
Annotated Revision Specification Programs

Melvin Fitting
mlflc@cunyvm.cuny.edu

Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468

Abstract. Marek and Truszczyński have introduced an interesting mecha-
nism for specifying revisions of knowledge bases by means of logic programs.
Here we extend their idea to allow for confidence factors, multiple experts,
and so on. The appropriate programming mechanism turns out to be anno-
tated logic programs and the appropriate semantic tool, bilattices. This may
be the first example of a setting in which both notions arise naturally, and
complement each other. We also show that several of the results of Marek
and Truszczyński turn out to be essentially algebraic, once the proper setting
has been formulated.

1 Introduction

In [8] Marek and Truszczyński provided an interesting formalism for specifying re-
visions in databases, knowledge bases, and belief sets. The specifications could be
quite complex, containing conditionals (e.g., if this and that is present, so-and-so
must be absent). And they presented an ingenious test for determining whether a
candidate for an update is one in fact. This test was suggested by the definition of
stable model and, in a sense, properly extends the notion.

We extend their work in the following ways. First, we generalize their formal-
ism to systems that allow confidence factors, evidence, multiple experts, and other
similar notions. The (fairly obvious) tool for this is an annotated version ([7]) of a
revision program. To give semantic meaning to such annotated programs, bilattices
are a natural tool. (This seems to be the first joint exploitation of annotations and
bilattices together.) We show that several of the results of Marek and Truszczyński
extend naturally to this broader setting. Finally, we show that simple algebraic bilat-
tice calculations yield interesting results about the update mechanism. The ultimate
goal (the present paper representing an early stage of the work) is to extract away
all the details of the update formalism to reveal the abstract structure underneath.
Work on this continues.

2 The Original Version

The following is a brief sketch of revision specification programs as presented in [8].
First, we have an underlying set U whose elements are not analysed further — they
are called atoms. These can be thought of as things that can appear in a knowledge
base. Next, there are two special unary operators, in and out, which apply to atoms.
The idea is, in(a) says the atom a is (or ought to be) in a knowledge base, while



out(a) says a is (or ought to be) out. We will call in(a) and out(a) revision atoms.
A revision rule is an expression of one of the following forms:

in(p)← in(q1), . . . , in(qm),out(s1),out(sn)
out(p)← in(q1), . . . , in(qm),out(s1),out(sn)

The first kind are called in-rules and the second are out-rules. Bodies are allowed to
be empty. Finally, a revision program is a collection of revision rules. (Note that, as
defined here, a revision program is propositional. A formulation allowing variables
is certainly possible, but let’s keep things as simple as possible for the time being.)
Now, the idea is to determine when a revised knowledge base BR (a set of atoms) is
a justified revision of an initial knowledge base BI (another set of atoms) according
to conditions specifiec by a revision program P.

In order to do this, Marek and Truszczyński introduce a fairly elaborate process,
inspired by the notion of stable model. First, some useful terminology. If B is a
knowledge base, in(a) is satisfied in B if a ∈ B. Similarly out(a) is satisfied in B if
a 6∈ B. Now let P be a revision program, and BI and BR be two knowledge bases.
The process begins with the notion of the reduct of P with respect to (BI , BR),
which is defined as follows.

1. Remove from P every rule whose body contains a revision atom that is not
satisfied in BR.

2. From the body of each remaining rule, delete any revision atom that is satisfied
in BI .

The notation Marek and Truszczyński use for this revised program is PBR |BI .
The revised program PBR |BI is a logic program in the usual sense (without nega-

tions or function symbols) and so has a well-behaved minimal model. This minimal
model is called the necessary change basis, and is denoted by NCB(PBR |BI). It, in
turn, determines the necessary change for PBR |BI — this is the pair (I,O), where
I = {a | in(a) ∈ NCB(PBR |BI)} and O = {a | out(a) ∈ NCB(PBR |BI)}. If
I ∩O = ∅ the revised program is called coherent.

Finally, suppose PBR |BI is coherent, and (I,O) is the necessary change for
PBR |BI . Then (BI ∪ I)\O is well-defined (add the members of I to BI and remove
the members of O). If it turns out that BR = (BI ∪ I)\O then BR is a P-justified
revision of BI .

The intuitions about knowledge base revision that the notions above are intended
to capture are these. First, a revised knowledge base should satisfy all the constraints
imposed by the revision program. And second, each insertion or deletion performed
in order to convert BI into BR must be justified by some rule in the revision program.
See [8] for a discussion of these ideas, with several motivating examples. In this paper
we simply take for granted that the intentions are correctly captured by the Marek,
Truszczyński process, and note that their intuitions carry over to the setting of this
paper. We concentrate on technical details.

3 Annotated Logic Programs

Generalized Annotated Programs are fully treated in [7], to which we refer you for
details. In the interests of simplicity, here we use only a much stripped-down version,



with no annotation variables, no function symbols, and more than minimal assump-
tions about the space of annotations. Given these simplifications, what we need of
annotated logic programming can be easily sketched.

Let T be a complete distributive lattice, of truth values. These will be used
as annotations in what follows. In addition we will assume T has a de Morgan
complement , a one-one mapping that is order inverting, of period two. We denote the
de Morgan complement of a by a. It follows easily that de Morgan complementation
satisfies the usual de Morgan laws. (In [7] annotations are only required to be an
upper semilattice.)

Examples The following are typical and should be kept in mind for what follows.

1. T = {false, true}, with false < true. The de Morgan complement is the usual
negation operation. This is the grand-daddy of all examples, of course.

2. T is the collection of all subsets of some set S, with ⊆ as the ordering relation.
The de Morgan complement is set-theoretic complement. Think of the members
of S as experts, and a member A of T as a set of experts who assert the truth
of some proposed fact.

3. T = [0, 1], with the usual ordering. The de Morgan complement of a is 1 − a.
Think of a member of T as a degree of confidence in some proposition.

4. T is the set of all functions from some set S to the unit interval. The ordering
is the pointwise one: f ≤ g provided f(a) ≤ g(a) for all a ∈ S. The de Morgan
complement of f is the function given by f(a) = 1 − f(a). This combines the
two previous examples. Think of f ∈ T as assigning to each member of a set of
experts a confidence factor.

An annotated revision atom is either (in(a) : α) or (out(a) : α) where a is an
atom and α is an annotation — that is, a member of T . Think of (in(a) : α) as
asserting that there is at least α reason to assume that a is (or should be) in the
knowledge base. Similarly for (out(a) : α). For instance, using the first example
above, (in(a) : true) simply says a is in, while (in(a) : false) gives no information.
Using the second example above, (in(a) : A), where A is a set of experts, can be
thought of as saying the members of A assert that a should be in. Continuing this
example, (in(a) : ∅) gives no information. There are similar readings that can be
supplied for the other examples.

Now, an annotated revision rule is an expression of the form p← q1, . . . , qn where
p, q1, . . . , qn are annotated revision atoms, and an annotated revision program is a
set of annotated revision rules.

Example A Suppose there are two independent experts, or sources of information,
p and q. Let T be the collection of all possible sets of experts: {∅, {p}, {q}, {p, q}},
ordered by inclusion. This is our space of annotations, with complementation as
the de Morgan complement. Also, assume there are three atoms a, b and c that are
candidates for inclusion in a knowledge base. Now, here is an annotated revision
program, which we will continue to discuss throughout the paper.



(in(a) : {p})← (out(b) : {p})
(in(b) : {p})← (out(a) : {p})

(out(a) : {q})← (in(a) : {p})
(in(c) : {p, q})← (in(a) : {p})
(out(c) : {q})← (out(a) : {q})

Since there are no variables or function symbols, either in atoms or in annotations,
a fixpoint semantics is easy to describe. First, a T -valuation is a mapping v from
revision atoms to T . T -valuations are given the pointwise ordering, which makes the
space of T -valuations into a complete lattice itself. The T -valuation v satisfies the
annotated revision atom (in(a) : α) provided v(in(a)) ≥ α — v satisfies (out(a) : α)
if v(out(a)) ≥ α. We say v satisfies a list of annotated revision atoms if it satisfies
each member of the list. As “intermediate” notation, let tP(v) be the set of all
annotated revision atoms that occur as the head of a clause in P whose body is
satisfied by v. Finally, let TP be the mapping from T -valuations to T -valuations
given by:

TP(v)(A) =
∨
{α | (A : α) ∈ tP(v)}.

It is straightforward to check that TP is monotonic on the space of T -valuations,
hence has a smallest fixed point. This is the intended meaning of the program.
Since negations are not present, the intended meaning is quite unproblematic, and
appropriate computational mechanisms can be specified (assuming the lattice T
itself has computble operations).

If we use the first example above, identify (in(a) : true) with in(a), ignore (in(a) :
false), and treat out(a) similarly, revision programming is easily seen to be a special
case of annotated revision programming.

4 Bilattices

Atoms can be in a knowledge base, or out of it, and each with a degree of confidence,
an annotation. A natural semantic tool for representing this situation is a bilattice,
as we will see shortly. We begin with a brief abstract presentation, then provide a
concrete representation which should make their utility in this context clear. Bilat-
tices were introduced in [6], and have turned out to be a useful tool for investigating
logic programming semantics [1, 2], and stable model semantics in particular [3, 5].
We refer you to these papers for a fuller treatment.

Definition 1. A pre-bilattice is a structure 〈B,≤t,≤k〉 where B is a non-empty set
and ≤t and ≤k are each partial orderings giving B the structure of a lattice with a
top and a bottom. We call B complete if each of the two lattices is complete in the
usual sense that all meets and joins exist.

A pre-bilattice has a negation if there is a mapping ¬ from B to itself that is an
involution, reverses the ≤t ordering, and preserves the ≤k ordering. Likewise it has
a conflation if there is a mapping − that is an involution, reverses the ≤k ordering,
and preserves the ≤t ordering. If both a negation and a conflation exist, we generally
will require that they commute with each other.



Definition 2. In a pre-bilattice 〈B,≤t,≤k〉, meet and join under ≤t are denoted ∧
and ∨, and meet and join under ≤k are denoted ⊗ and ⊕. Top and bottom under
≤t are denoted true and false, and top and bottom under ≤k are denoted > and ⊥.
If the pre-bilattice is complete, infinitary meet and join under ≤t are denoted

∧
and∨

, and infinitary meet and join under ≤k are denoted
∏

and
∑

.

Definition 3. A distributive bilattice is a pre-bilattice 〈B,≤t,≤k〉 in which all 12
distributive laws connecting ∧, ∨, ⊗ and ⊕ hold. An infinitely distributive bilattice
is a complete pre-bilattice in which all infinitary, as well as all finitary, distributive
laws hold.

It is an easy consequence that in a distributive bilattice, each of the lattice oper-
ations, ∧, ∨, ⊗, ⊕, is monotone with respect to both orderings. These are generally
called the interlacing conditions. If the pre-bilattice is infinitely distributive, each of
the infinitary meet and join operations is monotone with respect to both orderings
— the infinitary interlacing conditions.

Our interests here are confined to complete, infinitely distributive bilattices with
negation and conflation that commute. There is a standard way of constructing such
structures, which we now sketch. Let T be a complete distributive lattice with a
de Morgen complement, such as could serve as a space of annotations above. We
use it to construct a bilattice, which we denote T ¯ T , as follows. The domain is
T × T . (Think of a member of the domain 〈α, β〉 as saying, there is α evidence that
some atom is in a knowledge base, and β evidence that it is out.) The two orderings
have the following characterization. 〈α1, β1〉 ≤k 〈α2, β2〉 if α1 ≤ α2 and β1 ≤ β2.
(Intuitively, knowledge goes up if all evidence, both for and against, increases.)
〈α1, β1〉 ≤t 〈α2, β2〉 if α1 ≤ α2 and β1 ≥ β2. (Intuitively, degree of truth goes up
if evidence for increases and evidence against decreases.) It is not hard to check
that this gives T × T the structure of a complete, infinitely distributive bilattice.
Next, negation simply switches around the roles of for and against: ¬〈α, β〉 = 〈β, α〉.
The intuition here is quite clear. Finally, conflation is a little more complicated,
and involves the de Morgan complementation operation of T . −〈α, β〉 = 〈β, α〉.
(Intuitively, the conflation of a member b of T × T counts as evidence for inclusion
in a knowledge base whatever b did not count as evidence against, and similarly the
other way around.) Again it is easy to check that this does give a conflation that
commutes with the negation operation.

We have sketched a method of constructing bilattices T ¯T from lattices T . The
method is entirely general, in the sense that every complete, infinitely distributive
bilattice with a negation and a conflation that commute is isomorphic to T ¯ T for
some complete lattice T with a de Morgan complement. A proof of this, generalizing
a representation theorem of Ginsberg, can be found in [1, 4].

5 Annotated Revision Programs and Bilattices

In section 3, T -valuations were defined. It will be more convenient to work with
valuations in a bilattice, and connections are easy to make. First, by a (T ¯ T )-
valuation we mean a mapping from atoms (not revision atoms) to members of the
bilattice T ¯ T . If the atom a maps to 〈α, β〉 under some (T ¯ T )-valuation, think



of this as saying there is α reason to have a in a knowledge base and β reason to
have a out. (T ¯ T )-valuations are given two orderings, denoted ≤k and ≤t, in the
obvious pointwise way. Likewise the operations of negation, ¬, and conflation, −, lift
pointwise to the space of (T ¯ T )-valuations. It is easy to check that the space of
(T ¯T )-valuations is, again, a complete infinitely distributive bilattice with negation
and conflation that commute. As it happens, in this paper the ≤k ordering will play
the primary role, with almost no role given to ≤t.

There is an obvious correspondence between T -valuations and (T ¯T )-valuations
— we denote this correspondence by θ. Suppose v is a T -valuation, mapping revision
atoms to members of T . Associate with this the (T ¯ T )-valuation θ(v) defined by:
θ(v)(a) = 〈α, β〉 where v(in(a)) = α and v(out(a)) = β. θ is easily seen to be 1− 1
and onto, and so has an inverse, characterized by: if w is a (T ¯T )-valuation, θ−1(w)
is the T -valuation given by: θ−1(w)(in(a)) = α and θ−1(w)(out(a)) = β provided
w(a) = 〈α, β〉.

The mapping θ is order-preserving, in the following sense. Suppose v and w are
T -valuations, and v ≤ w in the ordering of T . Then θ(v) ≤k θ(w). This is easy to
see, as is the fact that θ−1 is also order-preserving in the other direction.

Let P be an annotated revision program. In section 3 we associated with it a
mapping TP on the space of T -valuations. This induces a bilattice mapping which
we denote T bP on the space of (T ¯ T )-valuations, in a direct way:

T bP(v) = (θTPθ−1)(v).

We noted earlier that TP is monotonic in the space of T -valuations. It follows from
this, and the order-preserving properties of θ and θ−1, that T bP is monotonic in
the space of (T ¯ T )-valuations, with respect to the ≤k ordering. From now on we
generally confine our work to the bilattice T ¯T , and use the T bP mapping, pushing
T and TP into the background.

6 Program Transformation

Now we carry over directly to the present setting the program transformation of
Marek and Truszczyński. If v is a (T ¯T )-valuation, we say v satisfies an annotated
revision atom if the T -valuation θ−1(v) satisfies it, as defined in section 3.

Definition 4. Let P be an annotated revision program and let BI and BR be (T ¯
T )-valuations. We define the reduct of P with respect to (BI , BR) as follows.

1. First, remove from P every rule whose body contains an annotated revision atom
that is not satisfied in BR.

2. Second, from the body of each remaining rule delete any annotated revision atom
that is satisfied in BI .

The resulting program is denoted PBR |BI .

Now we use the notion of program reduct to define an operator on bilattices, as
follows.



Definition 5. Let BI , BR, and v be three (T ¯ T )-valuations, and let P be an
annotated revision program. The mapping RP is given by the following.

RP(BI , BR, v) = T bPBR |BI
(v).

The T notation is somewhat hair-raising, which is partly why we have introduced the
R (for “revision”) notation. The idea, nonetheless, is straightforward. To compute
RP(BI , BR, v), begin with the annotated revision program P, carry out step 1 of
the reduction process using BR; next carry out step 2 using BI . This yields another
annotated revision program PBR |BI . Apply the “single-step” T operator for this
program, using v as input, after translating v from the bilattice T ¯T to the under-
lying truth-value space T , then translating the result back to the bilattice setting.
The outcome is the value of RP(BI , BR, v).

As an operator on T ¯ T , RP(BI , BR, v) has several nice properties. First, it is
obviously monotonic in v, in the ≤k ordering (since T b operators are). Next, it is
also monotonic in BI in the ≤k ordering (because if BI is increased, more annotated
revision atoms will be satisfied, so more parts of clause bodies will be deleted in
step 2 of the reduction process, yielding a program whose clause bodies are more
easily satisfied). Finally, it is even monotonic in BR in the ≤k ordering (because if
BR is increased, fewer annotated revision atoms will be unsatisfied, so fewer clauses
will be deleted in step 1 of the reduction process, again yielding a program whose
clause bodies are more easily satisfied, since there are more of them).

Example A continued (Example A began in section 3.) Let BI be given by:

BI(a) = 〈{q}, {p, q}〉
BI(b) = 〈∅, {p, q}〉
BI(c) = 〈∅, {q}〉

And let BR be given by:
BR(a) = 〈{p}, {q}〉
BR(b) = 〈∅, {p, q}〉
BR(c) = 〈{p, q}, {q}〉

Now, (out(a) : {p}) is not satisfied by BR, but all other annotated revision atoms
in clause bodies of P are, so only the second clause of P is deleted in step 1 above.
Next, both (out(b) : {p}) and (out(a) : {q}) are satisfied by BI so these are deleted
from clause bodies in step 2. The resulting program, PBR |BI , is:

(in(a) : {p})←
(out(a) : {q})← (in(a) : {p})
(in(c) : {p, q})← (in(a) : {p})
(out(c) : {q})←

Notice, in this example, that according to BI , expert q is acting inconsistently,
asserting that a should both be present and absent. In the original Marek and
Truszczyński setting such inconsistencies were not allowed — coherency conditions
were explicitly imposed. We find it more natural to allow inconsistencies, and simply
record their presence. This is especially useful in a setting like that above, where q
is being inconsistent with regard to a, but p is not.



7 How To Make Change

Now that the notion of reduced program has been introduced in our setting, we
can use it to compute the necessary change basis, and consequently the necessary
change. Then we have the problem of how to carry out this change. But first things
first.

Thought of as an annotated logic program, a reduced program PBR |BI has a
minimal model — a T -valuation. Equivalently, because of the correspondence be-
tween T -valuations and (T ¯T )-valuations, we can take the least fixed point, in the
≤k ordering, of the mapping:

(λv)RP(BI , BR, v)

We call the least fixed point of this mapping the necessary change for PBR |BI .

Example A continued In the previous section the revised program PBR |BI was
given. It is easy to see that the minimal model for this is the set consisting of:
(in(a) : {p}), (out(a) : {q}), (in(c) : {p, q}), and (out(c) : {q}). Corresponding to
this is the (T ¯ T )-valuation C, the necessary change for PBR |BI , as follows:

C(a) = 〈{p}, {q}〉
C(b) = 〈∅, ∅〉
C(c) = 〈{p, q}, {q}〉

Now that we have said what necessary change amounts to in the present context,
we must say how to effectuate it. For this, we propose the following.

Definition 6. The result of applying change C to an initial knowledge base BI is:

(BI ⊗−C)⊕ C.

In this, ⊗ and ⊕ are the bilattice meet and join with respect to the ≤k ordering,
and − is the conflation operation. To get a feeling for how this works, suppose T
is the lattice of subsets of the three-expert set {p, q, r}, BI = 〈{p, q}, {r}〉, and
C(a) = 〈∅, {p}〉. Essentially C(a) amounts to: put p in the “against” column, as
far as a is concerned, and don’t change anybody else. For this choice of T ¯ T ,
conflation is given by −〈X,Y 〉 = 〈Y ,X〉, where X denotes complement. Then
−C(a) = 〈{q, r}, {p, q, r}〉. Also, for T ¯T , 〈X1, X2〉⊗ 〈Y1, Y2〉 is 〈X1 ∩Y1, X2 ∩Y2〉
and 〈X1, X2〉⊕〈Y1, Y2〉 is 〈X1∪Y1, X2∪Y2〉. Then (BI⊗−C)(a) = 〈{q}, {r}〉. Notice
that this amounts to the removal of p from the “for” side. Next, ((BI⊗−C)⊕C)(a) =
〈{q}, {p, r}〉, and indeed p has been withdrawn as “for” and added as “against.” We
leave it to you to try out examples involving inconsistent or incomplete informa-
tion. We also note that if we restrict the setting to the original one of Marek and
Truszczyński, the present definition is equivalent to theirs. (Recall, their setting is
the simplest non-trivial bilattice, the four-element one, with valuations never taking
on either ⊥ or > as values.)



Example A continued We have computed the necessary change for Example A.
Now, −C is as follows:

−C(a) = 〈{p}, {q}〉
−C(b) = 〈{p, q}, {p, q}〉
−C(c) = 〈{p}, ∅〉

Continuing,
((BI ⊗−C)⊕ C)(a) = 〈{p}, {q}〉
((BI ⊗−C)⊕ C)(b) = 〈∅, {p, q}〉
((BI ⊗−C)⊕ C)(c) = 〈{p, q}, {q}〉

Definition 7. Extending the terminology of Marek and Truszczyński, we say BR is
a P-justified revision of BI if BR = (BI ⊗−C)⊕ C.

Notice that in Example A, BR is in fact a P-justified revision of BI . We leave it
to you to verify that the following is also a P-justified revision of BI :

BR(a) = 〈{q}, {p, q}〉
BR(b) = 〈{p}, {q}〉
BR(c) = 〈∅, {q}〉

8 Elementary Results

The notion of applying a necessary change to a knowledge base, introduced above
in a general context, has several nice features, and some of these can be established
by essentially algebraic methods.

Why only two values? We begin by showing why the full structure of a bilattice
never arose in the original treatment of Marek and Truszczyński. As we noted earlier,
their setting can be thought of as the four-element bilattice, but restricted to the
portion consisting of only false and true. Ruling out > is done explicitly: they say
a change is not well-defined if it is not coherent. Ruling out ⊥ is done implicitly:
all their models are considered totally defined. Now, how can such restrictions be
extended to more general bilattices?

We showed in [2] that the conflation operator is the key. Suppose we call a member
A of T ¯ T exact if A = −A. In the four-element bilattice, the exact members are
simply false and true. In the setting of Example A, the exact values are those 〈A,B〉
for which B is exactly the complement of A (with respect to {p, q}). In general the
exact members of T ¯ T always possess many important properties of the classical
truth values (such as closure under ∧, ∨, ¬,

∧
, and

∨
) and can be considered a

reasonable generalization. Further, suppose we call A consistent if A ≤k −A. In the
four-element setting, the consistent members are false, true, and ⊥, and if the ≤t
operations are restricted to these values, Kleene’s strong three-valued logic results.
In the setting of Example A, the consistent values are those 〈A,B〉 for which A and
B do not overlap. In general, the consistent members of T ¯ T always constitute
a complete semi-lattice with respect to ≤k and are closed under the operations of
≤t, and thus naturally generalize Kleene’s logic. With all this in mind, we have the
following simple result.



Theorem 8. Working in T ¯ T , suppose an initial knowledge base BI is exact and
the necessary change C is consistent. Then the result of applying the change, (BI ⊗
−C)⊕ C, is exact.

Proof. Let D = (BI ⊗−C)⊕ C. We show −D = D, assuming that −BI = BI and
C ≤k −C. Note, from the latter it follows that C⊗−C = C. Now, using distributive
laws and the de Morgan properties of conflation, we have the following calculation.

−D = −((BI ⊗−C)⊕ C)
= −((−BI ⊗−C)⊕ C)
= (BI ⊕ C)⊗−C
= (BI ⊗−C)⊕ (C ⊗−C)
= (BI ⊗−C)⊕ C
= D

Undoing changes. We wish to investigate under what circumstances changes can
be undone. More specifically we will show that, at least sometimes, if C changes
A to B, ¬C will change B back to A. Now we should not expect this under all
circumstances. For instance, if C says to add p to a knowledge base, and p is already
in A, applying C to A yields A again. But ¬C will tell us to remove p, and this
certainly does not leave A unchanged. The problem here is that C is telling us to
do something unnecessary.

Consider an example using the annotation space T of Example A. Suppose
C(a) = 〈{p}, {q}〉 and A(a) = 〈α, β〉. In order for C to be telling us to do something
that actually needs doing, we must have p 6∈ α and q 6∈ β, or equivalently, p ∈ α
and q ∈ β. But −¬〈α, β〉 = 〈α, β〉, so we can state our requirements quite simply:
we want 〈{p}, {q}〉 ≤k −¬〈α, β〉. This leads us to the following notion.

Definition 9. We say C is an essential change with respect to A if C ≤k −¬A.

Theorem 10. Suppose that T is not just a complete lattice with a de Morgan com-
plement, but that it is also a Boolean algebra. Working in the bilattice T ¯ T , sup-
pose C is an essential change with respect to A, and A is classical. If C changes
A into B, then ¬C changes B into A. More precisely, if B = (A ⊗ −C) ⊕ C, then
A = (B ⊗−¬C)⊕ ¬C.

Proof. If we assume the complement operation of T satisfies the Boolean algebra
law, x∧x = ⊥, it follows easily that in T ¯T we have (1) X ⊗−¬X = ⊥. Applying
conflation to both sides of this, we also have (2) −X ⊕ ¬X = >. Since C is an
essential change with respect to A, C ≤k −¬A, or equivalently, (3) A ≤k −¬C, or



¬C ≤k −A. Finally A is classical, so (4) −A = A. Now, the argument is as follows.

(A⊗−C)⊕ C = B Assumption
[(A⊗−C)⊕ C]⊗−¬C = B ⊗−¬C

(A⊗−C ⊗−¬C)⊕ (C ⊗−¬C) = B ⊗−¬C Distributive Law
A⊗−C ⊗−¬C = B ⊗−¬C By (1)

A⊗−C = B ⊗−¬C By (3)
(A⊗−C)⊕ ¬C = (B ⊗−¬C)⊕ ¬C

(A⊕ ¬C)⊗ (−C ⊕ ¬C) = (B ⊗−¬C)⊕ ¬C Distributive Law
A⊕ ¬C = (B ⊗−¬C)⊕ ¬C By (2)
−A⊕ ¬C = (B ⊗−¬C)⊕ ¬C By (4)

−A = (B ⊗−¬C)⊕ ¬C By (3)
A = (B ⊗−¬C)⊕ ¬C By (4)

Notice, incidentally, that the multiple expert examples do satisfy the Boolean
algebra requirement of the Theorem above, but the unit interval example does not.

Dual revision programs. In [8] the notion of a dual revision program was intro-
duced. PD is the dual of P if every occurrence of out is replaced with an occurrence
of in, and conversely. In fact the behavior of a dual program is easily characterized
in bilattice terms — the program operator is the dual operator in the most straight-
forward sense. Suppose, for notational simplicity, we let Q be the dual of P. Then
it is quite easy to see that:

T bQ(v) = ¬T bP(¬v).

It follows immediately that if C is a fixed point of T bP , then ¬C is a fixed point of T bQ,
because T bQ(¬C) = ¬T bP(¬¬C) = ¬T bP(C) = ¬C. It now follows from the previous
discussion that dual programs can be used, under appropriate circumstances, to
compute inverse changes.

Preprocessing. Both the original Marek and Truszczyński version and the present
generalization only serve to verify that a candidate BR for a revision of BI in ac-
cordence with P really is one. No method is provided for computing a revision —
indeed it is not clear what such a method would compute, since revisions are not
generally unique, as Example A shows. What we consider now is whether there is
some technique for computing at least that portion of the necessary changes that
are common to all changes leading to correct revisions. We propose a simple method
that is, in a sense, correct but not complete. Exactly what this means will become
clear after the method has been presented.

Recall that for a given annotated revision program Pd an operator RP(BI , BR, v)
was defined to be T bPBR |BI (v), and we observed that this was monotonic in each of
BI , BR, and v, with respect to the ≤k ordering. Then we defined the necessary
change for PBR |BI to be the least fixed point of (λv)RP(BI , BR, v). It is convenient
now to turn this notion itself into an operator.

R′P(BI , BR) = the least fixed point of (λv)RP(BI , BR, v).

Then R′P(BI , BR) is the necessary change (candidate) for revising BI into BR.
It is not hard to verify, from general lattice properties, that R′P(BI , BR) itself is
monotonic in both BI and BR, in the ≤k ordering.



Definition 11. Let CBI be the least fixed point of (λw)R′P(BI , w).

The utility of this notion is simple: it yields a T ¯T -valuation that is compatible
with the necessary change for revising BI , no matter what the candidate for revision
might be. More precisely, we have the following.

Theorem 12. Suppose BR is a P-justified revision of BI , and C is the necessary
change for PBR |BI . Then CBI ≤k C.

Proof. Since C is the necessary change for PBR |BI , R′P(BI , BR) = C. Also since BR
is a P-justified revision of BI , BR = (BI ⊗−C)⊕C, so C ≤k BR. Since R′P(x, y) is
monotonic in both inputs, R′P(BI , C) ≤ R′P(BI , BR) = C. It follows that the least
fixed point of (λw)R′P(BI , w) is ≤k C, or CBI ≤k C.

What this means is, if we are given P and an initial knowledge base BI , we can
compute at least some of the necessary change, CBI , before we have a candidate
BR for a revised knowledge base. In a sense, CBI constitutes the uniform part of
the change, that is, the part whose justification will be the same for every BR. An
example should help clarify this.

Example B Let P be the following annotated revision program, where the space
of annotations is the collection of subsets of {p, q}.

(out(a) : {p})← (in(b) : {p})
(out(b) : {p})← (in(a) : {p})

(in(c) : {p})← (in(a) : {p})
(in(c) : {p})← (in(b) : {p})
(in(a) : {q})←

(out(b) : {q})← (in(a) : {q})
Also let BI be the following.

BI(a) = 〈{p}, ∅〉
BI(b) = 〈{p}, ∅〉
BI(c) = 〈∅, ∅〉

We can then calculate CBI by the usual technique of starting with⊥ and iterating
operator application.

CBI (a) = 〈{q}, ∅〉
CBI (b) = 〈∅, {q}〉
CBI (c) = 〈∅, ∅〉.

Next, consider the following, both of which are, in fact, P-justified revisions of
BI .

B1
R(a) = 〈{p, q}, ∅〉

B1
R(b) = 〈∅, {p, q}〉

B1
R(c) = 〈{p}, ∅〉



B2
R(a) = 〈{q}, {p}〉

B2
R(b) = 〈{p}, {q}〉

B2
R(c) = 〈{p}, ∅〉

For B1
R the necessary change turns out to be the following.

C1(a) = 〈{q}, ∅〉
C1(b) = 〈∅, {p, q}〉
C1(c) = 〈{p}, ∅〉

And for B2
R the necessary change is the following.

C2(a) = 〈{q}, {p}〉
C2(b) = 〈∅, {q}〉
C2(c) = 〈{p}, ∅〉

As predicted, CBI ≤k C1 and CBI ≤k C2. Note, however, that if C is any change
that effects a P-justified revision of BI , it must be the case that 〈{p}, ∅〉 ≤k C(c),
though 〈{p}, ∅〉 6≤k CBI (c). Essentially this is because the reasons p has for asserting
c are not uniform in all models. In B1

R, p asserts c because p asserts a, while in B2
R

it is because p asserts b. Nonetheless, use of CBI should allow a certain amount of
preprocessing, and thus improve efficiency somewhat.

9 Conclusion

We believe the understanding of revision specification programs is still in early stages.
Algorithms for computing revisions are missing. Non-trivial examples to which the
theory applies would be useful. Still we believe generalizing as we have done does
not obfuscate, but clarify — serving to bring out the essential algebraic structure
underneath. We intend to continue with further investigations. We urge others to
join in.

References

1. Fitting, M. C. Bilattices in logic programming. In The Twentieth International Sym-
posium on Multiple-Valued Logic (1990), G. Epstein, Ed., IEEE, pp. 238–246.

2. Fitting, M. C. Bilattices and the semantics of logic programming. Journal of Logic
Programming 11 (1991), 91–116.

3. Fitting, M. C. The family of stable models. Journal of Logic Programming 17 (1993),
197–225.

4. Fitting, M. C. Kleene’s three-valued logics and their children. Fundamenta Informat-
icae 20 (1994), 113–131.

5. Fitting, M. C. On prudent bravery and other abstractions. Submitted, 1994.
6. Ginsberg, M. L. Multivalued logics: a uniform approach to reasoning in artificial

intelligence. Computational Intelligence 4 (1988), 265–316.
7. Kifer, M., and Subrahmanian, V. S. Theory of generalized annotated logic program-

ming and its applications. Journal of Logic Programming 12 (1992), 335–367.
8. Marek, V. W., and Truszczyński, M. Revision specifications by means of programs.

Presented at LPNMR workshop, Lexington, KY, 1994., 1994.


