il

e

An axiomatic approach to computers
by

MELVIN C. FITTING
(Herbert H. Lehman College of the City University of New York)

1. Introduction

IN THIS PAPER we outline an axiomatic treatment of idealized
computers “from the outside.” The computers are idealized in the
sense that no consideration is made of storage space or computation
time. Our treatment is “from the outside” in the sense that we deal
with computers as black boxes, paying attention only to input and
output, ignoring what happens on the way through. Our approach
thus differs from Turing machines, which are an analysis of the act
of computation. Indeed, in our treatment there is nothing available
that corresponds to a computation at all. But we think it interesting
that many basic qualitative results can be derived from simple, intui-
tively plausible axioms which don’t commit one to a specific model of
how computers work inside.

The general plan is as follows. We first establish some very weak
conditions for a computation device. We organize these into a computa-
tion laboratory, which must meet certain minimal requirements. We
postulate a universal machine which can be programmed, and which
duplicates the work of all the computation devices in the computation
laboratory. Then we postulate that the programs themselves are
subject to certain simple manipulations in the computation labora-
tory. Finally we postulate that our devices receive input and produce
output in finite chunks.

After each group of axioms, we state some consequences, and
discuss significance. We have chosen the rather unusual policy of
omitting almost all proofs. Many are straightforward, those that are
not are often modifications of analogs in recursion theory. We believe
that what is important here is the organization and arrangement,
rather than the details of argument.

In the concluding section we give references for various results and
7 — Theoria 3:1979

98 MELVIN C. FITTING

styles of development. We have chosen not to do this as we go along,
so as not to break the continuity.

2. Computation devices

Let Q[be some non-empty set, the domain. Informally the members
of Q are the objects our computing devices work with. They may be
numbers or words, for example. We make no restrictions on 2 until
later.

By [Q1]" (r=1, 2, ...) we mean the collection of all #n-place relations
on . That is, [Q[]" is the power set of (Ux AU x ... xA).

n times

Let @ be a mapping from [Q[]" to [A]™, formally &: [A]*->[AJ™
We call @ a computation device of order {n, m>. If ®(D)=N, we call
P input for @, and Routput. Note that input is a set of n-tuples and out-
put is a set of m-tuples; in effect our computation devices read and
write in columns. Input and output may be finite or infinite. The only
restriction, so far, on computation devices is that order of input and
output is not significant.

Examples of computation devices. Let P*:[Q(]* - []' be defined by:
if Pel[AUP then PA(P)={x| for some yeA, (¥, x)e P}. P*is a
projection operator of order {2, 1> and is a ““reasonable”” computation
device in that its operation seems quite ‘“‘mechanical.” It simply
takes a set of ordered pairs, D, as input, deletes all first components,
and gives the result as output. For each n> 1 there is a similar projec-
tion operator P" of order {n, n— 1) which deletes the first component
of a set of n-tuples. It is reasonable to have P" available in any
computation laboratory.

As a kind of opposite to this, consider the operator 4", of order
{n, n+1), that “adds a place”. That is, 4" takes a set of n-tuples, D,
as input, adjoins an extra first component, which is an arbitrary
member of the domain U, and gives, as output the resulting set of
n+1 tuples. More formally, A(D)={<{y, xy, ..., x,»|y€e XU and
{Xy, ..., Xpp € P}. It is plausible that each 4" would be available in
any computation laboratory.

As a third basic family of examples, consider the transposition

"

AN AXIOMATIC APPROACH TO COMPUTERS 99

operators. T}, ; is the operator of order {n, n) that, when given a set of
n-tuples P as input, switches around the i'* and j™ components. This
too seems quite “mechanical”, and so one may assume each T7;
should be available in any computation laboratory.

Let & and ¥ be two computation devices. There are certain
“reasonable” ways @ and ¥ might be combined to form a new com-
putation device (by wiring machines together or by hiring somebody
to physically scan outputs and collate them appropriately). We single
out the following for special attention.

Intersection and union. Let @ and ¥ be computation devices of the
same order, say {n, m). We define two other computation devices,
also of order {(n, m) by, for De[]",

(2N ¥Y)(P)= (D) ¥ (D)
(@ V¥Y(P)=D(D) VH(D).

Product. Let @ be a computation device of order {(n, m>, and ¥ be
a computation device of order (n, m'>. We define a computation
device of order {n, m+m"> by, for pe[A]",

(@ x ¥)(P)=D(P) x ¥(D).

Composition. Let ¥ be a computation device of order {n, m)>, and @
be a computation device of order {m, p>. We define a computation
device of order {n, p) by, for De[]",

(P¥)(P)=2(¥(D)).

One can make use of machines designed to generate output, without
using input, machines to print trigonometry tables, for example.
Rather than create a whole new category in our axiomatic develop-
ment, we informally identify machines that don’t take input with
machines for which input is not relevant. Fortally, let @ be a com-
putation device of order {(n, m>. We say & is constant with outputR
if &(P)=R for every De[Q]". If 4 is a collection of computation
devices, we say R is generated in A if Ris the output of some constant
member of 4.

100 MELVIN C. FITTING

3. Computation laboratories

We postulate the existence of a collection (potentially unlimited in
size) of computation devices which can be combined in ways which
allow for “reasonable” flexibility.

Let A4 be a collection of computation devices. We call 4 a computa-
tion laboratory if it meets the following conditions:

. the empty set is generated in A.

. for each ae?l the set {a} is generated in A.

. =q is generated in A where =q is {{x, y>|x€U, yeU and x=y}.
. P"c A (where P" is a projection operator).

. A"e A (where A" is a place-adding operator).

. Tt je A (where T7 ; is a transposition operator).

. A is closed under composition.

. A is closed under N and u.

. A is closed under x.

O 00 2 NN W

We now give some consequences of these assumptions, grouped into
topics.

Functions. There are two ways we might think of a function
f:U" > A™ being “computed” in a computation laboratory 4.

1. There is a constant computation device @ in A with (the graph of)
f as output. (For example, a machine designed to print a sine table.)
In this case, we say fis generated in A, thus identifying ' with its graph.

2. There is a computation device @ in 4 which, when given
{{x1, ..., X,»} as input, gives {f(x,, ..., x,)} as output. (For example,
a pocket calculator which, when given 6, displays sinf on command.)
In this case, we say f is computed pointwise in A.

Similar remarks apply to partial functions, that is, functions whose
domains are subsets of A",

One consequence of our assumptions is; if a (partial) function is
generated in a computation laboratory A, then it is also computed
pointwise in 4. To get some feeling for how our assumptions are used,
we present a proof of this in a representative special case.

Suppose f:°U->A is generated in the computation laboratory 4.
That is, suppose there is a computation device @ € 4 of order (1, 2},
such that, for every input D, @(D) is the graph of /. That is,

o

AN AXIOMATIC APPROACH TO COMPUTERS 101

(D)={<{x, WIf(x)=y}.

Let ¥ =P ®n T2 ,A4"). Since ¥ is built up from operators known to
be in A4, using composition and intersection, ¥ is in A. And we claim,
for each xe, Y({x)})={f(x)}, and thus f is computed pointwise
in A.

To verify our claim, we need only compute ¥({a}) for an arbitrary
ae®. And we do this by computing both & and 7%,4" on {a},

 taking the intersection of the results, and then taking P? of that. Well,

P({a)={<x,)1 fx)=y}

and

T%,zAl({a}) = T%,z(Al({a})) =
=T ,({{y, ad|yeUY =
={a,y>|yeU}.

Intersecting these,

{0 =y}n {Ka, pylyeU} =
={<a, f(a)>}.

And finally, P? of this is simply {f(a)}.

Thus, for functions, generated implies computed pointwise. Later,
using some additional assumptions about 4, we will also have the
converse. We do not yet, so we take the notion of being generated as
basic.

Relative generation. Let P and R be relations on 2[. We write p<NR
if P=®(R) for some PeA (thus P is generated in 4 by some
computation device that uses R as input.

For this notion the following items hold in all computation
laboratories.

1. < is transitive and reflexive. .
2. D is generated in A4 iff p<NRfor everyR.
3. for D,R#F, P< P xRand N< P xR,
4, if p<Sand RS, then P xRNR<S.

102 MELVIN C. FITTING

Characteristic functions. Let D e[2l]". The characteristic function of
Dis

7 _1if vy, v E D
“ (Vl""’v")—{o i vy, v ED

(Here we must assume 2 has at least two members. We use 0 and 1
without any numerical significance.)

Also, for De[Q]", we write D for U"— D.

The following hold in all computation laboratories.

1. Px P<cpandc, <Px D
2. cp<cy iff Px PERXR

Deciding about membership. Let D€ [(]". What meaning might be
attached to: computation laboratory 4 provides means for deciding
whether or not {x,, ..., x,»> € D for arbitrary xy, ..., x,€A? We might
take it to mean one of the following three items:

a) Both P and D are generated in 4. (Then to decide if
(x4, ..., X,» € D, turn on a device to generate P, and one to generate
D, and see which turns out {x, ..., X,>.)

b) Px D is generated in 4. (Then to decide if {x,, ..., x,)€ D,
turn on a device to generate D x D and see if {x,, ..., x,» turns up
among the first or the last » components.)

C) ¢p is generated in 4. (Then to decide if {x, ..., x,» € P, turn on
a device to generate ¢, and let it work until it tells you whether
{X4y ..., X,» maps to 1 or 0.) ’

A consequence of our assumptions is that these three are equivalent
in all computation laboratories.

Equality. We say a computation laboratory A4 is one with equality if
the relation #, is generated in A4, where # o is the relation
{¢x, y>1x€U, ye Uand x#y}. If A is a computation laboratory with
equality, the following hold:

1. Let D, D' e[Q]". If they differ by a finite number of elements, then
p=p _
PxPpSP'xP
cp ey

AN AXIOMATIC APPROACH TO COMPUTERS 103

2. If Fis finite, then P<F iff D is generated in 4. (That is, a finite in-
put can always be built into the computation device instead.)
3. If fand g are total functions then f<g iff fx f<gx giff ¢, <c,.

4. Universal machines

We now impose some requirements on the domain . We suppose
that, to each computation device @ of order {n, m) in our computa-
tion laboratory 4, there corresponds at least one program, so that no
program corresponds to more than one computation device, and that
program is a member of U itself. Intuitively, the program p contains
information on how to work in the manner that & does, though how
it contains this information does not concern us. What is significant
here is that p must be a member of U, thus programs themselves
are things our computation devices can manipulate. We do not, by
the way, postulate that a computation device has only one program.
Incidentally, our present assumption about programs implies that 2
is infinite.

Programmable computation devices. Let n and m be fixed. We now
postulate the existence, in our computation laboratory A4, of one
universal machine that can simultaneously do the work of all our
computation devices of order {»n, m). The way it keeps track of what
output goes with what computation device is to “tag” outputs with
the program according to which they were computed. -

More precisely, we suppose there is a computation device 2 < ™
in 4 of order {(n, m+ 1) such that, if @ is any computation device in 4
of order {n,m),and if p is any program for &, then {x,, ..., x,,> € ®(D)
iff {p, xy, ..., X €A™ ™(P) for all inputs PelY]".

Note that different choices of n and m give different universal
machines. We return to this point in section 6.

A consequence of our present assumptions is: there exists a set
P<=AU such that P is generated in 4 but P is not. In other words,
there is a set for which our computation laboratory 4 can not provide
a decision procedure. The proof of this is short, and we insert it here;
it is a simple diagonal argument.

Let D={x|<{x, x)e AL (0)}. If D were generated there would

104 MELVIN C. FITTING

be a program, say 1, for a constant computation device with D as
output. Then xe D < (i, x>e U (g). But also xe D <>x¢ D <>
< (x, x>¢ U (0). Thus (G, x)e UM () < (x, xD¢ UL (o).

Taking x to be i gives a contradiction.

S. Manipulating programs

Since programs are in the domain 2, they are objects to be worked
with by our computation devices. We will make two assumptions,
one concerning outputs, the other, inputs. After each, we list and
discuss consequences. First, some terminology.

Output sections. Let @ be a computation device in 4 of order
<k,q+n),and let x,, ..., x,€U. By P, ...z, Ve mean the mapping
of order (k n) defined by

xl,... (D) {<y1" "yn>|<x1""7xq5y1’""yn>e¢(p)}'

It can be shown that, for each choice of x,, ..., x,€, the map
¢x1,,,,,xq is also a computation device in 4. We call it the ourput
section of @ at (x,, ..., x>.

Now, let @ be a fixed computation device in A. Is there any
systematic way of telling a lab assistant how to carry out the (D,c'l, x
computations, for various values of x;, ..., x,? One might do this
quite simply as follows. Use the device @ and, as outputs emerge,
look at them and see if they begin with {xy, ..., x,>; if they do, keep
them, otherwise throw them away; of the outputs left, discard the
initial {xy, ..., x,>. These are general instructions on how to compute
Dy,.,....x ONCE Xy, ..., Xq AIC specified. We now make the assumption
" that what we can explain to a lab assistant, a computation device
could ““explain” to our universal machine. That is, once the computa-
tion device @ has been fixed, it should be a “mechanical” process,
to program our universal machine to imitate the various ¢x1""’xq'
Output place-fixing assumption. Let @ be a computation device in A4
of order <k, g+n). We suppose there is a function f: % — which is
generated in A, such that for each x;, ..., x, we have that f(x,, ..., x;)
is a program for @, . .

We now list some consequences of this assumption.

P

AN AXIOMATIC APPROACH TO COMPUTERS 105

Manipulation of programs. Among our basic assumptions about
computation laboratories was closure under n, u, and x. This
closure should be reflected in some kind of routine reprogramming
of our universal machines. In fact, we have the following.

1. Pick an order, {n, k). Then there exist functions f and g, both
of which are generated in A such that, if @ and ¥ are computation
devices in 4 of order {n, k) and if p is any program for @ and ¢ is any
program for ¥ then: f(p, ¢) is a program for #n ¥ and g(p, g) is
a program for @ UYP.

2. Pick two orders {n, k> and {n, k’>. Then there exists a function
h which is generated in A such that, if & is any computation device of
order {n, k), if ¥ is any computation device of order {n, k'), if p is
any program for @ and if ¢ is any program for ¥, then h(p, q) is
a program for & x ¥.

Kleene fixed point theorem. This important consequence has as direct
consequences some of the results below.

Let 1: Ql—- be any function which is generated in 4. Pick an order
{n, k>. Then there exists a program p for a computation device of
order {n, k) such that #(p) is also a program for the same computation
device.

Alternate programs. We have supposed that to each computation
device there corresponds at least one program. Suppose, in addition
to these “official” programs, we had a second ‘‘alternate” way of
assigning programs to our computation devices (analogous to using
a different programming language). One might suppose that the
passage between “official” and ““alternate” programs ought to be
a routine matter. In fact, we have the following. Suppose our
“alternate” programs meet the same conditions that our “official”
ones do; that is, there are universal computation devices in A4 that
use the “alternate” programs, and for which an output place-fixing
assumption holds. Then for each order {n, k> there are functions
/. 8:A—U both of which are generated-in A such that: 1) if p is
an “official” program for a computation device of order {n, k) then
f(p) is an “alternate” program for the same computation device and
2) if ¢ is an “alternate” program for a computation device of order

106 MELVIN C. FITTING

{n, k) then g(q) is an “official” program for the same computation
device.

In the sequel, we suppose only the original “official” programs are
used. :

Rice’s Theorem. Pick an order (n, k). Let D be a set of programs for
computation devices of order {n, k>. P is called closed if, whenever
it contains one program for some computation device, it contains
every program for it. Recall, D is decidable if P and P are both
generated in A. Then, the only closed, decidable sets are the empty set
and the set of all programs for all computation devices of order
{n, k).

This result has, in its turn, many undecidability results as conse-
quences. For example, let @ be some fixed computation device of
order {n, k> and consider the problem of deciding what is and what is
not a program for @. Let D be the set of all programs for @. D is closed,
not empty, and not all programs. Hence D is not decidable. There are
many other such examples.

We now turn to the second assumption of this section. Again,
some terminology.

Input sections. Let @ be a computation device in A4 of order {g+k, n),
and let x,, ..., x,€2. By ¢*"""~*a we mean the mapping of order
<k, n) defined by

&t Xa(D)= D({{Xy, ..., 4g0} X D).

It can be shown that, for each xy, ..., x,€%l, the map @**-'~a is
also a computation device in 4. We call it the input section of @ at
Xy ey Xg-

Let & be fixed, and consider how one might instruct a lab assistant
to carry out the &*1° " a computations for various values of
X1, - .-, Xq- One might say: take your input P, tack {xy, ..., xq» on to
the beginning of all members of D, give’ the result to @ and collect
the output. We now assume that comparable instructions can be
“mechanically” given to our universal mathines. The following is in
addition to the other assumptions thus far.

"

~N

AN AXIOMATIC APPROACH TO COMPUTERS 107

Input place-fixing assumption. Let @ be a computation device in A
of order {q+k, n). We suppose there is a function f: 29— U which
is generated in A, such that for each xy, .. ., x, we have that f(x,, ..., x,)
is a program for ¢*1---~%q,

We now continue listing consequences.

Functions. A (partial) function f is generated in A iff f is computed
pointwise in 4.

Manipulation of programs (cont.).

1. One can “mechanically’”” produce programs for constants. That
is, for each n there is a function f: A" —» A which is generated in A such
that, for each x,, ..., x, we have that f(x,, ..., x,) is a program for
a constant computation device with output {<{x, ..., x,>}.

2. Composition is effective. That is, pick two orders {n, k) and
<k, g); then there is a function f, which is generated in A, such that if
& is any computation device of order <{k, ¢, if ¥ is any computation
device of order (n, k), if pis any program for @ and if ¢ is any program
for ¥, then f(p, ¢) is a program for &Y.

3. Now all the basic notions of computation laboratories have
been shown to have counterparts in terms of “mechanical” repro-
gramming of our universal machines. It can easily be shown that
composition of generated functions produces a generated function.
Thus the correspondence extends to operators built up from the
basic ones as well.

6. Pairing functions

This business of having different universal machines for different
orders can be annoying. If there were some way of combining the
information of an n-tuple into a single item, the problem could be
avoided. Now, 2 is infinite, so Ax A x ... x A and A have a 1-1
correspondence (standard result of set theory). If there were such
a 1-1 correspondence which was generated-in A, it would take care
of the problem completely. As a matter of fact, there will be such for
every value of n if there is one for n=2. Such generated 1-1 correspond-
ences between Ax A and A are usually called effective pairing func-

108 MELVIN C. FITTING

tions, and they exist in many models for our axioms thus far. Actually,
a somewhat weaker condition suffices for most purposes.

From now on we assume. There is a function f; Ux A - whichis 1-1,
not necessarily onto, and which is generated in 4.

We may think of f as a device to collapse pairs of information into
singletons. As indicated above, there are then similar generated 1-1
functions to collapse triples, quadruples, etc.

If we agree to identify a pair {x, y> with its image f(x, y) under f,
then the multiplicity of orders disappears, and a universal machine of
order {1, 1> can be shown to do the work of all the others.

Our assumption about pairing functions will not be used explicitly
below, but it is involved in the form of some of our further assump-
tions.

7. Finitary behavior

We have said nothing so far about the processes by which our
computation devices operate. We are about to impose some mild
restrictions to the effect that, though input may be infinite, it is used
in finite chunks and, though output may be infinite, it is generated
in finite chunks according to a regular pattern. We will make this
more precise below, but first we must introduce some means of
getting our computation devices to recognize finite sets. The problem
is, as things stand, we have no mechanism for telling a computation
device that the finite input we may have given thus far is all it is ever
going to get. The device can’t tell the difference between finite and
incomplete. Neither, for that matter, can we when outputs are
concerned. It ought to be possible for our computation devices to’
deal with finite sets as single, complete objects. For these purposes
we make use of finite codes.

2l is infinite, so the collection of finite subsets of <l has a 1-1
correspondence with U itself (standard result of set theory). If there
were such a 1-1 correspondence f which we could somehow make
use of in A, it would provide a way around the difficulty. For a finite
subset F of 2 we could take the member of QU which corresponds to
F under fas a “code” for F on which our computation devices could

™

AN AXIOMATIC APPROACH TO COMPUTERS 109

work. It would, in fact, be a single object in 2l as required.
As a matter of fact, a somewhat weaker setup suffices for our needs.

From now on we assume the following:

1. To each finite subset F of Rl there corresponds one or more
members of U, called finite codes for F.

2. Different finite subsets have distinct finite codes. (Thus we
suppose a finite coding which is neither unique nor which requires
that everything in 2l be a code. We next add assumptions which make
this coding useful in A4.)

We write D, for the finite subset of U with code a. If ¢ is not a finite
code, D, has no meaning.

3. The relation: y is a finite code and x € D,, is generated in 4.

4. The relation: y is a finite code and x ¢ D, is generated in A.

5. There is a computation device S in A of order <1, 1) such that
S(P)={a|D,< P}.

We remark that many models exist that satisfy all our assumptions,
including these. Indeed, given any infinite set 2, and given any finite
list of relationsR,, ..., R, on A, there is a model A in which all our
assumptions hold, with 2l as its domain, and with each of R,, ..., R,
being a generated relation. We have more to say about this in section 8
below. Now we return to listing consequences.

Elementary consequences. There are computation devices, U, V and
W in A of order {1, 1) such that, if y is a finite code,

u{yh)=D,
V({y})":Dy
W({y})={x|D;= D}

We are not yet assuming our computation devices work on inputs in
finite chunks, but it is now possible to produce some that do.

Compact, monotone computation devices. Let R be some two-place
relation which is generated in 4. Define a map @ of order <1, 1) by:
&(P)={x| for some D, P, R(y, x)}. It is a consequence of our
assumptions that @ is a computation device in 4. Further, ¢ is

110 MELVIN C. FITTING

easily seen to be monotone (P =N implies that &(P)< H(R) and
compact (x € &(P) implies x € $(F) for some finite F< D).

Saying that ¢ is monotone is essentially saying that an output
won’t be recalled on the basis of additional input. Saying that @ is
compact is essentially saying that it makes use of input in finite
chunks; no single output needs more than a finite part of an infinite
input.

We cannot prove that all our computation devices must be mono-
tone and compact. In fact, there are models for the above axioms in
which there are non-compact operators. We are, however, able to
prove that all compact, monotone operators have the form which
appears above.

Compact, monotone computation devices (cont). Let @ be a computa-
tion device in A of order {1, 1) which is monotone and compact.
It is a consequence of our assumptions that there is a relation R,
which is generated in A4, such that ¢(D)={x| for some D <
R(y, x)}.

This is significant in the following sense. If we want to study a
monotone, compact computation device @ in 4, we can get at it
through the relation R associated with it by the above. But R is
generated in A, that is, R is the output of a constant computation
device, one for which input is not relevant. Thus we can study
monotone, compact computation devices in A4 indirectly by studying
computation devices in 4 which don’t use input. So we turn our atten-
tion to them now. We want to postulate that constant computation
devices generate output in finite chunks, according to a regular
pattern. A little more precisely, we want to postulate that if a set can
be generated in A at all, it can be generated in finite chunks, and we
can say what those chunks are by giving (having a machine give)
codes for them.

From now on we assume the following..Let D be a set which is
generated in A. There is a chain C of finite sets such that

1. uC=p .

2. If D is a proper initial segment of C then U D s finite

3. the set of finite codes for members of C is generated in A.

L7

AN AXIOMATIC APPROACH TO COMPUTERS 111

In order to properly present some consequences of the above, we
should say something about infinite inputs. Since we are finite beings,
the only way we can give an infinite input P to a computation device
is by having some machine (which presumably works forever)
generate D. That is, the only infinite inputs we are practically con-
cerned with are those which are generated in A.

Compact, monotone computation devices (cont. again). It is a con-
sequence of our assumptions that every computation device in A
agrees with some monotone, compact computation device on inputs
which are generated in 4.

If we are interested in inputs which are generated in 4, we have not
only the inputs themselves to work with, but also programs for com-
putation devices which generated them.

Generated Inputs. Let @ be a computation device in 4 of order (1, 1).
There is a function f, which is generated in A4, such that if P is any
generated set and if p is any program for P, then f(p) is a program
for a constant computation device which generates @(D).

This can be proved without using our above assumption about
outputs. But using it, we also have the converse.

Generated inputs (cont.). Let f be any function which is generated in A.
There is a computation device @ in A such that, if D-is any generated
set, and if p is any program for generating D, then f(p) is a program
for generating @(D).

This carries our development far enough. From this point on,
much depends on just what additional assumptions about the finite
sets we may wish to add. As a matter of fact, the assumptions we made
above hold in various models, interpreting “finite”” to mean some-
thing other than truly finite. A discussion of this is beyond the scope
of the present paper.

8. Conclusion

The preceding is really a version of axiomatic recursion theory.
Besides (what is sometimes called) ordinary recursion theory, there
have been developed several other theories bearing a strong

112 MELVIN C. FITTING

resemblance to ordinary recursion theory. Axiomatic recursion
theory aims, in part, at abstracting the structure common to these
theories. The axiom system above is actually a simplified version of
a more general system we have developed (called a production system)
in which operators need not be everywhere defined, and in which
“finite” need not mean actually finite. The full axiom system applies
to hyperarithmetic theory and to a-recursion theory as well as to
ordinary recursion theory. Here we have kept only so much as
applies to computers. The axioms are developed in full generality
in [2].

Rather than choosing the recursive functions of ordinary recursion
theory as the basic items to be abstractly developed, we have chosen
things called enumeration operators which, we feel, are a better formal
counterpart to the actual operation of computers than are recursive
functions. See [6 starting on p. 146] for a treatment of them in ordinary
recursion theory.

In [2] we define a notion of “recursion theory” for an arbitrary
structure, and investigate the conditions under which the assumptions
of this paper will hold for it. Though we proceed along entirely
different lines, our approach is equivalent to using Rogers’ definition
of enumeration operator from ordinary recursion theory [6], but
applying it in the framework of search computability [3], which is
meaningful for an arbitrary structure.

There are several “families” of axiomatic recursion theories in
the literature. Ours is in that one originating in [1], and our computa-
tion laboratories in section 3 are certain admissible subcategories of
R(X*) in their terminology. The axioms after these initial ones are of
our choosing. The results in section 3 are all basic in ordinary recur-
sion theory. Establishing them on the basis of our axioms should
present no great difficulties.

In section 4, the existence of a universal machine derives from
Turing’s seminal work [8].

In section 5, our output place-fixing assumption is our formulation
for operators of a result about recursive functions, due to Kleene
and known as the Iteration Theorem. The results on Manipulation of
Programs, the Kleene fixed point theorem, and alternate programs
follow by proofs in the style of [7, pp. 67—73], but translated to opera-

AN AXIOMATIC APPROACH TO COMPUTERS 113

tors. Rice’s theorem comes from [5]. It can be derived from
the Kleene theorem.

The Input place-fixing assumption seems to be new. It is easily
shown to hold in ordinary recursion theory, and the results we list
after it are simple consequences.

Finite codes in ordinary recursion theory are developed in [6,
pp. 69—71] where they are called canonical indices. OQur choice of
axioms seems to be new, as is our derivation in section 7, of what
Rogers takes as the definition of enumeration operators.

The results on generated inputs are due to [4] in ordinary recursion
theory.

References

[1] EiLenseRrG, S. & ELGoT, C. Recursiveness, Academic Press, New York (1970).

[2] FITTING, M. Fundamentals of generalized recursion theory, to be published, North-
Holland Publishing Co., Amsterdam.

[3] MoscHovaKks, Y. “Abstract first order computability I, II"" Transactions of the _
American mathematical society, Vol. 138 (1969), pp. 427-—504.

[4] MyHiLL, J. & SHEPHERDSON, J., “Effective operations on partial recursive func-
tions”. Zeitschrift fiir mathematische Logik und Grundlagen der Mathematik,
vol. 1 (1955), pp. 310—317.

[5] Rick, H. “Classes of recursively enumerable sets and their decision problems”,
Transactions of the American mathematical society, vol. 74 (1953), pp. 358—366.

[6] RoGers, H. Theory of recursive functions and effective computability, McGraw-Hill
Book Co., New York (1967).

[7] SMULLYAN, R. Theory of formal systems, Princeton University Press, Princeton
(1961).

{8] TurING, A. “On computable numbers with an application to the Entscheidungs-
problem”, Proceedings of the London mathematical society, ser. 2, vol. 42 (1936),
pp- 230—265, vol. 43 (1937), pp. 544-—546.

Received on January 30, 1979.

8 — Theoria 3:1979

