥ ≤t b∨⊥, hence a∨⊥ ≤1 b∨⊥.
Then aθ ≤k bθ.

Conversely, suppose aθ ≤k bθ. Then a ∨ ⊥ ≤k b ∨ ⊥ and a ∧ ⊥ ≤k b ∧ ⊥ so, using Lemma 7,
a = (a ∧ ⊥)⊕ (a ∨ ⊥) ≤k (b ∧ ⊥)⊕ (b ∨ ⊥) = b.

Incidentally, the Proposition can be generalized somewhat. Distributivity of the bilattice can
be weakened to the assumption that all distributive laws hold between x, y and z provided one
of the three is ⊥. Of course the conclusion must also be weakened to drop distributivity for the
resulting lattices. Similarly, with suitable modifications, >, false or true can be used in place of ⊥
in the proof.

Finally, if a completeness condition is imposed, then infinitary distributive laws can be con-
sidered, such as a ⊗ ∨i bi =

∨
i(a ⊗ bi) and a ∧ ∏i bi =

∏
i(a ∧ bi). If all such equations hold we

say a bilattice meets the infinite distributivity conditions. As might be expected, if L1 and L2

are complete infinitely distributive lattices, then L1 ¯ L2 will be a complete bilattice meeting the
infinite distributivity conditions. We will need such bilattices later on.

4 Logic Programming Syntax

We want to set up a family of logic programming languages with a bilattice as the underlying
space of truth values. We do this in a quite general way; then additional restrictions or extensions
can be imposed depending on the choice of particular bilattice. The machinery presented here is
essentially a condensation and specialization of that found in [9].

Let B be a bilattice that is also interlaced. We set up a logic programming language L(B) over
B. To this end we assume we have the usual notions of term and atomic formula from first-order

Bilattices In Logic Programming 7

logic. Conventional Prolog has the equivalent of a truth constant; when one writes A ← it is as
if we had A ← true. We will need something more general; we assume that we have constants in
our language L(B), particular atomic formulas, that designate members of the bilattice B. To keep
things simple we assume members of B themselves occur in the language L(B), to avoid details on
how such members can be named.

The domain of the intended model for L(B) will be the Herbrand universe (of closed terms),
familiar from Prolog semantics (see [17]). We greatly broaden the notion of formula, however.
To this end we assume we have formal symbols, ∧, ∨, ⊗, ⊕ and ¬, corresponding to the various
operations on the bilattice. We also assume we have quantifiers ∀ and ∃ to correspond to the
infinitary truth operations

∧
and

∨
of bilattices, and also

∏
and

∑
corresponding to the infinitary

information operations of the ≤k ordering.

Definition 9 Formulas of L(B) are expressions built up from atomic formulas using ¬, the binary
connectives ∧, ∨, ⊗ and ⊕, and the quantifiers ∀, ∃, ∏ and

∑
.

Definition 10 A program clause of L(B) is an expression of the form A ← Φ where A is atomic
(not a constant) and Φ is an arbitrary formula, all of whose free variables occur in A. A is the head
and Φ is the body of this program clause.

Definition 11 A program of L(B) is a finite set of program clauses in which no two program
clauses have heads involving the same relation symbol.

There is a standard way in Prolog to combine two program clauses for the same relation symbol,
using equality. Similar ideas carry over to languages based on a wide variety of bilattices, so we
have chosen to simply build uniqueness into the definition of program. Also we have required that
all free variables in clause bodies occur in clause heads. This is no real restriction since we allow
explicit quantification in bodies.

Note that the syntax so far does not commit us to a particular bilattice (except for the choice of
constants allowed as atomic formulas). Further, if we restrict ourselves to programs not involving
the ≤k connectives and quantifiers, not involving negation, and not involving ∀, we have essentially
the syntax of Prolog, give or take some obvious transformations.

5 Fixpoint Semantics

For pure Prolog, [22] and [1] showed how a single-step operator could be associated with a program.
If negations are not present, such an operator has a least fixed point in a natural sense, and that
least fixed point supplies a denotational meaning for the program. We showed in [9] that these ideas
carry over in a straightforward way to logic programming languages with an interlaced bilattice as
the space of truth values. The most natural ‘direction’ in which to evaluate a least fixed point is the
information or knowledge direction; it turns out that negation poses none of the familiar problems
then. However if negation is not present, least, and greatest, fixed points will exist under both
bilattice orderings, and there are deep connections between them in many cases. This is more than

8 Melvin Fitting

we can go into here. We merely sketch the basic ideas of the fixpoint semantics, using bilattices.
The ideas involve less of logic programming than of logic, and should be of some interest here.

For the rest of this section, L(B) is a logic programming language allowing all the syntactic
machinery sketched earlier. Thus program clause bodies can contain any of ∧, ∨, ¬, ⊗, ⊕, ∀, ∃,∏

and
∑

. Also we assume 〈B,≤t,≤k〉 is a a bilattice that is also interlaced. That is, it meets the
conditions for being a bilattice, including having a negation operation and being complete with
respect to both orderings, and it meets the interlacing conditions. B is the intended space of truth
values for our logic programming language.

Let P be a program in the language L(B). Let H be the Herbrand universe, consisting of ground
terms of the language L(B). We assume H is non-trivial. H will serve as the intended domain of
quantification. By PH we mean the (generally infinite) family of ground instances of members of
P . Note that because of the way we defined programs, if a ground atomic formula A occurs as the
head of some member of PH , it occurs only once.

Definition 12 An interpretation is a mapping v from ground atomic formulas to the bilattice B,
that maps members of B to themselves.

Pointwise partial orderings are defined on the family of interpretations. That is, v1 ≤t v2 pro-
vided v1(A) ≤t v2(A) for every ground atomic formula A, and similarly for ≤k. It is straightforward
to check that the space of interpretations itself becomes an interlaced bilattice. In it the small-
est interpretation, in the ≤k ordering, is the one that maps members of B to themselves, and is
otherwise ⊥.

Interpretations are defined only on ground atoms. But they have a direct extension to arbitrary
closed formulas. Set v(¬X) = ¬v(X), v(X ⊗ Y) = v(X) ⊗ v(Y), and so on for the other binary
connectives. Further, set v((∀x)Z(x)) =

∧
h∈H v(Z(h)), v((

∏
x)Z(x)) =

∏
h∈H v(Z(h)), etc. With

these definitions, it turns out we have the following nice monotonicity result:

v1 ≤k v2 =⇒ v1(X) ≤k v2(X) for any ground sentence X.

A similar result does not hold for the ≤t ordering unless negation is disallowed.
Now we associate with the program P an operator, which we denote ΦP , mapping interpretations

to interpretations. For an interpretation v, ΦP (v) is the interpretation whose value on the ground
atomic formula A is given by:

ΦP (v)(A) =

A if A ∈ B
v(B) if A← B ∈ PH
⊥ otherwise.

It follows from the monotonicity of interpretations on ground formulas that ΦP itself is mono-
tonic in the information direction. That is:

v1 ≤k v2 =⇒ ΦP (v1) ≤k ΦP (v2)

Now, by the Knaster-Tarski Theorem [20], ΦP has a least fixed point. It is this that we take as
supplying the denotational meaning for the program P .

Bilattices In Logic Programming 9

There is a standard way of approximating to least fixed points. Define a transfinite sequence
vαP as follows:

v0
P = the smallest interpretation under ≤k
vα+1
P = ΦP (vαP)
vλP =

∑
α<λ v

α
P for limit λ

This sequence increases in the ≤k ordering with increasing ordinals, eventually becoming constant,
settling on the least fixed point of ΦP . The smallest ordinal α such that vαP is the least fixed point
of ΦP is called the closure ordinal of ΦP . One would like the closure ordinal to be ω (or less)
because otherwise an implementation is doubtful. Unfortunately this is not the case generally. It
does happen when certain restrictions are imposed though. We take these up next, after some
preliminaries.

Lemma 13 In any bilattice, ¬∑i ai =
∑
i ¬ai and

∑
i

∑
j ai,j =

∑
j

∑
i ai,j.

Proof The second equality is standard for complete lattices. We prove the first. By definition,
¬aj ≤k

∑
i ¬ai. Then, since negation preserves the information ordering, aj ≤k ¬

∑
i ¬ai. Since j

is arbitrary,
∑
i ai ≤k ¬

∑
i ¬ai, and so ¬∑i ai ≤k

∑
i ¬ai. Since this is the case for an arbitrary

family ai we have, on replacing ai by ¬ai, ¬
∑
i ¬ai ≤k

∑
i ai and hence

∑
i ¬ai ≤k ¬

∑
i ai.

Lemma 14 Suppose B is a bilattice that meets the infinite distributivity conditions. Let a1 ≤k
a2 ≤k a3 . . . and b1 ≤k b2 ≤k b3 ≤k . . . be two sequences in B. Finally let ◦ be one of ⊕, ⊗, ∨ or ∧.
Then ∑

i

(ai ◦ bi) =
∑
i

ai ◦
∑
i

bi.

Proof Infinite distributivity implies distributivity. This in turn implies interlacing, all of which
we use below.

Let m be the maximum of i and j. Then, since the sequences ai and bi are increasing,

ai ◦ bj ≤k am ◦ bm ≤k
∑
i

(ai ◦ bi).

Since j is arbitrary, ∑
j

(ai ◦ bj) ≤k
∑
i

(ai ◦ bi)

so using an infinitary distributive law,

ai ◦
∑
j

bj ≤k
∑
i

(ai ◦ bi).

Finally, since i is arbitrary, ∑
i

(ai ◦
∑
j

bj) ≤k
∑
i

(ai ◦ bi),

10 Melvin Fitting

so by distributivity again, ∑
i

ai ◦
∑
j

bj ≤k
∑
i

(ai ◦ bi).

Conversely ai ≤k
∑
i ai and bi ≤k

∑
i bi, so by the interlacing conditions,

ai ◦ bi ≤k
∑
i

ai ◦
∑
i

bi

and so ∑
i

(ai ◦ bi) ≤k
∑
i

ai ◦
∑
i

bi.

With these preliminaries out of the way we return to logic programming issues.

Definition 15 We call a logic program k-existential provided
∑

is the only infinitary operation
symbol allowed to appear in program clause bodies. That is, none of

∏
, ∀ or ∃ are allowed.

Theorem 16 Suppose B is a bilattice that meets the infinite distributivity conditions, and P is a
k-existential program. Then the operator ΦP is continuous, and its closure ordinal is ω.

Proof To say an operator ΦP is continuous means, if v1 ≤k v2 ≤k v3 ≤k . . . then
∑
i ΦP (vi) =

ΦP (
∑
i vi). It is a standard result that a continuous operator has a closure ordinal of ω, so we

concentrate on showing ΦP is continuous. So, suppose we have an increasing sequence vi of inter-
pretations. It is enough to show that for each ground atomic formula A,(∑

i

ΦP (vi)

)
(A) =

(
ΦP (

∑
i

vi)

)
(A).

Since the operations on the space of interpretations have pointwise definitions, this comes down to
showing ∑

i

(ΦP (vi)) (A) =

(
ΦP (

∑
i

vi)

)
(A).

Say the program clause A← B ∈ PH . Then showing the formula above is equivalent to showing∑
i

vi(B) = (
∑
i

vi)(B).

This can be showed by induction on the complexity of B. If B is atomic, the result is immediate
because of the pointwise nature of operations in the space of interpretations. For more complicated
cases the lemmas above supply what is needed.

The two element lattice {0, 1} trivially satisfies the infinitary distributive laws, and so the result
above applies to the bilattice displayed in Figure 1. A logic programming language for this bilattice
was investigated in some detail in [7], and the result contained in the Theorem above was stated,
but not proved. The complete lattice [0, 1], with the standard ordering, also satisfies the infinitary
distributive laws, and hence the Theorem applies to the bilattice [0, 1]¯ [0, 1]. This is an example
that will concern us below. Clearly many other examples exist. Incidentally, the Theorem above
fits nicely into the framework of [18]. The preliminary Lemmas can be looked at as establishing
that the framework of that paper is appropriate.

Bilattices In Logic Programming 11

6 Smullyan style propositional rules

In [19] Smullyan presented a proof procedure for classical logic using signed formulas in semantic
tableaux. A signed formula is T X or F X, where X is a formula. The intuition is straightforward:
T X means that X is true (in some model); F X means X is false (again, in some model). If one
can produce a contradiction starting from F X, informally X can not be false, and so must be
valid. This intuition is the direct motivation behind the Smullyan tableau rules.

In addition, Smullyan introduced uniform notation. It is easy to check that T X ∧ Y ⇔ T X
and T Y , and also F X ∨ Y ⇔ F X and F Y . Since both T X ∧ Y and F X ∨ Y act conjunctively,
they are grouped into the same category. Then one can give rules for, and investigate, whole groups
of signed formulas together. Propositionally Smullyan had two categories: α or conjunctive; and β
or disjunctive. For each α signed formula two components, α1 and α2 were defined, so that α was
equivalent to the conjunction of α1 and α2. For example, F X ∨Y is an α, and for it α1 is F X and
α2 is F Y . Likewise β formulas have their components, β1 and β2, with each β being equivalent to
the disjunction of them.

Now, a proof of X in Smullyan’s system is a closed tableau for F X. A tableau for F X is a tree
with F X at the root, constructed using the branch extension rules given in Table 1:

α

α1

α2

β

β1 | β2

T ¬Z
F Z

F ¬Z
T Z

Table 1: Branch Extension Rules

The intention is, if an α occurs on a branch, α1 and α2 can be added to the branch end. If a β
occurs on a branch, the branch is split and β1 is added to one fork and β2 to the other. Similarly
for the negation rules. A tableau is closed if each branch contains a contradiction, T Z and F Z for
some Z.

In a similar way we can define a disproof of X in Smullyan’s system: it is a closed tableau for
T X.

We want to extend Smullyan’s ideas, as far as possible, to bilattices. Now, if a bilattice B is
distributive it will be of the form L1 ¯ L2 for lattices L1 and L2. It is convenient to make use
of this representation. Recall, in Smullyan’s system one works backward. To establish that X is
valid one begins by assuming it is not, F X, and one tries for a contradiction. Likewise now, if X
is given values in the bilattice L1 ¯ L2, and we want to establish the ‘evidence for’ X is at least a,
we begin by assuming it isn’t, and try for a contradiction. Thus we introduce a family of signs Fa
for each a ∈ L1, and we think of FaX as asserting that the valuation of X in L1 ¯ L2 has a first
component that is not ≥ a. Then a contradiction based on FaX will establish that the evidence
for X is at least a. Similarly TbX will mean the valuation of X has a second component that is
not ≥ b, where b ∈ L2. Now we proceed more formally.

• For the rest of this section, B = L1 ¯ L2 is a fixed bilattice.

12 Melvin Fitting

Definition 17 A B-signed formula is one of FaX or TbX, where X is a formula, a ∈ L1 and
b ∈ L2.

Definition 18 For a valuation v in B, we extend its action to map signed formulas to classical
truth values, true or false, as follows:

1. v(FaX) is true if v(X) = 〈x1, x2〉 and x1 6≥ a;

2. v(TbX) is true if v(X) = 〈x1, x2〉 and x2 6≥ b.

Now, it is straightforward to check that at least some of Smullyan’s conditions extend directly.
For example, for a given valuation v, v(TbX ∨ Y) is true if and only if v(TbX) is true or v(Tb Y)
is true. To state things as simply as possible we extend Smullyan’s uniform notation system. We
also classify B-signed formulas into conjunctive or α formulas, with components α1 and α2, and
into disjunctive or β formulas, with components β1 and β2. These are given in Table 2.

α α1 α2

TbX ∧ Y TbX Tb Y
FaX ∨ Y FaX Fa Y
TbX ⊕ Y TbX Tb Y
FaX ⊕ Y FaX Fa Y

β β1 β2

TbX ∨ Y TbX Tb Y
FaX ∧ Y FaX Fa Y
TbX ⊗ Y TbX Tb Y
FaX ⊗ Y FaX Fa Y

Table 2: Signed Formulas

Now the following is straightforward to verify.

Proposition 19 For any valuation v in B:

1. v(β) is true ⇐⇒ v(β1) is true or v(β2) is true;

2. v(α) is true =⇒ v(α1) is true and v(α2) is true.

Unfortunately, we do not generally have the converse of item 2) above. This means that a tableau-
like proof procedure based on these ideas will generally be sound, but not complete. There is,
however, a class of interesting bilattices for which we do have the converse.

Proposition 20 The following are equivalent:

1. for any valuation v in L1 ¯ L2, v(α1) is true and v(α2) is true =⇒ v(α) is true;

2. the lattice orderings of L1 and L2 are linear.

Proof We show item 1) implies item 2); the converse direction is a special case of the Proposition
below. Consider the formula X ∨ Y , and suppose v is the valuation such that v(X) = 〈x1, x2〉
and v(Y) = 〈y1, y2〉. Then v(X ∨ Y) = 〈x1 ∨ y1, x2 ∧ y2〉. Now consider the α signed formula
Fx1∨y1 X ∨ Y . Item 1) asserts that x1 6≥ x1 ∨ y1 and y1 6≥ x1 ∨ y1 implies x1 ∨ y1 6≥ x1 ∨ y1. It
follows from this that x1 ≥ x1 ∨ y1 or y1 ≥ x1 ∨ y1. Since x1 ∨ y1 ≥ x1 and x1 ∨ y1 ≥ y1, we have
x1 ≥ y1 or y1 ≥ x1. Thus L1 is linear; the linearity of L2 is shown similarly.

Bilattices In Logic Programming 13

Proposition 21 Let B = L1 ¯ L2 where both L1 and L2 have lattice orderings that are linear.
Then for valuations v1 and v2:

v1(α1) and v2(α2) both true =⇒ (v1 ⊗ v2)(α) true.

Proof Suppose v1(X) = 〈x1, x2〉, v2(Y) = 〈y1, y2〉, and α = FaX ∨ Y . Suppose also that v1(α1)
and v2(α2) are both true. Then x1 6≥ a and y1 6≥ a so, since the ordering in L1 is linear, x1 < a
and y1 < a. Now

(v1 ⊗ v2)(X ∨ Y) = (v1 ⊗ v2)(X) ∨ (v1 ⊗ v2)(Y)
≤k v1(X) ∨ v2(Y)
= 〈x1, x2〉 ∨ 〈y1, y2〉
= 〈x1 ∨ y1, x2 ∧ y2〉.

Since x1 < a and y1 < a, x1 ∨ y1 < a, so x1 ∨ y1 6≥ a, and hence (v1 ⊗ v2)(FaX ∨ Y) is true.

Finally, if L1 = L2 then a natural notion of negation is available: ¬〈x, y〉 = 〈y, x〉. Under these
circumstances the following is easy to verify.

Proposition 22 For any valuation v in L¯ L:

1. v(Ta ¬X) is true ⇐⇒ v(FaX) is true.

2. v(Fa ¬X) is true ⇐⇒ v(TaX) is true.

So far we have established that if we assume the linearity of L1 and L2 then Smullyan-style α
and β rules will be appropriate, and if L1 = L2 so that we have negation, the Smullyan rules for
negation extend directly. Thus we have the rules in Table 3, for B-signed formulas, where B = L¯L
with L linear.

α

α1

α2

β

β1 | β2

Ta ¬Z
Fa Z

Fa ¬Z
Ta Z

Table 3: Bilattice Branch Extension Rules

Smullyan’s rules for branch closure are a problem however. In his system T Z and F Z constitute
a contradiction. But now, Ta Z and Fa Z are not jointly impossible. Together they merely say we
have contradictory evidence, and so an inconsistent truth value for Z. Inconsistent truth values are
allowed, and can be used to record important facts about our attempts at reasoning. In place of
Smullyan’s contradictions we make use of the presence of members of the bilattice B in the language
L(B).

Definition 23 Fa 〈x, y〉 is contradictory if x ≥ a. Ta 〈x, y〉 is contradictory if y ≥ a.

14 Melvin Fitting

Now a closed tableau is one in which each branch contains a contradictory signed formula. A
closed tableau for Fa 〈x, y〉 establishes that x ≥ a and a closed tableau for Tb 〈x, y〉 establishes that
y ≥ b. Then to determine lower bounds on the information content of X we must run two tableaux,
one for TbX and one for FaX. Based on the propositions above, the resulting tableau system is
sound and complete.

As it happens, Smullyan’s rules can be considerably simplified here. In his classical system,
contradictions involved more than one signed formula, but that is not the case now. Consequently
branches need never contain more than a single formula, and the α rule can be replaced by the
version in Table 4

α

α1

α

α2

Table 4: Simplified α Rules

The tableau system with the revised α rules is now essentially non-deterministic. It is possible to
miss a proof by applying the wrong rule, and so an implementation must be prepared to backtrack.

7 Putting Things Together

We now have all the pieces needed to implement, at least in principle, an interesting family of logic
programming languages. Since logic programming is not the central concern here, this section is
rather sketchy. A more detailed presentation is in preparation.

For the rest of this section we take B to be the bilattice L ¯ L where L is a complete lattice
whose ordering is linear. Then B has every nice property we might want. It is a bilattice that
is interlaced, distributive, and even satisfies the infinitary distributive laws. Further, the logic
programming language L(B) has a good fixpoint semantics [9], and k-existential programs give rise
to continuous operators. (Then if P is k-existential, ΦP attains its least fixed point in ω steps. We
use µΦP to denote this least fixed point.) Finally, a tableau style proof procedure is available.

Since we have infinitary distributive laws, any k-existential formula is equivalent to one in
which all occurrences of

∑
are in front. Then, in the usual Prolog fashion,

∑
quantifiers can be

left implicit, i.e. omitted. From now on we assume program clauses are of the form A← φ where
φ has no quantifiers at all.

Next, an analog of SLD resolution is straightforward, incorporating the Smullyan style rules.

Definition 24 A goal list is a finite list [S1, . . . , Sn] of signed (quantifier free) formulas.

There are propositional transformations of goal list, using the Smullyan rules. For example, a
goal list of the form [. . . , α, . . .] can be replaced (non-deterministically) by either [. . . , α1, . . .] or
[. . . , α2, . . .]. Likewise a goal list of the form [. . . , β, . . .] can be replaced by [. . . , β1, β2, . . .]. And so
on. Finally, Fa 〈x, y〉 can be dropped from a goal list if x ≥ a, and similarly for Ta 〈x, y〉. We omit
a detailed statement of these rules.

REFERENCES 15

Finally there are program calls. Suppose P is a program and [. . . , TbA, . . .] is a goal list, where
A is atomic. Say A′ ← φ is a program clause of P , and σ is a most general unifier of A and A′.
Then [. . . , Tb φ, . . .]σ results from [. . . , TbA, . . .] by a P-program call. There is a similar notion when
FaA rather than TbA is in the goal list.

Definition 25 A P-derivation from a goal list [S1, . . . , Sn] is a sequence of goal lists beginning
with [S1, . . . , Sn], with each goal list after the first coming from its predecessor by a propositional
transformation or by a P -program call. The derivation succeeds if it ends with [].

The analogy between this and SLD resolution should be clear. Now, soundness can be estab-
lished in the following form.

Theorem 26 Suppose A is ground atomic, and µΦP (A) = 〈x, y〉.

1. If there is a successful P -derivation from [FaA] then x ≥ a.

2. If there is a successful P -derivation from [TaA] then y ≥ a.

Completeness is a little more of a problem. The following generally holds.

Theorem 27 Again suppose A is ground atomic, and µΦP (A) = 〈x, y〉.

1. If x > a then there is a successful P -derivation from [FaA].

2. If y > a then there is a successful P -derivation from [TaA].

Whether or not > can be replaced by ≥ in the Theorem above depends on the lattice L. If L
is [0, 1], it is not the case. On the other hand, if L is discrete, it is.

Finally, the programming system of [21] included attenuation factors associated with program
clauses. I have not considered these here, for reasons of space and general interest. In fact, it is
possible to introduce a version of them into the [0, 1]¯ [0, 1] bilattice setting. The nicest way is to
consider attenuation factors to be operators, something like negation. I will have to leave a proper
discussion of them for elsewhere, just as I must leave proofs of the soundness and completeness
results for elsewhere.

I hope I have been able to accomplish what I intended. I wanted to show that bilattices are
both natural and useful tools for logic programming, and are worth pursuing for this reason as well
as for their own sakes.

References

[1] K. R. Apt and M. H. van Emden, Contributions to the theory of logic programming, JACM,
pp 841–862, vol 29 (1982).

[2] K. R. Apt, H. A. Blair and A. Walker, Towards a theory of declarative knowledge, in Founda-
tions of Deductive Databases and Logic Programming, Jack Minker editor, pp 89–148, Morgan-
Kauffmann (1987).

16 REFERENCES

[3] N. D. Belnap, Jr. A Useful four-valued logic, in Modern Uses of Multiple-Valued Logic, J.
Michael Dunn and G. Epstein editors, pp 8–37, D. Reidel (1977).

[4] K. L. Clark, Negation as failure, Logic and Databases, H. Gallaire and J. Minker editors, pp
293–322, Plenum Press, New York (1978), reprinted in Readings in Nonmonotonic Reasoning,
M. L. Ginsberg editor, pp 311–325, Morgan Kaufmann, Los Altos, CA (1987).

[5] M. C. Fitting, A Kripke/Kleene semantics for logic programs, Journal of Logic Programming,
pp 295–312 (1985).

[6] M. C. Fitting, Logic programming on a topological bilattice, Fundamenta Informaticae pp
209–218, vol 11 (1988).

[7] M. C. Fitting, Negation as refutation, Proceedings Fourth Annual Symposium on Logic in
Computer Science, pp 63–70, IEEE Computer Society Press (1989).

[8] M. C. Fitting, Bilattices and the theory of truth, Journal of Philosophical Logic, vol 18, pp
225–256 (1989).

[9] M. C. Fitting, Bilattices and the semantics of logic programming, Journal of Logic Program-
ming (to appear).

[10] M. C. Fitting and M. Ben-Jacob, Stratified and three-valued logic programming semantics,
Logic Programming, Proc. of the Fifth International Conference and Symposium, R. A. Kowal-
ski and K. A. Bowen editors, pp 1054–1069, MIT Press (1988).

[11] M. C. Fitting and M. Ben-Jacob, Stratified, weak stratified and three-valued semantics, Fun-
damenta Informaticae (to appear).

[12] M. L. Ginsberg, Multi-valued logics, Proc. AAAI-86, fifth national conference on artificial
intelligence, pp 243–247, Morgan Kaufmann Publishers (1986).

[13] M. L. Ginsberg, Multivalued Logics: A Uniform Approach to Inference in Artificial Intelligence,
Computational Intelligence, vol 4, no. 3.

[14] S. C. Kleene, Introduction to Methmathematics, Van Nostrand (1950).

[15] K. Kunen, Negation in logic programming, J. Logic Programming, pp 289–308 (1987).

[16] K. Kunen, Signed data dependencies in logic programs, Journal of Logic Programming, vol 7,
pp 231–245 (1989).

[17] J. Lloyd, Foundations of Logic Programming, Springer-Verlag (1984).

[18] S. Morishita, Lattice-valued Programs, TRL Research Report, TR87-0041, IBM Tokyo Re-
search Laboratory, 5-19 Sanbancho, Chiyoda-ku, Tokyo 102 (1988).

[19] R. Smullyan, First-Order Logic, Springer-Verlag (1968).

REFERENCES 17

[20] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Math-
ematics, vol 5, pp 285–309 (1955).

[21] M. van Emden, Quantitative deduction and its fixpoint theory, Journal of Logic Programming
pp 37–53, vol 3 (1986).

[22] M. van Emden and R. A. Kowalski, The Semantics of predicate logic as a programming lan-
guage, JACM, pp 733–742, vol 23 (1976).

